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Abstract
We prove that both Lippmann’s axiom of 1906, stating that for any circle there exists a
triangle circumscribing it, and Lebesgue’s axiom of 1936, stating that for every quadri-
lateral there exists a triangle containing it, are equivalent,with respect toHilbert’s plane
absolute geometry, to Bachmann’s Lotschnittaxiom, which states that perpendiculars
raised on the two legs of a right angle meet. We also show that, in the presence of the
Circle Axiom, the statement “There is an angle such that the perpendiculars raised
on its legs at equal distances from the vertex meet” is equivalent to the negation of
Hilbert’s hyperbolic parallel postulate.
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1 Introduction

In a letter to Wolfgang Bolyai, Gauss wrote on December 16, 1799 from Helmstedt
that
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if one could prove that a straight triangle is possible, whose area would be larger
than [that] of any given surface, then I would be able to prove the entire geometry
completely rigorously.1

In this paperwewill determinewhat such a suppositionwould entailwhen expressed
in the form that any figure of a special kind—such as a circle, or a quadrilateral—can
be contained in a triangle, or in Gauss’s words, what “the entire geometry” is that one
can “prove completely rigorously” in the presence of such an assumption.

Among thosewho tried, long after thematter had been settled, to prove that Euclid’s
parallel postulate can be obtained from“facts of experience”, is the otherwise unknown
Lippmann, whose only other publication reviewed by the Jahrbuch für die Fortschritte
der Mathematik, is the first part of an introduction to aeronautics of 1911. In Lippmann
(1907), a booklet reviewed by Max Dehn for the Jahrbuch and by “G. K.” for Monat-
shefte für Mathematik und Physik, he claims to have deduced, in the presence of the
Archimedean axiom, the Euclidean parallel postulate from the following statement,
considered a “fact of experience”

Lipp 1 For every circle C there exists a triangle which has C as its inscribed circle.

It is easy to see that it makes no difference if the triangle is asked just to contain
the circle C in its interior or to have its sides tangent to C. For, if ABC is a triangle
containing C in its interior, then from O , the center of C, we drop perpendiculars to
AB, BC , and C A, which intersect C in the points C ′, A′, and B ′, respectively. The
perpendiculars in A′ on O A′, in B ′ to O B ′, in C ′ to OC ′ are the sides of a triangle
which is circumscribed to C.

While some may just shrugg the episode off as one more case of stubborn denial
of non-Euclidean geometry, we will handle this axiom in the manner put forth in
Pambuccian (2009) with Lagrange’s attempt to prove the Euclidean parallel postulate,
to askwhat better known statementLipp 1 is equivalent to,withHilbert’s plane absoute
geometry A as background.

First, let us observe that Lipp 1 is equivalent to the following apparently stronger
statement

Lipp 2 For every circle C there exists an equilateral triangle which has C as its
inscribed circle.

To show this, we first introduce the notion of an angle that is n-positive and the
notion of an angle that is n-away from a straight angle.2 Given an angle ̂X OY , let
Y1 = Y ′

1 = Y , let X ′ denote the reflection of X in O , Yi+1 denote the reflection
of X into OYi , for i ∈ {1, . . . , n − 1}, and Y ′

i+1 the reflection of X ′ into OY ′
i . The

angle ̂X OY is said to be n-positive if at least one of ̂X OYi with i ∈ {1, . . . , n} is not
acute, and it is said to be n-away from a straight angle if at least one of ̂X ′OY ′

i , with
i ∈ {1, . . . , n}, is not an acute angle (i. e. is ≥ 90◦).

1 Wenn man beweisen könnte dass ein geradlinigtes Dreieck möglich sei, dessen Inhalt grösser wäre als
eine jede gegebne Fläche so bin ich im Stande die ganze Geometrie völlig streng zu beweisen. (Schmidt
and Stäckel 1899, pp. 36f).
2 See,Beeson 2018 for the important role these notions play in the axiomatization of intuitionistic Euclidean
geometry.
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We will not only show that Lipp 1 and Lipp 2 are equivalent, but also that they are
equivalent, for any positive integer n, to
Ln If the angle ̂X OY is not acute and is n-away from a straight angle, then every

perpendicular to its side
−→
O X intersects every perpendicular to its side

−→
OY .

The connection between Ln and Lipp 2 is best established by observing that Ln is
equivalent to
L′

n If ̂X OY is n-away from a straight angle, such that O X ≡ OY , then the perpen-
dicular raised in X to O X intersects the perpendicular raised in Y to OY .

