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Abstract
We examine algebraic conditions for the sectional positivity of the Riemann curva-
ture operator. We describe sufficient conditions for dimension n = 4, and complete
characterisation for a dense open subset of the space of operators in dimension 4. We
briefly examine higher-dimensional curvature operators.
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1 Introduction

Positive sectional curvature is an area of much interest. Positive curvature operators
are easy to characterise algebraically: the critical values of a curvature operator are
the roots of its characteristic polynomial, thus, the operator is positive if and only its
coefficients are of alternating sign. In this paper we apply methods of algebraic geom-
etry to obtain an object analogous to the “characteristic polynomial”: for a dense open
subset of the set of 4-curvature operators, the real roots of our polynomial are exactly
the critical values of sectional curvature. Our polynomial is obtained by applying the
discriminant to a specific algebraic object constructed from the curvature operator.
Similar results to ours have recently been obtained in [2], Theorem C.

The discriminant of a polynomial p of degree d is an algebraic expression of its
coefficients that gives zero if and only if the polynomial has a multiple complex root.
It is equal to the determinant of the Sylvester matrix of p and p′ (Basu et al. 2016,
Chapter 4). It is important to note that when we set the top coefficient of our degree-d
polynomial to 0, the value of the degree-d discriminant expression also becomes 0.We
do not recover the expression of the d − 1 discriminant in its remaining coefficients.
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We use discy(p(x, y)) to denote the discriminant of the algebraic expression
p(x, y), with respect to the free variable y. Since we are working in a single point with
fixed metric, we do not explicitly write out the indices of our tensors. The metric gives
an equivalence between covariant and contravatiant indices, allowing us to always
obtain geometrically sound quantities.

The critical values of sectional curvature can be characterised in terms of a
Lagrangian. Thismethodhas been previously applied byThorpe (seeThorpe 1971a, b),
Singer and Thorpe (see Singer and Thorpe 1969, section 2), and Püttmann (see
Püttmann 1999, Section 3.1). We construct the Lagrangian for 4-curvature opera-
tors in Proposition 3.1 and for higher dimensional curvature operators in Section 4.
For the 4-dimensional case, we obtain LR(v, x, y) = vRv − x · (v Iv −1)− y · (vKv)

, where K is the 4-volume form, and I is the identify operator on the set of 2-forms.
The critical values of sectional curvature are the x-components of the critical points
(v, x, y) of our Lagrangian. We define (x, y) as a critical point of the operator R if
there exists a v making (v, x, y) a critical point for our Lagrangian (see Definition
3.4). By Theorem 3.5, we give a characterisation of such points purely in terms of
the coefficients of p(x, y) = det(R − x I − yK ), thus eliminating reference to v and
making the switch from a geometric to an algebraic viewpoint. By Theorem 3.7, we
show that the set of real roots of q(x) = discy(p(x, y)) include the set of critical val-
ues of sectional curvature. By Theorem 3.11, we show that when disc(q) �= 0, the two
sets coincide. It is in principle possible, by the Tarski–Seidenberg theorem Basu et al.
(2016), to generate a complete quantifier-free description of the conditions for posi-
tive sectional curvature. However, such descriptions tend to be long, unstructured, and
difficult to compute. Our result trades completeness, (necessity only works on a dense
open subset of the space of curvature operators) for simplicity. Section 4 examines the
possibility of an algebraic approach to higher dimensional curvature operators, and
shows the failure of a naive generalization of our theorem. Section 5 applies algebraic
methods and results from earlier sections to recover results form Thorpe (1971a).

Theorem 1.1 (Main result) Let n = 4 and consider a given Riemann tensor R as an
operator on �2, the 6-space of 2-forms. Let I be the identity operator on �2, and K
be the 4-volume form with 2 indices lifted.
Let p(x, y) = det(R − x I − yK ), and q(x) = discy(p(x, y)).
The set of real roots of q includes the set of critical values of the sectional curvature
of R. If discx(q(x)) �= 0 the two sets coincide.
As such, if all real roots of q are positive (nonnegative), then R is sectionally posi-
tive (nonnegative). When discx(q(x)) �= 0, the converse also holds: R is sectionally
positive (nonnegative) if and only if all real roots of q are positive (nonnegative).

