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Abstract
We consider flat nonholonomic Riemannian manifolds, i.e., those whose associated
parallel transport (induced by the nonholonomic connection) is path-independent. We
first characterize flatness for structures on three-dimensional manifolds, and hence
classify the flat left-invariant structures on simply connected Lie groups.

Keywords Nonholonomic Riemannian structure · Nonholonomic connection · Lie
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1 Introduction

The equivalence problem for three-dimensional nonholonomic Riemannianmanifolds
has been considered in Barrett et al. (2016). In particular, the left-invariant nonholo-
nomic Riemannian structures on the three-dimensional simply connected Lie groups
were classified, up to nonholonomic isometry and rescaling.Moreover, the equivalence
classes were described in terms of isometric invariants. In this paper we consider the
flat three-dimensional nonholonomic Riemannian manifolds, i.e., those whose asso-
ciated parallel transport is path-independent. We first characterize flatness in three
dimensions. Hence, by making use of the classification in Barrett et al. (2016), we
are able to classify the flat left-invariant structures (on the three-dimensional simply
connected Lie groups).
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The paper is organized as follows. In Sect. 2 we present the necessary elements
of nonholonomic Riemannian geometry. Specifically, in Sect. 2.1 we recall the fun-
damental existence and uniqueness result for the nonholonomic connection, as well
as the definitions of nonholonomic geodesics, nonholonomic isometries and the exte-
rior covariant derivative associated to the nonholonomic connection. We also consider
left-invariant nonholonomic Riemannian structures on Lie groups. Section 2.2 recalls
the Schouten curvature tensor (which is canonically associated to every nonholonomic
Riemannian structure) and some related tensors (obtained by contracting the Schouten
tensor), whereas Sect. 2.3 introduces the parallel transport map associated to the non-
holonomic connection and defines the notion of a flat nonholonomic Riemannian
structure. In Sect. 3 we specialize to the case of three-dimensional nonholonomic Rie-
mannian manifolds. Specifically, we recall the salient results of Barrett et al. (2016):
the isometric invariants (Sect. 3.1) and the classification of left-invariant structures
(Sect. 3.2). Section 4 contains the main results of the paper. In the first part (Sect. 4.1)
we characterize, by means of the exterior covariant derivative, the flat nonholonomic
Riemannian structures on three-dimensional manifolds. In the second part (Sect. 4.2)
we use the foregoing characterization, together with the classification in Barrett et al.
(2016), to obtain a classification of the flat left-invariant structures.

Throughout,we follow the summation conventionon repeated indices.Unless stated
otherwise, the following ranges on indices are used: i, j, k = 1, . . . , n (or i, j, k =
0, 1, 2 in Sect. 4) and a, b, c = 1, . . . , r . We also assume that all manifolds, functions,
vector fields, etc. are smooth, i.e., of class C∞.

2 Nonholonomic Riemannian structures

2.1 Basic concepts

A nonholonomic Riemannian structure is a quadruple S = (M,D,D⊥, g), where M
is an n-dimensional (connected) manifold,D is a rank r nonintegrable distribution on
M, D⊥ is a distribution complementary to D and g is a (positive definite) fiber metric
on D. We shall assume that D is completely nonholonomic, i.e., if D1 ⊆ D2 ⊆ · · · is
the flag of D, where

D1 = D, Di+1 = Di + [Di ,Di ] for i ≥ 1,

then there exists N ≥ 2 such that DN−1 � TM and DN = TM. If N = 2, then D is
called strongly nonholonomic. Every nonintegrable distributionon a three-dimensional
manifold is strongly nonholonomic. It is well known that, ifD is completely nonholo-
nomic, then any two points in M can be joined by a D-curve (i.e., an integral curve
of D). Let P be the projection onto D along D⊥ and let Q be the complementary
projection. For convenience, we shall denote the projected Lie bracket P([ · , · ]) by
� · , · �.