While L′
n states a certain property for all angles that are not “too obtuse,” it can be

replaced by statements of the same nature for just one very obtuse but not too obtuse
angle (the angle is such that 180◦ − 90◦

2n−2 < ̂X OY ≤ 180◦ − 90◦
2n−1 ) or for just one very

acute but not too acute angle (the angle is such that 90◦
2n ≤ ̂X OY < 90◦

2n−1 ). The exact
statements are:
Lλ

n There exists an angle ̂X OY ,which is n-away, but not (n−1)-away from a straight

angle, such that, for all A and B, with A on
−→
O X and B on

−→
OY , with O A ≡ O B, the

perpendicular raised in A to O A intersects the perpendicular raised in B to O B.
Lσ

n There exists an angle ̂X OY , which is (n + 1)-positive, but not n-positive, such

that for all A and B,with A on
−→
O X and B on

−→
OY ,with O A ≡ O B, the perpendicular

raised in A to O A intersects the perpendicular raised in B to O B.
We also consider the following axiom:

L(α◦) If ̂X OY is an angle of measure α◦ and O X ≡ OY , then the perpendicular
raised in X to O X intersects the perpendicular raised in Y to OY .

It is easy to see that Lipp 2 is equivalent to L(120◦).
Friedrich Bachmann introduced in Bachmann (1964) an important axiom in the

foundation of geometry, stating that “Every quadrilateral with three right angles
closes,” which is none else than L1, and it is plain that it is also equivalent to L(90◦).
He called it the Lotschnittaxiom and provided two equivalent statements for it, the
equivalence holding over Hilbert’s plane absolute geometry A (whose axioms are
the plane axioms of groups I, II, and III of Hilbert’s (1977), being equivalent to
the axioms A1–A9 in Schwabhäuser et al. (1983), the models of which are referred
to as Hilbert planes). The first time a statement equivalent to the Lotschnittaxiom
was presented was on February 3, 1806 by Lagrange (the equivalence was shown
in Pambuccian (2009)). It has been signaled in Flye Sainte-Marie (1870, pp. 12–13)
and Flye Sainte-Marie (1871, p. 133) in the same form that Bachmann chose, as
an axiom (which Flye Sainte-Marie found to have a form which “se rapproche de
celle qu’Euclide a choisie”) to critique an attempt to prove Euclid’s fifth Postulate by
Jules Carton, a purported proof Joseph Bertrand was prevented from publishing in the
Comptes Rendus of the Académie des Sciences only after the intervention of Darboux
and others (see Henry and Nabonnand 2017 for more details on the matter). Various
other equivalent statements can be found in Pambuccian (1994) and in Pambuccian
(2017).

Without mentioning Lippmann [and very likely unaware of the existence of Lipp-
mann (1907)], Lebesgue (1936) introduced an axiom similar to Lipp 1, stating
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that every quadrilateral can be enclosed in a triangle, as an equivalent, under the
Archimedean axiom, to the Euclidean parallel postulate. Put differently, it states that

Leb Given four points, there exists a triangle that contains the points in its interior
or on its sides.

The purpose of this note is to show that, for any integer n ≥ 2, the axioms Lipp 1,
Lipp 2. Ln , L′

n , L(90◦), Lλ
n , and Lσ

n , Leb, as well as several others, are equivalent
with respect to A. We will also show that an axiom, asking for just one angle for
which it is true that any two perpendiculars raised on its legs at equal distances from
its vertex intersect, is strictly weaker than the Lotschnittaxiom, and will determine its
exact strength.

2 Main theorem on Lippmann’s axiom

For all integers n, with n ≥ 2, we have

Theorem 1 A 	 Lipp 1 ↔ Lipp 2 ↔ Ln ↔ L′
n ↔ L(90◦) ↔ Lλ

n ↔ Lσ
n

Proof First, let us show that

A 	 Ln ↔ L′
n (1)

To see that Ln → L′
n holds inA, first notice that, if ̂X OY is not acute, if we know

that Ln holds and O X ≡ OY , then the perpendicular raised in X to O X intersects the

perpendicular raised in Y to OY since the perpendicular in any point of
−→
O X intersects

the perpendicular in any point of
−→
OY . In particular, ifLn holds, we know that, if ̂X OY

is a right angle and O X ≡ OY , then the perpendicular raised in X to O X intersects
the perpendicular raised in Y to OY . Now notice that, if the conclusion of L′

n holds

for a certain angle ̂X OY , with O X ≡ OY , then it holds for any angle smaller than
̂X OY . in other words,

α◦ < β◦ → (L(β◦) → L(α◦)). (2)

To see this, notice that, if O, X , Y , Y ′ are such that no three are collinear, O X ≡ OY ,

O X ≡ OY ′, the ray
−→
OY ′ lies inside the angle ̂X OY , and the perpendicular raised

in X to O X intersects the perpendicular raised in Y to OY in P (see Fig. 1), then
the perpendicular raised in X to O X intersects the perpendicular raised in Y ′ to OY ′

as well. This can be easily seen by noticing that
−→
O P is the internal angle bisector of

̂X OY , and that the internal bisector of ̂X OY ′ is a ray emanating from O and lying
inside the angle ̂X O P , and thus, by the Crossbar Theorem (see, Greenberg 2008, p.
116), it intersects the segment X P in a point P ′, which is the point of intersection
of the perpendicular raised in X to O X with the perpendicular raised in Y ′ to OY ′.
Using this just proved fact, that if the conclusion of L′

n holds in a certain angle, then
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Fig. 1 α◦ < β◦ → (L(β◦) →
L(α◦))

O X

Y

Y

P

P

Fig. 2 L′
n → Ln

O X

P

Q
π

Y

Y

it holds in all smaller angles, and the fact that the conclusion of L′
n holds when ̂X OY

is a right angle, we deduce that the conclusion of L′
n holds whenever ̂X OY is acute.