2 Preliminary notions

Here we present some lemmas and definitions that will be used through the rest of the
article. First we shall study the algebraic conditions for the positivity of the curvature
operator.
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Theorem 2.1 A real symmetric matrix M is positive definite if and only if the coeffi-
cients of its characteristic polynomial are of alternating sign. It is negative definite if
and only if its coefficients are positive.

Proof A matrix is positive-definite if and only if vMv > 0,∀v �= 0. Due to M being
real symmetric, M is positive definite if and only if all its eigenvalues are positive:
∀k ∈ {1..n}, λk > 0. The characteristic polynomial TM satisfies:

det(I x − M) =
n∑

k=0

(−1)n−kek(λ1, λ2, ..λn)x
k

where ek denotes the k’th elementary symmetric polynomial. We know that if the
eigenvalues are positive, then the elementary symmetric polynomials are positive, and
the coefficients of TM are of alternating sign. For the converse, we use the coefficients
of TM to construct it from its Taylor series.Wemay prove inductively that a polynomial
with coefficients of alternating sign ismonotonous and of constant sign on the (−∞, 0]
interval. Therefore, all its real roots must be in the (0,∞] interval. As the roots of TM
are the eigenvalues λk , these must be positive.

For negative-definiteness, observe that M is positive definite if and only if −M is
negative definite. Knowing the relationship between M and −M’s eigenvalues and
applying the above result to −M , we see that M is negative-definite if and only if the
coefficients of its characteristic polynomial are positive. This completes our proof. ��
Corollary 2.2 A curvature tensor R, taken as an operator on the n(n−1)

2 -dimensional
space of 2-forms �2, is positive definite if and only if the coefficients of TR(x) =
det(I x − R) are of alternating sign.

We define a 2-formW as being decomposable if and only if there exist A, B, 1-forms,
such that A ∧ B = W .

Lemma 2.3 A 2-form W is decomposable if and only if W ∧ W = 0.

Proof Treating W as a skew-symmetric matrix, it admits a decomposition:

W =
m∑

k=1

λk(V2k−1 ∧ V2k)

where ∀k, λk �= 0, and V0, V1, . . . , V2m are a set of orthonormal 1-forms.
Using this decomposition, we obtain:

W ∧ W =
m∑

a<b

2λaλb(V2a−1 ∧ V2a ∧ V2b−1 ∧ V2b)

Thus W ∧ W = 0 if and only if W is decomposable. ��
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Lemma 2.4 Let K1, K2, . . . , K(n4)
be an orthonormal basis for the set of 4-forms in

dimension n. A 2-from W is decomposable if and only if

∀p ∈
{
1, 2, . . .

(
n

4

)}
, Wab(Kp)

abcdWcd = 0

In particular, for n = 4, W is decomposable if and only if WabKabcdWcd = 0, where
K is the 4-volume form.

Proof Using the previous lemma, W is decomposable if and only if W ∧ W = 0.
However, W ∧ W is the antisymmetric part of W ⊗ W , ie. the projection of W ⊗ W
onto the space of 4-forms. Therefore, it is zero if and only if

∀p ∈
{
1, 2, · · ·

(
n

4

)}
, Wab(Kp)

abcdWcd = 0. ��

3 Curvature operators in dimension 4

Let S2 be the set of decomposable 2-forms of norm 1. This is the Grassmannian of
oriented 2-planes, and an affine variety in the unit sphere of the space of 2-forms
�2. The curvature operator R is normally taken as a quadratic form on the space of
2-forms. We consider its restriction to S2, given by f : S2 → R, f (v) = vRv.

The curvature operator R is defined to be sectionally positive if f (v) > 0,∀v ∈ S2.
Due to the fact that S2 is compact we obtain the following. R is sectionally positive

if and only if f (v) > 0, ∀v ∈ S2 such that v is a critical point for f . We shall study the
critical points of f on S2, in dimension 4, using Lagrange multipliers. This method is
found in [Singer and Thorpe 1969, Section 2] and [Püttmann 1999, Section 3.1].

