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Abstract
The aim of this paper is to construct a 1-parameter family of Sasakianmanifold starting
from a single Sasakian manifold. Concrete examples are given.
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1 Introduction

The product of manifolds plays a very important role in the construction of the new
manifolds and also for the structures on manifolds. Bishop and O’Neill introduced
the notion of warped product as a generalization of Riemannian product (Bishop and
ONeill 1969).

The product of an almost contact manifold M and the real line R carries a natural
almost complex structure.When this structure is integrable the almost contact structure
is said to be normal.

By means of warped product there is a one-to-one correspondence between
Sasakian and Kählerian structures [see Oubiña (1985)].
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In Blair (2012), building on the work of Tanno (1969) (the homothetic deformation
on contact metric manifold), Blair introduced the notion of D-homothetic warping
and he used it to prove the above correspondence by another way.

Recently, Beldjilali and Belkhelfa (2016) introduced theD-homothetic bi-warping
and they proved that every sasakian manifold M generates a 1-parameter family of
Kählerian manifolds. Thereby generalizing the results of Oubiña (1985) and Blair
(2012).

One of the goals of this paper is to explore other ways for constructing Sasakian
manifolds. Results in our paper can be divided in three parts. In the first part, we state
and proof our first construction result [see Beldjilali and Belkhelfa (2016)] by another
way andwe give an example. In the second part, we construct Sasakian structures from
Kählerian structures built above using a new technique and we construct a concrete
example. Finally, we combine the two previous steps together to provide a way to
create a 1-parameter family of Sasakian manifolds from just one Sasakian manifold
directly. This text is organized in the following way.

Section 2 is devoted to the background of the structures which will be used in the
sequel.
In Sect. 3, we construct a 1-parameter family of Kählerian manifolds using the D-
homothetic bi-warping but in a different way than (Beldjilali and Belkhelfa 2016) and
we give an example. In Sect. 4We introduce certain Riemannian metric on the product
of real line and the Kählerian manifold built in the Sect. 3 and we use it to construct
a 1-parameter family of Sasakian manifolds. Finaly, in Sect. 5, we merge the two
previous constructions to give a direct way to get a 1-parameter family of Sasakian
manifolds from a single Sasakian manifold and we give a concrete example.

2 Preliminaries

2.1 Almost contact metric structures and Sasakian structures

An odd-dimensional Riemannian manifold (M2n+1, g) is said to be an almost contact
metric manifold if there exist on M a (1, 1) tensor field ϕ, a vector field ξ (called the
structure vector field) and a 1-form η such that

η(ξ) = 1, ϕ2(X) = −X + η(X)ξ, and g(ϕX , ϕY ) = g(X ,Y ) − η(X)η(Y ),

for any vector fields X ,Y on M . In particular, in an almost contact metric manifold we
also have ϕξ = 0 and η ◦ ϕ = 0.

Such amanifold is said to be a contactmetricmanifold if dη = φ, whereφ(X ,Y ) =
g(X , ϕY ) is called the fundamental 2-form of M . If, in addition, ξ is a Killing vector
field, then M is said to be a K-contact manifold. It is well-known that a contact metric
manifold is a K-contact manifold if and only if ∇Xξ = −ϕX , for any vector field X
on M .

On the other hand, the almost contact metric structure of M is said to be normal
if [ϕ, ϕ](X ,Y ) = −2dη (X ,Y )ξ , for any X , Y , where [ϕ, ϕ] denotes the Nijenhuis
torsion of ϕ, given by
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[ϕ, ϕ](X ,Y ) = ϕ2[X ,Y ] + [ϕX , ϕY ] − ϕ[ϕX ,Y ] − ϕ[X , ϕY ]

A normal contact metric manifold is called a Sasakian manifold. It can be proved
that a Sasakian manifold is K-contact, and that an almost contact metric manifold is
Sasakian if and only if

(∇Xϕ)Y = g(X ,Y )ξ − η(Y )X , (1)

for any X ,Y . Moreover, for a Sasakian manifold the following equation holds:

R(X ,Y )ξ = η(Y )X − η(X)Y .