This proves that Ln → L′
n ,

The converse, L′
n → Ln is also true inA. For, if ̂X OY is a non-acute angle, which

is n-away from a straight angle, and if O X ≥ OY , then let Y ′ denote the point on
−→
OY

for which OY ′ ≡ O X (see Fig. 2). We know, by L′
n , that the perpendiculars raised in

X on O X and in Y ′ to OY ′ intersect in a point P . By Pasch’s axiom, the perpendicular
π in Y to OY must intersect one of the sides O P or PY ′ of triangle O PY ′ as well, and
π is parallel to Y ′ P (as both are perpendicular ro OY ), so π intersects O P . Applying
Pasch’s axiom again, with π as transversal and O X P as the triangle, we conclude that
π intersects either side O X or side P X of triangle O P X . If it were to intersect the
segment O X in a point Q, then triangle OY Q would have a right angle ̂OY Q and a
non-acute angle ̂QOY (which is ̂X OY ), a contradiction, since a triangle can have at
most one non-acute angle. Thus π intersects side P X of triangle O P X in a point Q,
so π intersects the perpendicular raised in X on O X , so Ln holds. This proves (1).

Let us now show that

A 	 Lipp 1 ↔ Lipp 2 (3)
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738 Beitr Algebra Geom (2019) 60:733–748

Since the ← implication is obvious, we turn to the → part of (3). Let C be
a circle with center O and let ABC be its circumscribing triangle. Let M1, M2,

and M3 be the points of tangency of C and triangle ABC . One of the angles
̂Mi O Mi+1, with i ∈ {1, 2, 3}, and with addition modulo 3, i. e., M4 stands for

M1, must be ≥ 120◦. Given that an angle of 120◦ exists in A (since there exists
an equilateral triangle in A, as proved in Pambuccian (1998)), by (2) we have that,
L(max3i=1

̂Mi O Mi+1) → L(120◦). Since Lipp 2 is equivalent toL(120◦) and Lipp 1

is equivalent to L(max3i=1
̂Mi O Mi+1), we have that A 	 Lipp 1 → Lipp 2. This

proves (3).
By (2) and bearing in mind that Lipp 2 is equivalent to L(120◦), we have

A 	 Lλ
n → L′

n → Lipp 2 → L(90◦) → Lσ
n (4)

To prove that

A 	 Lσ
n → L(90◦) and A 	 L(90◦) → Lλ

n (5)

we will use their algebraic characterization, provided in Pejas (1961), as presented in
Bachmann (1964).

Let K be anorderedfield and k an element of K , to be referred to as theorthogonality
constant (or the metric constant). By the affine-metric plane A (K , k) (cf. Hessenberg
and Diller 1967, p. 215) we mean the projective plane P (K ) over the field K from
which the line [0, 0, 1], as well as all the points on it, have been removed (and we
write A (K ) for the structure with the remaining point-set, the corresponding line-
set, with their incidence and orthogonality relations), for whose points of the form
(x, y, 1) we shall write (x, y) (which is incident with a line [u, v, w] if and only if
xu + yv + w = 0), together with a notion of orthogonality, the lines [u, v, w] and
[u′, v′, w′] being orthogonal if and only if

uu′ + vv′ + kww′ = 0. (6)

A (K ) is ordered in the usual way. The algebraic characterization of the Hilbert
planes consists in specifying a point-set E of an affine-metric plane A (K , k), which
is the universe of the Hilbert plane (the set of lines of a Hilbert plane is the of lines
of the affine-metric plane which are incident with at least one point of the Hilbert
plane). The Hilbert plane will thus inherit the order relation Z from A (K ). We can
also define a notion of congruence of two segments ab and cd, which will be given,
in case E ⊂ A (K , 0), by the usual Euclidean formula

(a1 − b1)
2 + (a2 − b2)

2 = (c1 − d1)
2 + (c2 − d2)

2,

and, in case E ⊂ A (K , k) with k 
= 0, by

F(a,b)2

Q(a)Q(b)
= F(c,d)2

Q(c)Q(d)
, (7)
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where

F(x, y) = k(x1y1 + x2y2) + 1, Q(x) = F(x, x), and x = (x1, x2), y = (y1, y2).

Let now K be an ordered Pythagorean field, R the ring of finite elements, i.e.,
R = {x ∈ K : (∃n ∈ N) |x | < n} and P the ideal of infinitely small elements of K ,
i.e., P = {0} ∪ {x ∈ K : x−1 /∈ R}. All Hilbert planes are isomorphic to a plane of
the following three types:

Type 1 E = {(a, b) : a, b ∈ M} ⊂ A (K , 0), where M is an R-module 
= (0);

Type 2 E = {(a, b) : a, b ∈ M} ⊂ A (K , k) with k 
= 0, where M is an R-module

= (0) included in {a ∈ K | ka2 ∈ P}, that satisfies the condition

a ∈ M ⇒ ka2 + 1 ∈ K 2;

Type 3 E = {x : Q(x) > 0, Q(x) /∈ J } ⊂ A (K , k) with k < 0, where J ⊆ P is a
prime ideal of R that satisfies the condition

ka2 + 1 > 0, ka2 + 1 /∈ J ⇒ ka2 + 1 ∈ K 2,

with K satisfying

{a ∈ K : ka2 ∈ R\P} 
= ∅.