Maximise vRv subject to constraints v ∧ v = 0 and v Iv = 1, where I is the
norm on 2-forms (it coincides with the curvature operator of constant curvature 1). In
dimension 4, v ∧ v = 0 becomes vKv = 0, where K is the 4-volume form Lemma
(2.4). The resulting Lagrangian function is

LR(v, x, y) = vRv − x · (v Iv − 1) − y · (vKv). (1)

Its gradient gives us the following conditions for critical points on v:

1) v Iv = 1;
2) vKv = 0;
3) (R − x I − yK )v = 0.

Contracting the third equationwith vweobtain v(R−x I−yK )v = 0,which simplifies
to vRv = x . The Lagrange multiplier allows us to reformulate our problem:

Proposition 3.1 A 4-curvature operator R is sectionally positive if and only if for all
triples (v, x, y) satisfying 1), 2), 3), we have x > 0.
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The next step is to reformulate the problem in a way that does not make explicit
reference to v. We shall use the following property to make the problem computation-
ally easier: If (v, x, y) corresponds to a critical point of the operator LR , then (v, 0, 0)
corresponds to a critical point of the operator LR′ , where R′ = R − x I − yK . The
next lemma shall deduce when a symmetric operator R has a vector v satisfying:

1) v Iv = 1;
2) vKv = 0;
3) Rv = 0.

Lemma 3.2 Let R, K be symmetric operators. Let

det(R − x I − yK ) =
∑

amnx
m yn

Pk(x, y) =
∑

m+n=k

amnx
m yn

The following properties hold:

1) If a00, a10, . . . , ak0 = 0, then Pk = 0.
2) There exists a v �= 0 such that Rv = 0 and vKv = 0 if and only if, for the smallest

k such that Pk �= 0, the coefficients of Pk(x, 1) are neither all of the same sign,
nor are they strictly alternating.

Proof For the proof we shall make use of the following lema Marcus (1990): ��
Lemma 3.3 Let A, B be n-square matrices. Then:

det(A + B) =
∑

r

∑

α,β

(−1)s(α)+s(β) det(A[α|β]) det(B(α|β))

where the outer-sum r is over the integers 0, . . . , n, the inner sum is over all strictly
increasing integer sequences of length r chosen from 1, . . . , n, A[α|β] is the r-square
submatrix of A lying in rows α and columns β, B(α|β) is the (n−r)-square submatrix
of B lying in rows complementary to α and columns complementary to β, and s(α) is
the sum of the integers in α.

Applying the above lemma to A = R, B = (−x I − yK ), and separating the terms
by degrees, we obtain:

Pk(x, y) =
|α|=|β|=k∑

α,β

(−1)s(α)+s(β) det(−(x I + yK )[α|β]) det(R(α|β))

1) a00, a10, . . . , ak0 are the first k + 1 coefficients of R’s characteristic polynomial.
Due to R being symmetric and the coefficients being equal to 0, the dimension
of ker(R) is at least k + 1. We know the terms det(R(α|β)) in Pk(x; y) go over
all n − k minors of R. Due to the dimension of ker(R), all these terms equal 0.
Therefore Pk(x, y) = 0.
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2) There exists such a v if and only if the intersection of the null-cone of K and ker(R)

is non-trivial. This is equivalent to the cone of the restriction of K to ker(R) being
non-trivial. Denote K ′ to be the restriction of K to the ker(R). There exists a v �= 0
such that vK ′v = 0 if and only if K ′, is neither strictly positive nor strictly negative.
This translates to the coefficients of the characteristic polynomial. Denote TK ′(x)
to be the characteristic polynomial of K ′. There exists a v �= 0 such that vK ′v = 0
if and only if the coefficients of TK ′ are neither all strictly of the same sign, nor
are they strictly alternating: if vK ′v = 0 then K ′ is neither positive definite nor
negative definite. The conditions on the coefficients of TK ′ follow from Theorem
2.1. The converse also follows: if the coefficients of TK ′ are neither of the same sign
nor strictly alternating, then K ′ is neither positive definite nor negative definite.
There exist v1, v2 �= 0 such that v1K ′v1 ≤ 0 and v2K ′v2 ≥ 0. The existence of
v �= 0, vK ′v = 0 then follows from the intermediate value theorem.