Associated toS is a unique affine connection ∇ : Γ (D)×Γ (D) → Γ (D) (where
Γ (D) denotes the space of sections of D), called the nonholonomic connection. Here
“affine connection” means that ∇ is tensorial in its first argument and a derivation in
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the second. Like the Levi-Civita connection, the nonholonomic connection may be
characterized as the unique connection that is both metric and torsion free, where the
torsion of ∇ is the (1, 2)-tensor T : Γ (D) × Γ (D) → Γ (D) given by

T (X , Y ) = ∇XY − ∇Y X − �X ,Y �, X ,Y ∈ Γ (D).

Specifically, we have the following result (see, e.g., Langerock 2001).

Proposition 1 Let S = (M,D,D⊥, g) be a nonholonomic Riemannian structure.
There exists a unique affine connection∇ : Γ (D)×Γ (D) → Γ (D) such that∇g ≡ 0
and T ≡ 0, i.e.,

Z [g(X ,Y )] = g(∇Z X ,Y ) + g(X ,∇ZY ) and ∇XY − ∇Y X = �X ,Y �

for every X ,Y , Z ∈ Γ (D). Furthermore, ∇ is characterized by Koszul’s formula:

2 g(∇XY , Z) = X [g(Y , Z)] + Y [g(X , Z)] − Z [g(X ,Y )]
+ g(�X ,Y �, Z) − g(�X , Z�,Y ) − g(�Y , Z�, X) (1)

for every X ,Y , Z ∈ Γ (D).

A D-curve γ is called a nonholonomic geodesic of S if it is a geodesic of the
nonholonomic connection ∇, i.e., ∇γ̇ γ̇ = 0.

Associated to ∇ is an exterior derivative. Let Ωk(D,D) be the space of D-valued
k-forms on D. The P-exterior covariant derivative, denoted d∇

P : Ωk(D,D) →
Ωk+1(D,D), is defined as follows:

(i) If U ∈ Ω0(D,D) = Γ (D), then d∇
PU (X) = ∇XU for every X ∈ Γ (D).

(ii) If ϕ ∈ Ωk(D,D), k ≥ 1, then

d∇
Pϕ(X0, . . . , Xk) =

k∑

i=0

(−1)i∇Xi ϕ(X0, . . . , X̂i , . . . , Xk)

+
∑

0≤i< j≤k

(−1)i+ jϕ(�Xi , X j �, X0, . . . , X̂i , . . . , X̂ j , . . . , Xk)

for every X0, . . . , Xk ∈ Γ (D). Here X̂i indicates the omission of that element.

In particular, for a D-valued 1-form ϕ, we have

d∇
Pϕ(X ,Y ) = ∇Xϕ(Y ) − ∇Yϕ(X) − ϕ(�X ,Y �),

where X ,Y ∈ Γ (D). Note that the torsion of ∇ is exactly the P-exterior covariant
derivative of the identity map idD : D → D.

Two nonholonomic Riemannian structures S = (M,D,D⊥, g) and S′ =
(M′,D′,D′⊥, g′) are said to be NH-isometric if there exists a diffeomorphism φ :
M → M′ such that

φ∗D = D′, φ∗D⊥ = D′⊥ and g = φ∗g′.
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Amap satisfying the above properties is called anNH-isometry. Ifφ is anNH-isometry,
then ∇ = φ∗∇′; consequently, φ establishes a one-to-one correspondence between
the nonholonomic geodesics of S and S′. Furthermore, φ preserves the projection
operators: φ∗P(X) = P ′(φ∗X) and φ∗Q(X) = Q′(φ∗X) for every X ∈ Γ (TM).

Let G be a Lie group with Lie algebra g = T1G. A nonholonomic Riemannian
structure S = (G,D,D⊥, g) is said to be left invariant if every left translation Lg ,
g ∈ G is an NH-isometry. The simplest left-invariant structures are those whose
nonholonomic geodesics are exactly the (left cosets of) one-parameter subgroups t →
g0 exp(t X0), X0 ∈ D1, g0 ∈ G. These are the nonholonomic Riemannian analogues of
bi-invariant Riemannian metrics. For such a structure, the nonholonomic connection
∇ is called a Cartan–Schouten connection. We have the following characterization of
structures with Cartan–Schouten connections.