The meaning of k in this context can be best described by mentioning that its sign
is the same as that of α + β + γ − 180◦, where α, β, and γ are the measures of the
three angles of a triangle, and 180◦ is the measure of two right angles.

As shown in Bachmann (1964), the Hilbert planes satisfying L(90◦), are precisely
those of Type 1 and Type 2. In other words, L(90◦) holds in all models of Type 1
and Type 2 and does not hold in any model of Type 3. Given that we know that
L(90◦) → Lσ

n holds in A, to prove that Lσ
n → L(90◦) holds as well, all we need to

show is that Lσ
n does not hold in planes of Type 3. To prove that L(90◦) → Lλ

n holds
in A all we need to show is that Lλ

n holds in planes of Type 1 and Type 2 (that it does
not hold in planes of Type 3 will follow from the fact that not even Lσ

n holds there,
and we know that Lλ

n → Lσ
n holds in A).

To show thatLσ
n , with n ≥ 2, does not hold in planes of Type 3, letM be a model of

Type 3. First we notice that if the angle with vertex O = (0, 0), whose legs are formed
by the points with positive x-coordinates on [0, 1, 0] (the positive part of the x-axis)
and by the points with positive x-coordinates on [−m, 1, 0] (the positive x-part of the
line y = mx) is to be (n +1)-positive, then m ∈ R\P , since the formula for reflecting
a line through O in another line through O is the same regardless of the value of the
metric constant (and thus the same as in the case in which the metric is Euclidean).
We will show that, for any m ∈ R\P , with 0 < m ≤ 1, we can find points A and B on
the angle with vertex O = (0, 0), whose legs are formed by the points with positive
x-coordinates on [0, 1, 0] and by the points with positive x-coordinates on [−m, 1, 0],
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such that the perpendiculars πA raised in A on O A and πB raised in B on O B do not
meet.

First, let us note that, since there is an a0 ∈ K , with ka2
0 ∈ R\P , there must be an

a1 ∈ K with −1+ m4

16 < ka2
1 ≤ −1+ m4

8 , as K is Pythagorean, and thus contains all√
q for q ∈ Q

+, and a1 can be chosen to be a0
√

q , for some q ∈ Q

+. Let A = (a1, 0)

and B =
(

a1√
m2+1

, ma1√
m2+1

)
.We need to check that A (and thus B) belongs toM, which

is plain, as Q((a1, 0)) = ka2
1 + 1 > m4

16 /∈ P . We find that πA = [1, 0,−a1] and that

πB = [1, m,−a1
√

m2 + 1], and that their point of intersection in the affine-metric
plane A (K , k) is

x =
(

a1,
a1(

√
m2 + 1 − 1)

m

)
(8)

and

Q(x) = 2ka2
1(m

2 + 1 − √
m2 + 1) + m2

m2 (9)

Using the fact that ka2
1 ≤ −1 + m4

8 and that m2 + 1 − √
m2 + 1 > 0, we get that

Q(x) ≤
(
−2 + m4

4

) (
m2 + 1 − √

m2 + 1
)

+ m2

m2 . (10)

We claim that

(
−2 + m4

4

)(
m2 + 1 −

√
m2 + 1

)
+ m2 < 0. (11)

Now (11) can be rewritten as

(
2 − m4

4

)√
m2 + 1 < 2 − m4 + m6

4
+ m2. (12)

Squaring and simplifying, we get

m6 + m8

2
< m4 + m10 + m12

16
. (13)

Dividing by m4, we get

m2 + m4

2
< 1 + m6 + m8

16
, (14)
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which holds, since m ≤ 1, and so m2+m4

2 ≤ 1 < 1+ m6+m8

16 , thus (13), (12), and (11)
hold, so Q(x) < 0, which means that x is not a point of M. Thus Lσ

n , with n ≥ 2,
does not hold in planes of Type 3,

To show thatLλ
n , with n ≥ 2, holds in planes of Type 1 and of Type 2, we notice that,

since the formula for reflecting a line through O in another line through O is the same
regardless of the value of the metric constant (and thus the same as in the case in which
the metric is Euclidean), the condition for the angle with vertex in O = (0, 0), with
legs formed by the pointswith positive x-coordinates on [0, 1, 0] and by the pointswith
positive y-coordinates on [−m, 1, 0] to be n-away, but not (n−1)-away from a straight
angle, implies thatm < 0 andm /∈ P . Now if A = (a, 0) is any point of a Hilbert plane
M of Type 1 or 2, then a is an element of an R-module M . If B is a point on [−m, 1, 0],
with positive y-coordinate, such that O A ≡ O B, then B = ( a√