Let Pk be the first non-zero homogenous polynomial of det(R − x I − yK ). We
now prove that Pk(x, 1) = ak0TK ′(x): Given that Pk is the first non-zero homogenous
polynomial, the dimension of the kernel of R is k. We select an orthonormal basis
for our matrices such that the kernel of R is spanned by the first k eigenvectors. This
gives mab = 0,∀a ∈ {1..k},∀b ∈ {1..n}, where mab are the matrix coefficients of R.
Applying to the above formula of Pk , we obtain:

Pk(x, y) = det(−(x I + yK )[α|α]) det(R(α|α))

where α = {1..k}. We have (R(α|α)), ie the complementary minor of the first k, k
minor, to be the only n − k, n − k minor with non-zero determinant, as all the other
minors intersect R’s kernel. Setting y = 1, and knowing that the first k, k minor of K
is its restriction to the kernel of R shows Pk(x, 1) = ak0TK ′(x).

This proves our result regarding the coefficients of Pk . ��
Definition 3.4 Given a 4-curvature operator R and K the volume form, a point
(x1, y1) ∈ R

2 is a critical point for R if the coefficients of the first non-zero homoge-
nous polynomial of p(x, y) = det((R− x1 I − y1K )− x I − yK ) are neither all of the
same sign, nor all of strictly alternating sign. Equivalently, (x1, y1) is a critical point
of R if there exists a vector v making (v, x1, y1) a critical point for the Lagrangian
LR .

Combining Proposition 3.1 with the previous lemma, we further refine our criteria:

Theorem 3.5 A 4-curvature operator R is sectionally positive (nonnegative) if and
only if for all critical points (x1, y1), x1 is positive (nonnegative).

Proof Denoting R′ = (R − x1 I − y1K ), according to 3.2, points satisfying the above
conditions are exactly those pairs (x1, y1) for which there exists a v such that v Iv = 1,
vKv = 0, and v(R′) = 0. Back-substituting R′ as (R − x1 I − y1K ), we see, due to
3.1. that (v, x1, y1) are the critical points of LR , thus completing the proof. ��

This gives us a complete algebraic description of the positivity of 4-curvature oper-
ators, having only two quantified variables, x and y. The quantifiers can be eliminated
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with the Tarski–Seidenberg theoremBasu et al. (2016), however, the resulting descrip-
tion is long and unwieldy. We shall instead study a dense open subset of the set of
operators, on which the criteria for positive sectional curvature become simpler to
describe.

Lemma 3.6 Let (x1, y1) be a critical point of a 4-curvature operator R, and define
R′ = R − x1 I − y1K and p(x, y) = det(R′ − x I − yK ). Then, for the given p, we
have a00 = 0 and a01 = 0.

Proof If a00 �= 0 then the kernel of R′ would be of dimension zero, there would exist
no v that makes (x1, y1) a critical point. For a00 = 0 there are two situations that
must be considered: Either the kernel of R′ is of dimension 1, or the kernel of R′ is of
dimension greater than 1.

Assume the kernel is of dimension 1. Then the coefficients of P1(x, 1) = a10x+a01
must be neither of strictly alternating sign nor all of the same sign. Therefore a01 = 0.
Assume the kernel is of dimension greater than 1. Then a00 = 0, a10 = 0. According
to Lemma 3.2, P1 = 0, therefore a01 = 0. ��
Theorem 3.7 Let R be a 4-curvature operator. If (x1, y1) is a critical point of R, then
for q(x) = discy(det(R − x I − yK )) we have q(x1) = 0. Therefore, if all the real
roots of q are positive (nonnegative), then R is sectionally positive (nonnegative).

Proof If (x1, y1) is a critical point, defining R′ = (R − x1 I − y1K ), and p(x, y) =
det(R′ − x I − yK ), we have a00 = 0 and a01 = 0 for p (see Lemma 3.6). Defining
p1(x, y) = det(R−x I−yK ) = p(x−x1, y−y1), thismeans that y1 is a double root in
p1(x1, y), taken as a polynomial of y. We have p1(x1, y) = p(0, y) = ∑

k=2..6 a0k y
k .