Proposition 2 (Barrett et al. 2016) Let S = (G,D,D⊥, g) be a left-invariant non-
holonomic Riemannian structure, with associated nonholonomic connection ∇. The
following statements are equivalent:

(i) ∇ is Cartan–Schouten.
(ii) ∇X X = 0 for every left-invariant X ∈ Γ (D).
(iii) ∇XY = 1

2 �X ,Y � for all left-invariant X ,Y ∈ Γ (D).

2.2 The Schouten curvature tensor

As D is nonintegrable, the usual (Riemannian) curvature tensor cannot be defined for
∇. Instead, associated to every nonholonomicRiemannian structure is the (1, 3)-tensor
field

K : Γ (D) × Γ (D) × Γ (D) → Γ (D),

K (X ,Y )Z = [∇X ,∇Y ]Z − ∇�X ,Y �Z − �Q([X ,Y ]), Z�,

called the Schouten curvature tensor (see, e.g., Dragović and Gajić 2003). Let K̂ be
the associated (0, 4)-tensor K̂ (W , X ,Y , Z) = g(K (W , X)Y , Z). We decompose K̂
into two components R̂ and Ĉ :

R̂(W , X ,Y , Z) = 1

2

[
K̂ (W , X ,Y , Z) − K̂ (W , X , Z ,Y )

]
, Ĉ = K̂ − R̂.

R̂ behaves analogously to the Riemannian tensor, in that it satisfies the same symme-
tries (i.e., R̂ is skew-symmetric in the first pair and last pair of arguments, is symmetric
if one swaps the first pair of arguments with the last pair, and satisfies the first Bianchi
identity). Accordingly, we can define a (0, 2)-tensor, also called the Ricci tensor, as
follows:

Ric : Γ (D) × Γ (D) → C∞(M), Ric(X ,Y ) =
∑

a

R̂(Xa, X ,Y , Xa).
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Here (Xa) is an orthonormal frame for D. Likewise, let A be the (0, 2)-tensor

A : Γ (D) × Γ (D) → C∞(M), A(X ,Y ) =
∑

a

Ĉ(Xa, X ,Y , Xa).

Although Ric is symmetric, the tensor A is generally not; accordingly, let Asym and
Askew be the symmetric and skew-symmetric parts of A, respectively. Since NH-
isometries preserve ∇ and the projection operatorsP andQ, it follows that K , K̂ , R̂,
Ĉ , Ric, Asym and Askew are all preserved under NH-isometry.

2.3 Parallel transport

Thenonholonomic connection∇ induces a parallel transport alongD-curves.A section
V of D along a D-curve γ is parallel along γ if ∇γ̇ V = 0. A vector field X ∈ Γ (D)

is parallel if X ◦ γ is parallel along γ for every D-curve γ ; clearly, X is parallel if
and only if ∇X ≡ 0.

Proposition 3 Let γ : [0, 1] → M be a D-curve and let V0 ∈ Dγ (0). There exists a
unique parallel section V ofD along γ such that V (0) = V0. (V is called the parallel
translate of V0 along γ .)

Let γ : [0, 1] → M be an D-curve. The parallel translation �t
γ : Dγ (0) → Dγ (t),

t ∈ [0, 1] is specified by setting �t
γ (V0) = V (t), where V is the parallel translate of

V0 ∈ Dγ (0) along γ .
A parallel frame (Xa) for D is an orthonormal frame for D such that each Xa is

parallel. The existence of a parallel frame is not guaranteed: it imposes quite severe
restrictions on the structure. We say that a nonholonomic Riemannian structure S is
flat on U (where U ⊆ M is open) if there exists a parallel frame for D defined on U ;
if U = M, then we simply say S is flat. Given an NH-isometry φ between structures
S and S′, if S is flat on U , then S′ is flat on φ(U). The converse does not hold: in
three dimensions, there are many non-NH-isometric flat structures (see Sect. 4.2).