From the formula (1) easily obtains

∇Xξ = −ϕX , (∇Xη)Y = −g(ϕX ,Y ). (2)

For more background on almost contact metric manifolds and recent study of η-
Einstein manifolds, we recommend the reference Blair (2002) and Boyer et al. (2006).

2.2 Almost complex structures and Kählerian structures

An almost complex manifold with a Hermitian metric is called an almost Hermitian

manifold. For an almost Hermitian manifold (M
2n

, J , g) we thus have

J 2 = −1, g(J X , JY ) = g(X ,Y ).

An almost complex stucture J is integrable, and hence the manifold is a complex
manifold, if and only if its Nijenhuis tensor N j vanishes, with

NJ (X ,Y ) = [J X , JY ] − [X ,Y ] − J [X , JY ] − J [J X ,Y ].

For an almost Hermitian manifold (M, J , g), we define the fundamental Kähler form
Ω as:

Ω(X ,Y ) = g(X , JY ).

(M, J , g) is then called almost Kähler if Ω is closed i.e. dΩ = 0. It can be shown
that this condition for (M, J , g) to be almost Kähler is equivalent to

g
(
(∇X J )Y , Z

) + g
(
(∇Y J )Z , X

) + g
(
(∇Z J )X ,Y

) = 0.

An almost Kähler manifold with integrable J is called a Kähler manifold, and thus is
characterized by the conditions: dΩ = 0 and NJ = 0. One can prove that these both
conditions combined are equivalent with the single condition

∇ J = 0.
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For more background on almost complex structure manifolds, we recommend the
reference Yano and Kon (1984).

3 From Sasakian structure to Kählerian structures

In Beldjilali and Belkhelfa (2016), the authors introduced the notion of D-
homothetically bi-warped metric on M = M ′ × M where M ′ is a Riemannian
manifolds and M is an almost contact metric manifold by

g = g′ + f 2g + f 2(h2 − 1)η ⊗ η. (3)

where f h �= 0 everywhere.
Using the Koszul formula for the Levi-Civita connection of a Riemannian metric,

one can obtain the following:

Proposition 1 Beldjilali and Belkhelfa (2016) Let ∇′,∇ and ∇ denote the Rieman-
nian connections of g′, g, and g respectively. For all X ′,Y ′ vector fields tangent to
M ′ and independent of M and similarly for X ,Y , we have

∇X ′Y ′ = ∇′
X ′Y ′,

g(∇X ′Y , Z) = g(∇Y X
′, Z) = −g(∇Y Z , X ′)

= f X ′( f )g(Y , Z) + f
(
(h2 − 1)X ′( f ) + f hX ′(h)

)
η(Y )η(Z),

g(∇XY , Z) = g(∇XY , Z) + f 2(h2 − 1)
(1
2

(
g(∇Xξ,Y ) + g(∇Y ξ, X)

)
η(Z)

+dη(X , Z)η(Y ) + dη(Y , Z)η(X)
)
.

Ourmotivation is to consider the casewhereM ′ = R andM is a Sasakianmanifold.
For brevity we denote the unit tangent field to R by ∂t In this case the proposition (1)
gives

Proposition 2 Let (M, ϕ, ξ, η, g) be a Sasakian manifold. Let ∇ and ∇ denote the
Riemannian connections of g and g respectively. For all X ,Y vector fields tangent to
M and independent of R, we have

∇∂t X = ∇X∂t = f ′

f
X + h′

h
η(X)ξ,

∇XY = ∇XY + (1 − h2)
(
η(X)ϕY + η(Y )ϕX

)

−
(
f f ′g(ϕX , ϕY ) + f h( f h)′η(X)η(Y )

)
∂t .

Next, we introduce a class of almost complex structure J on manifold M :

J (a∂t , X) =
(
f hη(X)∂t , ϕX − a

f h
ξ
)
, (4)
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for any vector filds X ofM where f , h, are functions onR and f h �= 0 everywhere.
That J 2 = −I is easily checked and for all X = (a∂t , X),Y = (b∂t ,Y ) on M we

can see that g is an almost Hermitian with respect to J i.e.

g
(
J X , JY

) = g(X ,Y ).