This means that the discriminant in y of p1(x, y) = det(R − x I − yK ) gives 0 for
x = x1. Having q(x) = discy(det(R − x I − yK )) = discy(p1(x, y)), this completes
the proof. ��

This gives us a sufficient condition for sectional positivity (non-negativity). How-
ever, it is stronger than necessary. Though all critical points (x1, y1) of R correspond
to real roots x1 of q, the converse is not true. The next step is studying the so-called
“false” real roots of q and defining for ourselves a dense open subset of the set of
4-curvature operators on which there are none. This will turn out to be the set on
which discx(q) �= 0.

Lemma 3.8 For any given 4-curvature operator R, the polynomial q(x) = discy
(det(R − x I − yK )) has no roots introduced by the discriminant function due to the
variance of the degree of the y polynomial det(R − x I − yK ) as x varies.

Proof The top coefficient of det(R − x I − yK ), taken as a polynomial in y, is −1,
corresponding to−y6. The coefficient does not depend on x , so, taken as a polynomial
of y, det(R − x I − yK ) is always of degree 6, regardless of the value of x . ��
Lemma 3.9 Let R bea curvature operator, and (x1, y1)a tuple such that y1 is amultiple
root of f (y) = det(R−x1 I−yK ). Denote p(x, y) = det(R−(x1+x)I−(y+y1)K ).
If, for the given p, a10 = 0 then x1 is amultiple root of q(x) = discy(det(R−x I−yK )).
In particular, if discx(q) �= 0, then for all such pairs (x, y) we have a10 �= 0.
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Proof We may write p(x, y) = p0(x) + yp1(x) + y2 p2(x) + · · · y5 p5(x) + (−y6),
where pn(x), n ∈ {0..5}, denote polynomials in x . Due to the vanishing coefficients
(see Lemma 3.2), we can write p0(x) = x2m0(x) and p1(x) = xm1(x). We define
k(x) = discy(p(x, y)) = q(x + x1). We shall now show that k(x) is a multiple of
x2, thus x1 is a multiple root of q. The discriminant of p can be computed as the
determinant of the Sylvester matrix S of p and ∂ p

∂ y (see Basu et al. 2016, chapter 4).
We shall examine S2, the submatrix formed from the last two columns of S. It takes
the form:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
. .
. .

x2q0(x) 0
xq1(x) x2q0(x)

. . . . . . . . . . . . . .

0 0
. .
. .

xq1(x) 0
p2(x) xq1(x)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We note that the following formula for the determinant of S:

det(S) =
∑

a<b

(−1)a+b det(Mab) det(CMab)

where Mab denotes the 2-minor formed from the a and b rows of S2, and CMab

denotes it’s complementary minor in S. This is an application of Laplace’s theorem
(Muir 1882, Sec.77).

We see that for all 2-minors Mab of S2, we have det(Mab) as a multiple of x2.
As such, det(S) = discy(p(x, y)) is a multiple of x2. As k(x) = discy(p(x, y)) =
q(x + x1), q has a multiple root in x1, thus completing our proof. ��
Lemma 3.10 Let R be a 4-curvature operator, q(x) = discy(det(R − x I − yK )).
Assume discx(q) �= 0. Then for any real x1 such that q(x1) = 0, the polynomial
f (y) = det(R − x1 I − yK ) has at least one multiple root which is real.

Proof For a polynomial f , disc( f ) = 0 if and only if there exists an y1 such that y1 is a
multiple root of f . In general, y1 does not need to be real. Assume in our particular case
that there exists a real x1 such that the set ofmultiple roots of f (y) = det(R−x1 I−yK )

is non-empty, yet all the multiple roots are non-real. All the coefficients of f are real,
therefore all non-real roots come in conjugate pairs. If f has a non-real multiple root,
then f has several. Consider a small perturbation R′ of R in the space of operators
(implicit function theorem). Since x1 is a degree-1 root of q, it is stable. Therefore there
exists a perturbation x ′