m2+1
, ma√

m2+1
). The

perpendicular in A on O A is [1, 0,−a]while that in B on O B is [1, m,−a
√
1 + m2],

and their intersection point is P = (a,
a(

√
m2+1−1)

m ). That it belongs toM can be seen

by the fact that m−1 ∈ R (since m /∈ P),
√

m2 + 1 ∈ R (there exists a natural number

n such that |m| < n, since m ∈ R, and thus
√

m2 + 1 < n + 1), so
√

m2+1−1
m ∈ R,

thus a(
√

m2+1−1)
m ∈ M . We conclude that Lλ

n , with n ≥ 2, holds in planes of Type 1
and of Type 2, This proves (5). Together with (4), (3), and (1), this finishes the proof
of the theorem. ��

Note that, given Theorem 1, even the following non-elementary form of Lippman’s
axiom is equivalent to Lipp 1:

Lipp 3 For every circle C there exists a polygon which has C as its inscribed circle.

This means that, for some n ≥ 3, there exists an n-gon, that is circumscribed to C.
One of the angles formed by the center O of C and the successive points of tangency
of C with the n-gon must be ≥ 360◦

n (the corresponding L-type statement need not

refer to 360◦
n at all (which may well not exist in A), for one can state it as follows:

there exists an angle ̂X1O X2—with the property that, if Xi+1 denotes the reflection

of Xi−1 into O Xi , then one of the Xi , with i ∈ {3, . . . , n + 1} lies on the ray
−→

O X1

or inside the angle ̂X1O X2—such that, for all A on
−→

O X1 and all B on
−→

O X2 with
O A ≡ O B, the perpendicular raised in A on O A intersects the perpendicular raised
in B on O B). This, together with (2), implies Lσ

n . Since L
λ
n implies that there exists

an n-gon, that is circumscribed to C, we have that Lipp 3 is equivalent to Lipp 1.

3 On the need to keep angles from being too acute or too obtuse

If we remove the condition that ̂X OY be n-away from a straight angle in Ln or L′
n ,

that is, if the property that the perpendiculars intersect holds for any proper angle,
then the resulting axioms L+

n or L′+
n are equivalent to the axiom stating that every

triangle has a circumscribed circle, an axiom known to be equivalent to the Euclidean
parallel postulate. Yet what if we remove from Lλ

n or Lσ
n any mention of the size of
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the angle ̂X OY , except that it is a proper angle, which means that X , O, and Y are
not collinear? In other words, what is the strength of the axiom

L(∃) There exist an angle ̂X OY , such that, for all A and B, with A on
−→
O X and

B on
−→
OY , with O A ≡ O B, the perpendicular raised in A to O A intersects the

perpendicular raised in B to O B.
We will show that L(∃) is weaker than the Lotschnittaxiom and thus than Lσ

n , for
any n ≥ 2, and we will characterize those Hilbert planes of Type 3 that satisfy it.

Theorem 2 A Hilbert plane satisfies L(∃) if and only if it is of Type 1 or of Type 2 or
of Type 3 with either (i) J 
= (0) or (ii) J = (0) and there exists u ∈ K , u > 0, such
that, for all a ∈ K , if ka2 + 1 > 0, then ka2 + 1 > u.

Proof Since L(90◦) holds in Hilbert’s planes of Types 1 and 2, L(∃) holds in these
models as well. Let M be a Hilbert plane of Type 3 with J 
= (0). Let j ∈ J , with
j > 0. We will choose the angle ̂X OY , with O = (0, 0), with O X the line [0, 1, 0],
and OY the line [− j, 1, 0], such that the interior of ̂X OY is in the x > 0 and y > 0

quadrant. Let A = (a, 0) be any point on
−→
O X and B = ( a√

j2+1
,

ja√
j2+1

) be the point

on
−→
OY for which O A ≡ O B. The perpendiculars πA = [1, 0,−a] raised in A on O A

and πB = [1, j,−a
√

j2 + 1] raised in B on O B meet in A (K , k) in

x =
(

a,
a(

√
j2 + 1 − 1)

j

)
. (15)

We have

Q(x) = 2ka2( j2 + 1 − √
j2 + 1) + j2

j2
. (16)

Now, as can be easily seen by re-arranging, with the square root on one side, then
squaring, and bearing inmind that j is infinitesimal (in fact, (17) even holds for j ≤ 1

16 ,
a fact that will be used later on),

j2

2
+ j5 < j2 + 1 −

√
j2 + 1 <

j2

2
+ j3 (17)

Multiplying by 2ka2

j2
, which is negative, and then adding 1, we get

ka2 + 1 + 2 j3ka2 >
2ka2( j2 + 1 − √

j2 + 1) + j2

j2
> ka2 + 1 + 2 jka2. (18)

This means that Q(x) > ka2 + 1 + 2 jka2. We claim that ka2 + 1 + 2 jka2 > 0 and
ka2 + 1 + 2 jka2 /∈ J . Suppose ka2 + 1 + 2 jka2 ≤ 0. Then ka2 + 1 ≤ −2 jka2.
Since |ka2| < 1, 2 jka2 ∈ J , so 0 < ka2 + 1 ≤ −2 jka2 implies ka2 + 1 ∈ J , a
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contradiction. Now suppose ka2+1+2 jka2 = ε ∈ J . Then ka2+1 = ε−2 jka2 ∈ J ,
a contradiction. Thus x is a point in M, which proves that Hilbert planes of Type 3
with J 
= (0) satisfy L(∃).