Knowing that (∇X J )Y = ∇X (JY ) − J∇XY with using the proposition (2) and
formulas (1) and (2), we get the following proposition:

Proposition 3 Let (M, ϕ, ξ, η, g) be a Sasakian manifold. For all X ,Y vectors fields
on M, the non-zero components ∇ J are

(∇X J )∂t = 1

f
(h − f ′)ϕX

(∇X J )Y = (h − f ′)
(1
h
g(X ,Y )ξ − hη(Y )X + h2 − 1

h
η(X)η(Y )ξ + f g(X , ϕY )∂t

)
.

From the above proposition we have immediately that

Proposition 4 Let (M, ϕ, ξ, η, g) be a Sasakian manifold. The Hermitian structure
constructed in (3) and (4) is Kählerian if and only if h = f ′

Example 1 For this example, we rely on the example of Blair Blair (2002). We know
that R2n+1 with coordinates (xi , yi , z), i = 1..n, admits the Sasakian structure

g = 1

4

⎛

⎝
δi j + yi y j 0 −yi

0 δi j 0
−y j 0 1

⎞

⎠ , ϕ =
⎛

⎝
0 δi j 0
−δi j 0 0
0 y j 0

⎞

⎠ ,

ξ = 2

(
∂

∂z

)
, η = 1

2
(dz − yi dxi ).

So, using this structure, we can define a family of Kählerian structures (J , g) onR2n+2

as follows

g =

⎛

⎜⎜
⎝

1 0 0 0
0 1

4 f 2(δi j + f ′2yi y j ) 0 − 1
4 f 2 f ′2yi

0 0
δi j
4 f 2 0

0 − 1
4 f 2 f ′2y j 0 1

4 f 2 f ′2

⎞

⎟⎟
⎠

J =

⎛

⎜
⎜
⎝

0 − 1
2 y

j f f ′ 0 1
2 f f ′

0 0 δi j 0
0 −δi j 0 0
− 2

f f ′ 0 y j 0

⎞

⎟
⎟
⎠
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4 From Kählerian strucrures to Sasakian structures

Now, consider (M, ϕ, ξ, η, g) is a Sasakian manifold and (M = R × M, J , g) the
1-parameter family of Kählerian structures defined above by

{
g = dt2 + f 2g + f 2( f ′2 − 1)η ⊗ η,

J (a ∂
∂t , X) =

(
f f ′η(X) ∂

∂t , ϕX − a
f f ′ ξ

)
,

(5)

where f = f (t) ∈ C∞(R) and f f ′ �= 0 anywhere.
The fundamental 2-form Ω of (J , g) is

Ω
((
a

∂

∂t
, X

)
,
(
b

∂

∂t
,Y

)) = g
((
a

∂

∂t
, X

)
, J

(
b

∂

∂t
,Y

))
,

we can check that is very simply as follows:

Ω = f (2 f ′ dt ∧ η + f φ)

= d
(
f 2η

)
,

where d denotes the exterior derivative and φ the fundamental 2-form of (ϕ, ξ, η, g).
Putting

θ = f 2η,

and define on M̃ = R × M a Riemannian metric g̃ by

g̃ = g + η̃ ⊗ η̃ wi th η̃ = dr + θ, (6)

where r is the standard coordinate with respect to the frame ∂r on R. For all X ,Y
vector fields on M , we have:

g̃(X ,Y ) = g(X ,Y ) + θ(X)θ(Y ), g̃(X , ∂r ) = θ(X), g̃(∂r , ∂r ) = 1.