1 such that f
′(y) = det(R′ − x ′

1 I − yK ) also has multiple roots.
Due to f ′(y) being in the neighborhood of f , for a small enough perturbation, those
roots must also be non-real. Due to the coefficients remaining real, the roots must also
come in conjugate pairs. Therefore, if an operator R outside the disc(q) = 0 set has an
x1 for which f (y) = det(R − x1 I − yK ) has only non-real roots, then this property
is true for an open neighborhood of R in the space of operators with disc(q) �= 0.
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However, when, for a given x1 an f has non-real multiple roots, then it has several
multiple roots. This means not only that disc( f ) = 0, but the first subdiscriminant of f
is zero. This means gcd(discy(det(R− x I − yK )), subdiscy(det(R− x I − yK ))) has
degree greater than 0. Generically, this does not happen. For the majority of operators,
for any given x1 with q(x1) = 0, f (y) = det(R − x1 I − yK ) has only 1 double root.
Therefore, the set of operators that have an x1 such that f (y) = det(R − x1 I − yK )

has several multiple roots is of measure 0 in the space of operators. Combining with
the previous property, we obtain that all operators R outside of disc(q) = 0 have, for
every x1 such that q(x1) = 0, at least one multiple root of f (y) = det(R− x1 I − yK )

which is real. ��
Theorem 3.11 Let R be a 4-curvature operator, q(x) = discy(det(R − x I − yK )). If
disc(q) �= 0 then all the real roots x1 of q correspond to critical points (x1, y1) of R.

Proof We already know that if (x1, y1) is a critical point of R then q(x1) = 0 (from
Theorem 3.7). For the converse, we combine the previous lemmas: For q(x1) =
0, disc(q) �= 0, there exists at least one real y1 such that y1 is a multiple root of
f (y) = det(R − x1 I − yK ) (from Lemma 3.10). Therefore, for that y1, we have
a00(x1, y1) = 0 and a01(x1, y1) = 0 (these are required conditions for y1 to be a
multiple root of f ). Additionally, since disc(q) �= 0, we have a10(x1, y1) �= 0 (form
Lemma 3.9). Therefore y1 is real and satisfies a00 = 0, a01 = 0, a10 �= 0. These are
sufficient conditions to classify (x1, y1) as a critical point (of kernel dimension 1) (see
Definition 3.4). ��

Since the x components of critical points correspond to the critical values of f (v) =
vRvwhere f is definedon the set of norm-1decomposable 2-forms,whendisc(q) �= 0,
the boundaries of the set of real roots of q(x) = discy(det(R − x I − yK )) give us the
maximum andminimum values for the sectional curvature or R. These can be checked
computationally by applying the signed remainder sequence to q.

We recover our main result (Theorem 1.1) by combining theorems 3.11 and 3.7.

Corollary 3.12 Given R a 4-curvature operator on �2, the upper and lower bounds
of the set of real roots of q(x) = discy(det(R − x I − yK )) are the same as the upper
and lower bounds of the sectional curvature or R, where I is the identity operator on
2-forms and K is the 4-volume form.

4 Higher dimensional curvature operators

Here we briefly discus higher dimensional curvature operators.We examine analogues
to the previous theorems and their failures.

As before, we aim to maximise vRv subject to constraints v ∧ v = 0 and v Iv = 1,
where I is the norm on 2-forms of dimension n (this is G̃r(2, n), the Grassmannian
of oriented 2-planes in R

n). Due to the compactness of G̃r(2, n), the critical points
give us the bounds for the sectional curvature. The equation v ∧ v = 0 gives us

(n
4

)

constraints (see [Thorpe 1971a, b]), [Singer andThorpe 1969, section 2], and Püttmann
1999, Section 3.1]).
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Using Lemma 2.4, the Lagrangian function is:

LR(v, x, y1, y2, . . . y(n4)) = vRv − x · (v Iv − 1) −
(n4)∑

p=1

yp · (vKpv). (2)

where Kp form a basis on the set of 4-forms. Its gradient gives us:

1) v Iv = 1;
2) vKpv = 0;

3) (R − x I − ∑(n4)
p=1 ypK p)v = 0.

with vRv = x , as in the 4-dimensional case. The next step was to reformulate the
problem in a way that does not make explicit reference to v. We shall only give a
partial characterisation of the conditions required for the existence of v satisfying 1),
2), 3). We are looking for

(n
4

) + 1-uples (x, y1, y2, . . . y(n4)) such that there exists a v

satisfying the above equations. Analogously to n = 4, we shall name these as critical
points of R (points (x1, y1, y2, . . . y(n4)) such that there exists a 2-form v making
(v, x, y1, y2, . . . y(n4)) a critical value of LR .
We shall now give a higher dimensional analogue of Lemma 3.6:

Lemma 4.1 Assume q = (x, y1, y2, . . . y(n4)) is a critical point of R.