Suppose now that we are in the situation (ii), that M is a Hilbert plane of Type 3,
with J = (0), and that there is u ∈ K , u > 0, such that, for all a ∈ K , if ka2 + 1 > 0,
then ka2 + 1 > u. The existence of such a u ensures that P 
= ∅ (for if P = ∅, then
there is an a ∈ K , with −1 < ka2 < −1 + u

2 . since all
√

q , with q ∈ Q

+, are in

K ). Let j = u
2 . We will choose the angle ̂X OY , with O = (0, 0), with O X the line

[0, 1, 0], and OY the line [− j, 1, 0], such that the interior of ̂X OY is in the x > 0

and y > 0 quadrant. Let A = (a, 0) be any point on
−→
O X and B = ( a√

j2+1
,

ja√
j2+1

)

be the point on
−→
OY for which O A ≡ O B. The perpendiculars πA = [1, 0,−a] raised

in A on O A and πB = [1, j,−a
√

j2 + 1] raised in B on O B meet in A (K , k) in the
point (15). By (18), Q(x) > (ka2 + 1)u > 0. Thus x ∈ M, and so Hilbert planes of
the kind described in (ii) also satisfy L(∃).

Suppose now that M is a Hilbert plane of Type 3, with J = (0), and that for all
u ∈ K , u > 0, there exists a ∈ K , with 0 < ka2 + 1 < u. Then, for no angle ̂X OY ,
with O = (0, 0), with O X the line [0, 1, 0], and OY the line [− j, 1, 0], for some
j > 0, such that the interior of ̂X OY is in the x > 0 and y > 0 quadrant, is it true

that for any A = (a, 0) on
−→
O X and for the corresponding B = ( a√

j2+1
,

ja√
j2+1

)

on
−→
OY for which O A ≡ O B, the perpendiculars πA = [1, 0,−a] raised in A on

O A and πB = [1, j,−a
√

j2 + 1] raised in B on O B meet. To see this, let a be
such that 0 < ka2 + 1 < j ′3, where j ′ stands for min{ j, 1

16 }. Then, by (18), with x
denoting the intersection point of πA and πB , determined in (15), we have Q(x) <

ka2 + 1+ 2 j3ka2 < j ′3 + 2 j3( j ′3 − 1) < 0, which means that x is not a point ofM.
��

An example of a Pythagorean field K , with k ∈ K , k < 0, such that {a ∈ K : ka2 ∈
R\P} 
= ∅, and such that there exists u > 0 such that, for all a ∈ K , if ka2 + 1 > 0,
then ka2 + 1 > u, was communicated to us by Detlef Gröger. It can be constructed as
follows: Let M be an Archimedean Pythagorean ordered field, which is not Euclidean,
i.e., in which not all positive elements are squares. The first such field was constructed
by Hilbert (1977, p. 120). Another option would be the Pythagorean hull of Q inside
the field of real algebraic numbers, on which more can be found in Becker (1974)
and Pambuccian (1990). Let K = M((t)) be the field of formal power series, whose
elements are the formal power series

α = tr

( ∞∑
i=0

ai t
i

)
, with r ∈ Z, a0 
= 0, and ai ∈ M, (19)

with the usual way to add and multiply them, ordered by declaring α to be positive if
and only of a0 > 0. Under this order, t turns out to be infinitely small, i.e. 0 < t < m
for all positive m ∈ M . K is Pythagorean since M is Pythagorean, a fact that is easily
seen by noticing (see Ribenboim 1974, 2(k), p. 180) that α is a square if and only if r
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is even and a0 is a square in M . Let k = −e−1 and u = t , where e is an element of M
that is positive but not a square (such elements exists in M since it is not a Euclidean
field). Since 1 ∈ {a ∈ K : −e−1a2 ∈ R\P}, the set is certainly nonempty. That if
−e−1a2 + 1 > 0, then −e−1a2 + 1 > t , can be seen by noticing that the assumption
that −e−1a2 + 1 > 0 and −e−1a2 + 1 ≤ t , would imply that

e − et ≤ a2 < e. (20)

Bearing in mind that a2 can be written as in (19), with a0 a square in M , we notice
that r has to be 0. The two inequalities in (20) now force a0 to be e, but a0 is a square
in M , while e is not a square in M , a contradiction.