We denote by ∇ (resp. ∇̃) the covariant derivative with respect to the metric g on
M (resp. g̃ on M̃). From the Koszul formula, we have the following:

Proposition 5 For all X ,Y , Z vector fields on M, we have:

1) g̃(∇̃∂r ∂r , ∂r ) = g̃(∇̃∂r ∂r , X) = 0;
2) g̃(∇̃∂r X , ∂r ) = g̃(∇̃X∂r , ∂r ) = 0;
3) g̃(∇̃∂r X ,Y ) = g̃(∇̃X∂r ,Y ) = g(X , JY );
4) g̃(∇̃XY , ∂r ) = 1

2

[
Xθ(Y ) + Y θ(X) + θ([X ,Y ])];

5) g̃(∇̃XY , Z) = g(∇XY , Z) + 1
2

[
X(θ(Y )) + Y (θ(X)) + θ([X ,Y ])]θ(Z)

+g(X , J Z)θ(Y ) + g(Y , J Z)θ(X).
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Proof For 1), we have:

g̃(∇̃∂r ∂r , ∂r ) = 1

2
∂r g̃(∂r , ∂r ) = 0,

because g̃(∂r , ∂r ) = 1. We compute

2g̃(∇̃∂r ∂r , X) = ∂r g̃(∂r , X) + ∂r g̃(X , ∂r ) − Xg̃(∂r , ∂r )

+g̃(X , [∂r , ∂r ]) + g̃(∂r , [X , ∂r ]) − g̃(∂r , [∂r , X ]),

as g̃(∂r , X) = η̃(X), g̃(∂r , ∂r ) = 1, [∂r , ∂r ] = 0 and [X , ∂r ] = [∂r , X ] = 0, we
obtain

g̃(∇̃∂r ∂r , X) = 2∂r η̃(X) = 0,

because η̃(X) = θ(X) ∈ C∞(M) does not depend on r .
2) we have:

g̃(∇̃∂r X , ∂r ) = ∂r g̃(X , ∂r ) − g̃(X , ∇̃∂r ∂r ) = 0,

from 1). Since [X , ∂r ] = 0,

g̃(∇̃X∂r , ∂r ) = g̃(∇̃∂r X , ∂r ) = 0.

3) By the Koszul formula and the definition of g̃, we have:

2g̃(∇̃∂r X ,Y ) = ∂r g̃(X ,Y ) + Xg̃(Y , ∂r ) − Y g̃(∂r , X)

+g̃(Y , [∂r , X ]) + g̃(X , [Y , ∂r ]) − g̃(∂r , [X ,Y ])
= ∂r g(X ,Y ) + ∂r (θ(X)θ(Y )) + X(θ(Y )) − Y (θ(X)) − θ([X ,Y ])
= X(θ(Y )) − Y (θ(X)) − θ([X ,Y ]),

here [∂r , X ] = [Y , ∂r ] = 0 and ∂r g(X ,Y ) = ∂r (θ(X)θ(Y )) = 0. We conclude that:

g̃(∇̃∂r X ,Y ) = dθ(X ,Y ) = Ω(X ,Y ) = g(X , JY ).

We compute:

2g̃(∇̃X∂r , Y ) = Xg̃(∂r ,Y ) + ∂r g̃(Y , X) − Y g̃(X , ∂r )

+g̃(Y , [X , ∂r ]) + g̃(∂r , [Y , X ]) − g̃(X , [∂r ,Y ])
= X(θ(Y )) − Y (θ(X)) − θ([X ,Y ])
= 2dθ(X ,Y ),

that is, g̃(∇̃X∂r ,Y ) = g(X , JY ).
4) We have:

g̃(∇̃XY , ∂r ) = Xg̃(Y , ∂r ) − g̃(Y , ∇̃X∂r )
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= X(θ(Y )) − g(X , JY )

= X(θ(Y )) − dθ(X ,Y )

= X(θ(Y )) − 1

2

[
X(θ(Y )) − Y (θ(X)) − θ([X ,Y ])]

= 1

2

[
X(θ(Y )) + Y (θ(X)) + θ([X ,Y ])].