Define R′ = R − x1 I − ∑(n4)
s=1 ys Ks.

Let p(x, z1, . . . z(n4)) = det(R′ − x I − ∑(n4)
s=1 zs Ks).

Let α0 be the constant coefficient of the multinomial p and α0s, s ∈ {1, ..(n4
)} be the

coefficients corresponding to the monomials zs1.
Then α0 = 0 and ∀s, α0s = 0.

Proof If q is a critical point, then there exists a v that is simultaneously in the kernel
of R′, and in the intersection of the null-cones of Ks , for all s. From the kernel of R′
not being null, we get α0 = det(R′) = 0. For the rest of the coefficients we shall be
selectively applying Lemma 3.6: if v is in the intersection of the null-cones of Ks ,
then, ∀s, the intersection of the kernel of R′ and the null-cone of Ks is non-trivial.
Selecting a specific p, and setting all zs, s �= p to 0, gives us a situation where we can
apply Lemma 3.6, proving α0p = 0. This completes the proof. ��

In n = 4, if for a given x1 there exists an y1 making (x1, y1) a critical point of
R, then y1 is a multiple root of f (y) = det(R − x1 I − yK ) (from Theorem 3.7),
thus disc( f ) = 0. Therefore, the set of x1 such that (x1, y1) are critical points of
R is a subset of the real roots of q(x) = discy(det(R − x1 I − yK )). In higher
dimensions, from the previous lemma, we know that (x1, y1, y2, . . . y(n4)) being a
critical point of R implies (x1, y1, y2, . . . y(n4)) being a null-valued critical point of

f (z1, . . . z(n4)) = det(R − x1 I − ∑(n4)
s=1 zs Ks). To obtain a similar situation to 3.7, we

require the multi-variable generalization of the discriminant [7].
We obtain the following generalization of Theorem 3.7:
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Let R be an n-curvature operator, and {K1, · · · , K(n4)
} be a basis for the space of

4-forms of dimension n.
Denote p(x, z1, . . . z(n4)) = det(R − x I − ∑(n4)

s=1 zs Ks).
Let q(x) = discz(p) (themultivariate discriminant of pwith respect to the z variables).
If (x1, y1, . . . , y(n4)) is a critical point of R, thenwehaveq(x1) = 0. Therefore, if all the
real roots of q are positive (nonnegative), then R is sectionally positive (nonnegative).

This seems like a good strategy for describing higher dimensional positivity (non-
negativity), however, it fails for one important reason:

Theorem 4.2 Let R be an n-curvature operator, n ≥ 5, and {K1, · · · , K(n4)
} be a basis

for the space of 4-forms of dimension n.

Denote p(x, z1, . . . z(n4)) = det(R − x I − ∑(n4)
s=1 zs Ks).

Let q(x) = discz(p). Then q(x) = 0.

Proof When γ = (x, y1, y2, . . . y(n4)) is a critical point of R, α0 = 0 and ∀s, α0s =
0 (from Lemma 4.1). But, due to Lemma 3.6, this also happens when the rank of

(R− x I −∑(n4)
s=1 ys Ks) is less than

(n
2

)−1. For n ≥ 5, the subset of operators R, such
that there exists a 4-form S making R − S of rank

(n
2

) − 2 is of non-zero measure.
We can consider our function qR(x) = discz(p) as a polynomial function over the
pairs (x, R). Due to the previous property, it will give 0 on a non-null set, therefore 0
everywhere. ��

4.1 Some observations

For a given operator R, we may describe

p(x, z1, . . . , z(n4)) = det(R − x I −
(n4)∑

s=1

zs Ks)

in a geometric manner, without resorting to a specific basis. We can define

pR : (R,�4) → R,

pR(x,W ) = det(R − I x − W )

where �4 is the space of 4-forms. Even though for n ≥ 5 the discriminant of p with
respect to the coefficients of W is 0, we suspect a higher-dimensional analogue of
exists, allowing us to characterise the sectional curvature of R from the coefficients
of the polynomial pR . Studying pR allows the application of algebraic methods to the
geometric properties of R.