Thus condition (ii) in Theorem 2 is not vacuous. However, if the Hilbert plane
satisfies the Circle Axiom CA (“The segment joining a point inside a circle with one
outside it intersects that circle”)3 and it is of Type 3, then K is a Euclidean ordered
field and k can be chosen to be −1. In that situation, for all u > 0, there is a ∈ K ,
such that 0 < 1 − a2 < u. Such an a is 1 − u

2 . This means that, in Hilbert planes in
which the Circle Axiom holds, the case (ii) in Theorem 2 cannot occur. This means
that, in Hilbert planes satisfying CA, L(∃) holds in all models except the Beltrami–
Cayley–Klein inner-disc models of plane elementary hyperbolic geometry, a theory
introduced by Hilbert (1903) by adding to the axioms of A the following elementary
form of the hypebolic parallel axiom

HPA From any point P not lying on a line l there are two rays r1 and r2 through P, not
belonging to the same line, which do not intersect l, and such that every ray through
P, contained in the angle formed by r1 and r2, does intersect l.

These observations together with Theorem 2 prove that

Theorem 3

A + CA 	 L(∃) ↔ ¬HPA

A 	 L(∃) ∨ HPA

A � ¬L(∃) ∨ ¬HPA

4 Lebesgue’s axiom is equivalent to the Lotschnittaxiom

The purpose of this section is to prove the equivalence of Lebesgue’s axiom Leb with
Bachmann’s Lotschnittaxiom. We will also show that a new class of statements, that
bear some resemblance to the L-axioms, are equivalent to the Lotschnittaxiom. These
statements are:
A′

n If ̂X OY is n-away from a straight angle, and P is any point inside it, then there

exists a line through P that intersects both legs of the angle ̂X OY .

3 For other equivalent formulations and the proof of their equivalence in A see Strommer (1973).
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Aλ
n There exists an angle ̂X OY ,which is n-away, but not (n−1)-away from a straight

angle, such that, for any point P inside it, there exists a line through P that intersects
both legs of the angle ̂X OY .
Aσ

n There exists an angle ̂X OY , which is (n + 1)-positive, but not n-positive, such
that for any point P inside it, there exists a line through P that intersects both legs of
the angle ̂X OY .
A(α◦) If ̂X OY is an angle of measure α◦ and P is any point inside it, then there exists
a line through P that intersects both legs of the angle ̂X OY .

That these are all equivalent to their L counterparts can be see by noticing that

Theorem 4 For any angle ̂X OY , the following are equivalent with respect to A:

(a) for any M on
−→
O X and for any N on

−→
OY with O M ≡ O N, the perpendicular in

M on O M intersects the perpendicular in N on O N
(b) for any point P inside ̂X OY , there exists a line through P that intersects both legs

of the angle ̂X OY .
(c) the perpendicular raised in any point P on the internal angle bisector of ̂X OY

intersects the sides of ̂X OY .

Proof The proof of this theorem, for the case in which ̂X OY is a right angle, can be
found in Bachmann (1964, pp. 175–177). The proof for an arbitrary angle ̂X OY does
not differ in any essential way from that presented there. We provide it here for the
reader’s convenience. First, let us show that (b) is equivalent with (c). To prove this
equivalence, suppose first that (b) holds, and let P be any point on the internal angle
bisector of ̂X OY . Since P is a point in the interior of ̂X OY , by (b), there is a line g

through P which interescts
−→
O X in A and

−→
OY in B. If g happens to be perpendicular

to O P , we are done. If g is not perpendicular to O P , let h denote the perpendicular
raised in P on O P . The line h does not pass through any of the vertices of triangle
O AB and intersects one of its sides, namely AB. By the Pasch axiom it must also
intersect one of the sides O A and O B of triangle O AB. Given that the angle ̂X OY

is symmetric about O P , h intersects both
−→
O X and

−→
OY . Thus (c) holds. Suppose now

that (c) holds and let P be any point inside the angle ̂X OY . Let r be the foot of the
perpendicular from P to the internal angle bisector of ̂X OY . By (c), the line R P

intersects both
−→
O X and

−→
OY , so R P is a line through R interescting the legs of ̂X OY ,

so (b) holds.
Let us now show that (a) and (c) are equivalent. Suppose (a) holds and let P be any

point on the internal angle bisector b of ̂X OY . Let M be a point on
−→
O X and N a point

on
−→
OY , such that O P ≡ O M and O P ≡ O N . Let R be the point of intersection

of the perpendicular in M on O M with the perpendicular in N on O N . R lies on b,

and if we now transport O R on
−→
O X to get a point A on

−→
O X with O R ≡ O A and

on
−→
OY to get a point B on

−→
OY with O R ≡ O B, then the line AB passes through P

and intersects the sides of ̂X OY , Suppose now that (c) holds. and let M and N be two
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points on
−→
O X and on

−→
OY , respectively, such that O M ≡ O N . Let P be the point on

the internal angle bisector b of ̂X OY , for whoch O P ≡ O M . Let A be the point of

intersection of the perpendicular in P on O P with
−→
O X . Let R be the point on b for

which O R ≡ O A. Then R is the point of intersection of the perpendicular on M to
O M with that on N to O N .

Corollary 1 A 	 A′
n ↔ L′

n, Aλ
n ↔ Lλ

n, Aσ
n ↔ Lσ

n , A(α◦) ↔ L(α◦), A(∃) ↔ L(∃).