5) First we shall use the Koszul formula for a Riemann metric g̃ and the Levi-Civita
connection ∇̃:

2g̃(∇̃XY , Z) = Xg̃(Y , Z) + Y g̃(Z , X) − Z g̃(X ,Y )

+g̃(Z , [X ,Y ]) + g̃(Y , [Z , X ]) − g̃(X , [Y , Z ]),

by the definition of the metric g̃, we have:

2g̃(∇̃XY , Z) = Xg(Y , Z) + X(θ(Y )θ(Z)) + Y g(Z , X) + Y (θ(Z)θ(X))

−Zg(X ,Y ) − Z(θ(X)θ(Y )) + g(Z , [X ,Y ]) + θ(Z)θ([X ,Y ])
+g(Y , [Z , X ]) + θ(Y )θ([Z , X ]) − g(X , [Y , Z ]) − θ(X)θ([Y , Z ]),

by the Koszul formula for g and ∇, we get:

2g̃(∇̃XY , Z) = 2g(∇XY , Z) + X(θ(Y ))θ(Z) + θ(Y )X(θ(Z))

+Y (θ(Z))θ(X) + θ(Z)Y (θ(X)) − Z(θ(X))θ(Y )

−θ(X)Z(θ(Y )) + θ(Z)θ([X ,Y ]) + θ(Y )θ([Z , X ])
−θ(X)θ([Y , Z ]),

from the formula:

2dθ(X ,Y ) = X(θ(Y )) − Y (θ(X)) − θ([X , Y ]),

we obtain:

2g̃(∇̃XY , Z) = 2g(∇XY , Z) + [X(θ(Y )) + Y (θ(X)) + θ([X ,Y ])]θ(Z)

+2θ(Y )dθ(X , Z) + 2θ(X)dθ(Y , Z),

finally, by the condition Ω̃ = dθ and the definition of Ω̃ , we obtain:

g̃(∇̃XY , Z) = g(∇XY , Z) + θ(X)g(Y , J Z) + θ(Y )g(X , J Z)

+1

2
[X(θ(Y )) + Y (θ(X)) + θ([X ,Y ])]θ(Z).
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Lemma 1 We choose an orthonormal basis {e1, ..., e2n} of the tangent space TxM at
each point x ∈ M, then

{∂r , e1 − θ(e1)∂r , ..., e2n − θ(e2n)∂r }

is an orthonormal basis of T(r ,x)M̃, where r ∈ R.

Proof For any i, j ∈ {1, ..., 2n}, we have:

g̃
(
ei − θ(ei )∂r , e j − θ(e j )∂r

) = g̃(ei , e j ) − θ(e j )g̃(ei , ∂r ) − θ(ei )g̃(∂r , e j )

+θ(ei )θ(e j )g(∂r , ∂r )

= g(ei , e j ) + θ(ei )θ(e j ) − θ(ei )θ(e j ) − θ(ei )θ(e j )

+θ(ei )θ(e j )

= g(ei , e j ) = δi j .

We compute:

g̃
(
ei − θ(ei )∂r , ∂r

) = g̃(ei , ∂r ) − θ(ei )g̃(∂r , ∂r )

= θ(ei ) − θ(ei ) = 0.

So that, for all vector v ∈ T(r ,x)M̃ , there exist constants a, b1, ..., b2n such that:

v = a∂r +
2n∑

i=1

bi
(
ei − θ(ei )∂r

)
. (7)

Note that, a = g̃(v, ∂r ) and bi = g̃
(
v, ei − θ(ei )∂r

)
for all i = 1, .., 2n. From the

Proposition 5, and the Lemma 1, we get the following:

Proposition 6 For all X ,Y vector fields on M, we have:

1) ∇̃∂r ∂r = 0;
2) ∇̃∂r X = ∇̃X∂r = −J X + θ(J X)∂r ;
3) ∇̃XY = ∇XY − θ(Y )

(
J X − θ(J X)∂r

) − θ(X)
(
JY − θ(JY )∂r

)

+ 1
2

[
(∇Xθ)Y + (∇Y θ)X

]
∂r .

Proof Let {e1, ..., e2n} be an orthonormal frame on M . From the proposition 5, we
have: 1)

g̃
(∇̃∂r ∂r , ∂r

) = 0,

g̃
(∇̃∂r ∂r , ei − θ(ei )∂r

) = g̃
(∇̃∂r ∂r , ei ) − θ(ei )g̃(∇̃∂r ∂r , ∂r

) = 0.