Proposition 4 Anorthonormal frame (Xa) forD is parallel if and only if �Xa, Xb� = 0
for every a, b = 1, . . . , r .

Proof One implication is immediate, since ∇ is torsion free; the other follows from
Koszul’s formula (1). ��

The following characterization of flatness is a straightforward generalization of a
standard result.

Proposition 5 S is flat on U ⊆ M if and only if for any two points p, q ∈ U and for
any D-curve γ : [0, 1] → U joining p to q, the parallel translation �1

γ : Dp → Dq

does not depend on γ .

For Riemannian manifolds, flatness is also characterized by the vanishing of the
Riemannian curvature tensor. By contrast, the situation is more complicated in the
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nonholonomic Riemannian setting. The Schouten curvature tensor K does not gener-
ally characterize flatness (see, e.g., Dragović and Gajić 2003; however, in Sect. 4.1 we
show that K ≡ 0 is a sufficient condition for flatness in three dimensions). Rather, one
can define the Wagner curvature tensor (Dragović and Gajić 2003; Wagner 1935), the
vanishing of which does characterize flatness. The construction of this tensor is quite
sophisticated, and relies on the flag of the distribution. However, the construction is
generally not intrinsic: it relies not only on the data (M,D,D⊥, g), but also on some
additional assumptions.Nonetheless, if the distribution is strongly nonholonomic, then
these additional assumptions are automatically satisfied.

Webriefly describeWagner’s approach. LetS = (M,D,D⊥, g)be a nonholonomic
Riemannian structure and let D = D1 � D2 � · · · � DN−1 � DN = TM,
N ≥ 2 be the flag of D. The nonholonomic connection ∇1 = ∇ induces a parallel
transport alongD1-curves. For each componentDi , i = 2, . . . , N of the flag, Wagner
constructs a connection ∇ i : Γ (Di ) × Γ (D) → Γ (D). Such a connection induces
a parallel transport along Di -curves. Furthermore, ∇ i is defined in such a way that
it extends ∇ i−1 and the set of parallel tensors of ∇ i coincides with that of ∇ i−1.
Finally, one gets a vector bundle connection ∇N on D (whose corresponding parallel
transport is along any curve in M) with an associated curvature tensor K N ; this is
the Wagner curvature tensor. The vanishing of K N characterizes the flatness of ∇N ,
and hence (by construction of ∇2, . . . ,∇N−1) the flatness of S. In this paper, we
do not employ the Wagner curvature tensor, preferring a more direct approach: we
characterize flatness by finding necessary and sufficient conditions for the existence of
a rotation taking an arbitrary orthonormal frame forD to a parallel frame. The relation
between this characterization and the Wagner tensor will be explored elsewhere. It
is worth mentioning that Wagner also characterized the flatness of three-dimensional
nonholonomic Riemannian manifolds (Wagner 1938); however, he stopped short of
classifying these structures.

3 Nonholonomic Riemannian structures in three dimensions

Let M be a three-dimensional manifold and D a rank 2 completely nonholonomic
distribution on M. There exists (locally) a contact form ω such that D = ker ω.
Clearly, ω is unique only up to a multiple by a nonvanishing function. Let (Y0,Y1,Y2)
be a (local) frame on M such that (Y1,Y2) is an orthonormal frame for D and Y0
spans D⊥. Let cki j be the functions (structure constants) given by [Yi ,Y j ] = cki j Yk .