Here A(∃) stands for
A(∃) There exist an angle ̂X OY , such that, for any point P inside it, there exists a
line through P that intersects both legs of the angle ̂X OY .

It is worth mentioning that Legendre [1800, p. 23, Prop. XX, p. 280, Note II (6th
ed.)]4 provided in 1800 a proof of the Euclidean parallel postulate in which he used
the Archimedean axiom and what we by now recognize as an equiavent form of the
Lotschnittaxiom:

A(≤ 60◦) If ̂X OY is an angle ≤ 60◦ and P is any point inside it, then there exists
a line through P that intersects both legs of the angle ̂X OY .

We are now ready to show thatLeb is equivalent toA(120◦), and thus, by Theorem1
and Corollary 1, Leb is equivalent to the Lotschnittaxiom.

This can be seen by first noticing that, as proved by Legendre Greenberg (2008, p.
195), for any ε > 0, for which there exists a natural number n such that nε > 90◦, the
sum of the angles of a given triangle is < 180◦ + ε, so that at least one angle of any
convex quadrilateral must be ≤ 120◦. Suppose now A(120◦) holds. Let ABC D be a
convex quadrilatreal. One of its angles, say ̂D AB, is≤ 120◦, and sinceA(120◦) holds,
there exists a line g through C which intersects the sides

−→
AB and

−→
AD of the angle

̂D AB in X respectively Y . If X is such that B lies between A and X and Y is such that
D lies between A and Y , then triangle AXY contains the quadrilateral ABC D and we
are done. Suppose this is not the case and, one of X and Y is not in the desired position,
say X is between A and B. In that case, the line C B intersects the side XY of triangle
AXY and the extension of side AX , so it must intersect, by the Pasch axiom, side
AY as well in a point P . Triangle AB P thus contains the quadrilateral ABC D and
we are done. To prove that Leb → A(120◦), we will show that ¬A(120◦) → ¬Leb.
Since ¬A(120◦) holds precisely in those models of A in which the negation of the
Lotschnittaxiom holds,¬A(120◦) holds precisely inHilbert planes of Type 3. ThatLeb
does not hold in Hilbert planes of Type 3 can be seen by noticing that, if a ∈ K is such
that 1

2 < ka2 < 1 (such an a must exist in K since {a ∈ K : ka2 ∈ R\P} 
= ∅), then
the quadrilateral formed by A = (−a,−a), B = (−a, a), C = (a, a), D = (a,−a)

cannot be included in a triangle. This can be seen by noticing that there is not even
a triangle that circumscribes the circle with center (0, 0) passing through (a, 0) (that
circle is inscribed in the quadrilateral ABC D). That this is so can be seen by noticing
that the radius of the inscribed circle of the equilateral triangle inscribed in a circle of
radius 1 is 1

2 . We conclude that:

4 We thank Vincenzo de Risi for providing us with the information on Legendre. The proof usingA(≤ 60◦)
was kept the the fourth (1802), fifth (1804), sixth (1806), seventh (1808), and eight (1809) editions.

123



Beitr Algebra Geom (2019) 60:733–748 747

Theorem 5 Lippmann’s axiom, Lebesgue’s axiom, and theLotschnittaxiom are equiv-
alent with respect to A.

Leb is not just yet another equivalent of the Lotschnittaxiom. Among all the known
equivalents, it is the only one that is expressed purely in terms of the betweenness
relation, and thus a theorem of ordered geometry (see Pambuccian 2011 for the various
axiomatizations of ordered geometries). One could certainly also express A′

n in the
following terms, to turn it into an axiom of ordered geometry

A If O, A, B are three distinct points, such that O lies between A and B, if C is a
point that does not lie on the line AB, if X is a point inside the angle ̂AOC and Y
is a point inside the angle ̂B OC, then there is a line l that (i) goes through X and

intersects the rays
−→
O A and

−→
OC or (ii) goes through Y and intersects the rays

−→
O B and

−→
OC.

If A(90◦) holds, then A also holds, given that one of ̂AOC and ̂B OC is ≤ 90◦. If
A is known to hold, then it holds in the case in which C O ⊥ O A as well, and in that
case it means A(90◦).

Thus, of the three axioms that have a certain Euclidean flavor and are independent
of A, the Euclidean parallel postulate and the Lotschnittaxiom can both be stated as
pure order axioms. Clairault’s Axiom R (see Greenberg 2008, p. 219), stating that
there exists a rectangle, or equivalently that the perpendiculars raised on te two sides
of a right angle are orthogonal—the axiom that postulates the Eucliddean nature of the
metric, by forcing the sum of the angles of any triangle to be 180◦ (or, in terms of the
models of absolute geometry, stipulates that the orthogonality constant k is 0)—does
not appear to be expressible in terms of the betweenness relation alone. Nor does L(∃)

appear to be thus expressible. We leave these as open problems.

Open Problem Is there a statement σ expressed in terms of the betweenness predicate
alone, such that A 	 R ↔ σ? Is there a statement σ expressed in terms of the
betweenness predicate alone, such that A 	 L(∃) ↔ σ?
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