2)

g̃
(∇̃∂r X , ∂r

) = 0,

123



454 Beitr Algebra Geom (2019) 60:445–458

g̃
(∇̃∂r X , ei − θ(ei )∂r

) = g̃(∇̃∂r X , ei ) − θ(ei )g̃(∇̃∂r X , ∂r )

= g(X , Jei ) = −g(J X , ei ),

so that:

∇̃∂r X = −g(J X , ei )ei + g(J X , ei )θ(ei )∂r
= −J X + θ(J X)∂r ,

with the same method we find that ∇̃X∂r = −J X + θ(J X)∂r .

3) We compute:

g̃
(∇̃XY , ∂r

) = 1

2

[
Xθ(Y ) + Y θ(X) + θ([X ,Y ])],

g̃
(∇̃XY , ei − θ(ei )∂r

) = g̃(∇̃XY , ei ) − θ(ei )g̃(∇̃XY , ∂r )

= g(∇XY , ei ) + 1

2

[
X(θ(Y )) + Y (θ(X)) + θ([X ,Y ])]θ(ei )

+g(X , Jei )θ(Y ) + g(Y , Jei )θ(X)

−1

2
θ(ei )

[
Xθ(Y ) + Y θ(X) + θ([X ,Y ])]

= g(∇XY , ei ) − g(J X , ei )θ(Y ) − g(JY , ei )θ(X),

we conclude that:

∇̃XY = 1

2

[
Xθ(Y ) + Y θ(X) + θ([X ,Y ])]∂r

+g(∇XY , ei )ei − g(∇XY , ei )θ(ei )∂r
−g(J X , ei )θ(Y )ei + g(J X , ei )θ(Y )θ(ei )∂r
−g(JY , ei )θ(X)ei + g(JY , ei )θ(X)θ(ei )∂r

= 1

2

[
Xθ(Y ) + Y θ(X) + θ([X ,Y ])]∂r

+∇XY − θ(∇XY )∂r

−θ(Y )J X + θ(Y )θ(J X)∂r

−θ(X)JY + θ(X)θ(JY )∂r .

Now, we define on M̃ a structure (ϕ̃, ξ̃ , η̃) as follows

ξ̃ = ∂r , ϕ̃∂r = 0, ϕ̃X = J X − θ(J X)∂r , (8)

for all X vector field on M .

Proposition 7 The manifold (M̃, ϕ̃, ξ̃ , η̃, g̃) constructed as above is an almost contact
metric manifold. Specifically, it is a Sasakian manifold as long as (M, J , g) is a
Kählerian manifold.
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Proof We have η̃ = dr + θ and ξ̃ = ∂r , so η̃(ξ̃ ) = 1. As ϕ̃∂r = 0, we get ϕ̃2∂r = 0,
on the other hand, −∂r + η(∂r )∂r = 0. Let X vector field on M , we compute:

ϕ̃2X = ϕ̃
(
J X − θ(J X)∂r

)

= ϕ̃(J X) − θ(J X)ϕ̃∂r

= J 2X − θ(J 2X)∂r

= −X + θ(X)∂r

= −X + η̃(X)ξ̃ .

Let X ,Y vector fields on M , we have

g̃(ϕ̃X , ϕ̃Y ) = g̃
(
J X − θ(J X)∂r , JY − θ(JY )∂r

)

= g̃
(
J X , JY ) − θ(JY )g̃(J X , ∂r ) − θ(J X)g̃(∂r , JY )

+θ(J X)θ(JY )g̃(∂r , ∂r ),

by the definition of the metric g̃ with η̃ = dr + θ , we obtain

g̃(ϕ̃X , ϕ̃Y ) = g(J X , JY ) + θ(J X)θ(JY ) − θ(J X)θ(JY )

−θ(J X)θ(JY ) + θ(J X)θ(JY )

= g(J X , JY ),

as g(J X , JY ) = g(X ,Y ) and g̃(X ,Y ) = g(X ,Y ) + θ(X)θ(Y ), we conclude that

g̃(ϕ̃X , ϕ̃Y ) = g̃(X ,Y ) − θ(X)θ(Y )

= g̃(X ,Y ) − η̃(X)η̃(Y ).