We assume, without loss of generality, that c021 = 1. By imposing the normalization
condition |dω(Y1,Y2)| = 1, we may fix the contact form ω up to sign. Evidently, the
value of |dω(Y1,Y2)| is independent of the choice of Y1 and Y2. Let Z ∈ Γ (TM)

denote the Reeb vector field of ω, i.e., Z is the unique vector field such that ω(Z) = 1
and dω(Z , · ) = 0. The normalized contact form and the Reeb vector field depend
only on the data (M,D, g), hence are preserved (up to sign) under NH-isometry.
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3.1 Isometric invariants

Several isometric invariants for nonholonomic Riemannian structures in three dimen-
sions were introduced in Barrett et al. (2016). The first invariant ϑ ∈ C∞(M) is
defined as ϑ = ‖P(Z)‖2. Evidently, we have ϑ = 0 exactly when D⊥ = span{Z}.
Three curvature invariants (κ , χ1 and χ2) were also introduced. The first is defined as
κ = 1

2 tr(g
� ◦ Ric); this invariant can be interpreted as the sectional curvature of D.

The second two invariants are defined to be the positive eigenvalue of g� ◦ A
sym and

the absolute value of the Pfaffian of g� ◦ A
skew, respectively; we have

χ1 =
√

− det(g� ◦ A
sym) and χ2 =

√
det(g� ◦ A

skew).

In terms of the structure constants, the invariants take the form

ϑ = (c010)
2 + (c020)

2, κ = 1

2
(c210 − c120) − (c121)

2 − (c221)
2 − Y1[c221] + Y2[c121],

χ1 = 1

2

√
(c210 + c120)

2 + (c110 − c220)
2, χ2 = 1

2
|c110 + c220|.

IfS is a left-invariant structure on a Lie group, then we may take Y0, Y1 and Y2 to
be left invariant. The contact form ω and Reeb vector field Z are also left invariant.
In this case, the structure constants are in fact constant, as are the invariants ϑ , κ , χ1
and χ2.

3.2 Classification of invariant structures

The left-invariant nonholonomic Riemannian structures on the three-dimensional sim-
ply connected Lie groups were recently classified (Barrett et al. 2016). We shall recall
the salient aspects of this classification below.

Consider first the case when ϑ = 0; thenD⊥ = span{Z}. In this case the nonholo-
nomic Riemannian structure (M,D,D⊥, g) is completely specified by the associated
sub-Riemannian structure (M,D, g). The isometric invariants κ and χ1 form a com-
plete set of differential invariants for such structures (there are also discrete invariants;
see Agrachev and Barilari 2012). Furthermore, by rescaling the metric, we may nor-
malize (κ, χ1) such that κ = χ1 = 0 or κ2+χ2

1 = 1.We recall below the classification
of left-invariant structures (with ϑ = 0) on three-dimensional simply connected Lie
groups; see also Fig. 1. The complete list of three-dimensional Lie algebras and their
associated simply connected Lie groups is given in the “Appendix”.

Theorem 1 ( Agrachev and Barilari 2012; Barrett et al. 2016) LetS = (G,D,D⊥, g)
andS′ = (G′,D′,D′⊥, g′) be left-invariant nonholonomic Riemannian structures on
three-dimensional simply connected Lie groups such that ϑ = ϑ ′ = 0, κ = κ ′ and
χ1 = χ ′

1.

(i) If κ = χ1 = 0, then S is NH-isometric to (any structure on) the Heisenberg
group H3.
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Fig. 1 Normalized invariants for
left-invariant nonholonomic
Riemannian structures with
vanishing ϑ

(ii) If χ1 �= 0, or χ1 = 0 and κ ≥ 0, thenS is NH-isometric toS′ if and only if g is
isomorphic to g′.

(iii) If χ1 = 0 and κ < 0, then S is NH-isometric to the structure on S̃L(2, R)

with elliptic-type distribution and metric (at identity) being (a rescaling of ) the
restriction of the Killing form to D1.

Remark 1 There is a single equivalence class of structures with ϑ = 0 on the affine
group Aff(R)0 × R. Remarkably, these are all NH-isometric to the structure on
S̃L(2, R)ell in item (iii).