5 Applications

Here we apply the previous theorems for particular cases and examine the use of
algebraic methods for previously known results.
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Definition 5.1 A curvature operator R is known as strongly positive if there exists a
4-form Kn such that R + Kn is positive definite Bettiol and Mendes (2018).

All strongly positive curvature operators are sectionally positive. This is known as
Thorpe’s trick (see Thorpe Thorpe 1971a, b; Singer and Thorpe 1969, and Püttmann
1999 ). For n = 4, the converse also holds:

Theorem 5.2 Let n = 4 and R be a sectionally positive (nonnegative) curvature
operator. Then there exists y1 such that R − y1K is positive (semipositive) definite. In
other words, in dimension 4, all sectionally positive curvature operators are strongly
positive (Bettiol and Mendes 2018, Proposition 2.2).

Proof We shall study the object p(x, y) = det(R − I x − Ky). Having q(x) =
discy(p(x, y)), assume discx(q(x)) �= 0. For any y, Ry = R − yK is symmetric, as
such, its characteristic polynomial has exactly 6 real roots,where 6 is the rank of R. Due
to discx(q(x)) �= 0, the roots of the polynomial are always distinct(see Lemma 3.9),
regardless of y. As such, we can consider six parametric functions αi (y), i ∈ {1..6},
corresponding to the ordered roots of the characteristic polynomial of R−kY .We shall
study α1(y), corresponding to the smallest root, the smallest eigenvalue of R − Ky.
The operator K has 3 eigenvalues of 1 and 3 eigenvalues of −1.
Therefore limy→−∞ α1(y) = −∞ and limy→∞ α1(y) = −∞. Therefore α1 has at
least one maximum point. Denote that point as y1, and let α1(y1) = x1. Examining the
anm coefficients of p′(x, y) = det(R − I (x + x1) − K (y + y1)) we see that (x1, y1)
is a critical point to R (see Definition 3.4, a00 = 0, a01 = 0, a10 �= 0). Therefore, if R
is sectionally positive (nonnegative), then x1 is positive (nonnegative). But x1 is also
the smallest eigenvalue of R − Ky1, thus completing our proof. For the operators in
the null set of discx(q(x)) = 0, use a limit argument in the set of operators (with prior
bounds for y1) to obtain the result. ��

Then there exists y1 such that R + Ky1 is positive (semipositive) definite. In other
words, in dimension 4, all sectionally positive curvature operators are strongly positive
Bettiol and Mendes (2018).

Theorem 5.3 Let n = 4 and R be a sectionally semi-positive curvature operator. Let
Z(R) be the set of V such that V KV = 0 and V RV = 0. Assume Z(R) �= ∅. Then
there exists a unique y1 such that Z(R) is the set of V such that V KV = 0 and
V (R − Ky1) = 0 (see [Thorpe 1971a, Theorem 4.1]).

Proof We shall use the same methods as before for the study of the parametric curve
α1(y), giving the smallest eigenvalue of the operator R − Ky. As ∀y, R − Ky has the
sectional curvature as R, the minimum of R′s sectional curvature is greater than or
equal to α1(y). Therefore, it is greater than or equal to the maximum value of α1(y).
If y1 is a critical point of α1 then (α1(y), y) will be a critical point of the sectional
curvature (see Definition 3.4). But the maximum of α1 is at most a lower bound of
said curvature. Therefore, all critical points of α1 give the maximum value. Since α1
has at least one critical point, it has a single critical point, y1. At that point, α1(y1)’s
value is equal to the minimal value of sectional curvature. Let x1 be said value. In our
case, x1 = 0. Due to 0 being the smallest eigenvalue of R′ = R − y1K , all vectors V
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such that V R′V = 0 are eigenvectors of R′. Therefore, Z(R) is the intersection of the
kernel of R′ with the set V KV = 0. For uniqueness, let V be a vector in the kernel of
R′, such that V KV = 0. Due to the kernel of K being null, V is not in the kernel of
R′ − yK , ∀y �= 0. This completes the proof. ��
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