As ϕ̃∂r = 0, g̃(X , ∂r ) = θ(X) = η̃(X), η̃(∂r ) = 1 and g̃(∂r , ∂r ) = 1, we get

g̃(ϕ̃X , ϕ̃∂r ) = g̃(X , ∂r ) − η̃(X)η̃(∂r ) = 0,

g̃(ϕ̃∂r , ϕ̃∂r ) = g̃(∂r , ∂r ) − η̃(∂r )η̃(∂r ) = 0.

This confirms that (M̃, ϕ̃, ξ̃ , η̃, g̃) is an almost contact metric manifold.
On the other hand, the manifold (M̃, ϕ̃, ξ̃ , η̃, g̃) is Sasakian if it satisfies:

(∇̃ξ̃ ϕ̃)ξ̃ = g̃(ξ̃ , ξ̃ )ξ̃ − η̃(ξ̃ )ξ̃ (9)

(∇̃ξ̃ ϕ̃)X = g̃(ξ̃ , X)ξ̃ − η̃(X)ξ̃ (10)

(∇̃X ϕ̃)ξ̃ = g̃(X , ξ̃ )ξ̃ − η̃(ξ̃ )X (11)

(∇̃X ϕ̃)Y = g̃(X ,Y )ξ̃ − η̃(Y )X , (12)

for all X ,Y vectors fields on M . It is easy to prove that conditions (9), (10), and (11)
are satisfied, and we have:

(∇̃ξ̃ ϕ̃)ξ̃ = ∇̃ξ̃ ϕ̃ξ̃ − ϕ̃(∇̃ξ̃ ξ̃ ) = g̃(ξ̃ , ξ̃ )ξ̃ − η̃(ξ̃ )ξ̃ = 0,
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(∇̃ξ̃ ϕ̃)X = ∇̃ξ̃ ϕ̃X − ϕ̃(∇̃ξ̃ X)

= ∇̃ξ̃ J X − ∇̃ξ̃ (θ(J X)ξ̃ ) + ϕ̃2(X)

= −ϕ̃(J X) − θ(J X)∇̃ξ̃ ξ̃ − X + θ(X)ξ̃

= −(J 2X − θ(J 2X)ξ̃ ) − X + θ(X)ξ̃

= X + θ(X)ξ̃ − X + θ(X)ξ̃ = 0,

so that, (∇̃ξ̃ ϕ̃)X = g̃(ξ̃ , X)ξ̃ − η̃(X)ξ̃ = 0. We compute:

(∇̃X ϕ̃)ξ̃ = ∇̃X ϕ̃ξ̃ − ϕ̃(∇̃X ξ̃ )

= ϕ̃2X = −X + θ(X)ξ̃ ,

so, (∇̃X ϕ̃)ξ̃ = g̃(X , ξ̃ )ξ̃ − η̃(ξ̃ )X = −X + θ(X)ξ̃ .
For the condition (12), we compute:

(∇̃X ϕ̃)Y = ∇̃X ϕ̃Y − ϕ̃(∇̃XY ), (13)

the first term of (13), is given by:

∇̃X ϕ̃Y = ∇̃X (JY − θ(JY )ξ̃ )

= ∇̃X JY − X(θ(JY ))ξ̃ − θ(JY )∇̃X ξ̃ ,

using the proposition 5, we have

∇̃X ϕ̃Y = ∇X JY − θ(JY )ϕ̃X − θ(X)ϕ̃ JY + 1

2

[
(∇Xθ)JY + (∇ JY θ)X

]
ξ̃

−X(θ(JY ))ξ̃ + θ(JY )ϕ̃X

= ∇X JY + θ(X)Y − θ(X)θ(Y )ξ̃ − 1

2
X(θ(JY ))ξ̃ − 1

2
θ(∇X JY )ξ̃

+1

2
(JY )(θ(X))ξ̃ − 1

2
θ(∇ JY X)ξ̃ , (14)

the second term of (13), is given by:

− ϕ̃(∇̃XY ) = −ϕ̃(∇XY ) + θ(Y )ϕ̃2X + θ(X)ϕ̃2Y

= −J∇XY + θ(J∇XY )ξ̃ − θ(Y )X + 2θ(X)θ(Y )ξ̃ − θ(X)Y , (15)

Substituting the formulas (14) and (15) in (13), we obtain:

(∇̃X ϕ̃)Y = (∇X J )Y + 1

2

[
(JY )(θ(X)) − X(θ(JY )) − θ([JY , X ])]ξ̃

−θ(∇X JY )ξ̃ − θ(Y )X + θ(X)θ(Y )ξ̃ + θ(J∇XY )ξ̃

= (∇X J )Y + dθ(JY , X)ξ̃ − θ((∇X J )Y )ξ̃ − θ(Y )X + θ(X)θ(Y )ξ̃
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= (∇X J )Y + g(X ,Y )ξ̃ − η̃((∇X J )Y )ξ̃ − η̃(Y )X + η̃(X)η̃(Y )ξ̃

= (∇X J )Y − η̃((∇X J )Y )ξ̃ + g̃(X ,Y )ξ̃ − η̃(Y )X ,

that is:

(∇̃X ϕ̃)Y = −ϕ̃2(∇X J )Y + g̃(X ,Y )ξ̃ − η̃(Y )X ,

and since (M, J , g) is a Kählerian manifold i.e. ∇ J = 0 then

(∇̃X ϕ̃)Y = g̃(X ,Y )ξ̃ − η̃(Y )X . (16)

This completes the proof.

5 From Sasakian strucrure to 1-parameter family Sasakian structures

In this section, we merge the two previous constructions to give a direct way to get a
1-parameter family of Sasakian manifolds from a single Sasakian manifold i.e. instead
of going from the Sasaki case to the Kählerian case and then to the Sasaki case again,
one can construct a direct transfer bridge to the family of Sasakienne structures from
a single Sasakian structure.

The main theorem in this paper is the following:

Theorem 1 Let (M, ϕ, ξ, η, g) be a Sasakian manifold. The product M̃ = R2 × M
provided with the almost contact metric structure (ϕ̃, ξ̃ , η̃, g̃) such that

g̃ = dt2 + f 2g + f 2( f ′2 − 1)η ⊗ η + η̃ ⊗ η̃,

η̃ = dr + f 2η, ξ̃ = ∂r ,

and for all X vector field on M

⎧
⎨

⎩

ϕ̃∂r = 0,
ϕ̃∂t = −1

f f ′
(
ξ − f 2∂r

)
,

ϕ̃X = ϕX + f f ′η(X)∂t ,

where f = f (t) and f f ′ �= 0 everywhere, is a 1-parameter family of Sasakian
manifold.

Proof Follows from Propositions (4) and (7).

Example 2 Basing onExample 1 and taking dimension 3,we get the Sasakian structure

g = 1

4

⎛

⎝
1 + y2 0 −y
0 1 0
−y 0 1

⎞

⎠ , ϕ =
⎛

⎝
0 1 0
−1 0 0
0 y 0

⎞

⎠ ,

ξ = 2
∂

∂z
, η = 1

2
(dz − ydx).
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So, using Theorem 1, we can define a 1-parameter family of Sasakian structures
(ϕ̃, ξ̃ , η̃, g̃) on R4 as follows

g̃ = 1

4

⎛

⎜⎜⎜⎜
⎝

4 0 −2y f 2 0 2 f 2

0 4 0 0 0
−2y f 2 0 f 2

(
1 + y2( f 2 + f ′2)

)
0 −y f 2( f 2 + f ′2)

0 0 0 f 2 0
2 f 2 0 −y f 2( f 2 + f ′2) 0 f 2( f 2 + f ′2)

⎞

⎟⎟⎟⎟
⎠

,

ϕ̃ =

⎛

⎜⎜⎜⎜
⎜
⎝

0 f
f ′ 0 0 0

0 0 − 1
2 f f ′y 0 1

2 f f ′
0 0 0 1 0
0 0 −1 0 0
0 − 2

f f ′ 0 y 0

⎞

⎟⎟⎟⎟
⎟
⎠

,

ξ̃ = ∂

∂r
, η̃ = dr + 1

2
f 2(dz − ydx).
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