Consider now the case when ϑ > 0. Define a canonical frame (X0, X1, X2) on M
as follows: X0 = Q(Z), X1 = P(Z)/‖P(Z)‖ and X2 ∈ Γ (D) is the unique unit
vector field orthogonal to X1 such that dω(X1, X2) = 1 (here ‖ · ‖ is the norm on
D induced by g). Since ω and Z are specified up to sign, so are X0 and X1; on the
other hand, X2 is uniquely specified. Accordingly, if φ is an NH-isometry between
nonholonomic Riemannian structures S and S′, then φ∗X0 = ±X ′

0, φ∗X1 = ±X ′
1

and φ∗X2 = X ′
2. The commutator relations of (X0, X1, X2) are given by

⎧
⎪⎨

⎪⎩

[X1, X0] = c110X1 + c210X2

[X2, X0] = c020X0 + c120X1 + c220X2

[X2, X1] = X0 + c121X1 + c221X2.

(2)

The commutator relations (2) uniquely determine (up to sign) the nonholonomic Rie-
mannian structure. Let C be the matrix-valued function on M given by

C =
⎡

⎢⎣
0 c110 c210
c020 c120 c220
1 c121 c221

⎤

⎥⎦ .

In the case of a left-invariant structure,we have that the canonical frame is left invariant.
It follows that the structure constants cki j , and hence C, are constant. Furthermore, it
turns out that NH-isometries must preserve the group structure:
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Proposition 6 Let S and S′ be left-invariant nonholonomic Riemannian structures
on three-dimensional simply connected Lie groups G and G′, respectively; assume that
ϑ, ϑ ′ > 0. If S is NH-isometric to S′ with respect to an NH-isometry φ : G → G′,
then φ = Lφ(1) ◦ φ′, where Lφ(1) is a left translation and φ′ : G → G′ is a Lie group
isomorphism.

It follows from Proposition 6 that NH-isometries preserve the Killing form K.
Hence we can introduce three further invariants �0, �1 and �2, defined as �i =
− 1

2K(Xi (1), Xi (1)). In terms of the structure constants, we have

�0 = −1

2

[
(c110)

2 + 2c120c
2
10 + (c220)

2
]
, �1 = c210 − 1

2
(c221)

2,

�2 = −1

2

[
(c020)

2 + 2c120 + (c121)
2
]
.

For structures on the unimodular Lie groups, ϑ , �0, �1 and �2 form a complete set
of invariants. On the non-unimodular Lie groups (except for Gh

3.5, h = 1) there exist
at most two structures with the same invariants ϑ , �0, �1 and �2. On the other hand,
there are infinitely many structures on Gh

3.5, h = 1 with the same invariants ϑ , �0, �1
and �2 (and at most two with the same invariants ϑ , κ and χ2).

Theorem 2 (Barrett et al. 2016) Let S be a left-invariant nonholonomic Riemannian
structure on a three-dimensional simply connected Lie group, rescaled such that ϑ =
1. Then S is NH-isometric to exactly one of the equivalence class representatives
listed in Tables 1 and 2.

Table 1 Left-invariant nonholonomic Riemannian structures (with ϑ = 1) on the unimodular Lie groups

Lie group Equivalence classes (C) Invariants �0, �1, �2 Conditions Designation

H3

⎡

⎣
0 0 0

−1 −1 0
1 1 0

⎤

⎦ 0, 0, 0 SH3

S̃E(2)

⎡

⎣
0 −√

α1α2 α1
−1 −(1 + α2)

√
α1α2

1 1 0

⎤

⎦ α1, α1, α2
α1, α2 ≥ 0

α21 + α22 �= 0
S
S̃E(2)
α1,α2

SE(1, 1)

⎡

⎣
0 −√

α1α2 −α1
−1 −(1 − α2)

√
α1α2

1 1 0

⎤

⎦ −α1, −α1, −α2
α1, α2 ≥ 0

α21 + α22 �= 0
S
SE(1,1)
α1,α2

SU(2)

⎡

⎣
0 −δ α1

−1 −(1 + α2) δ

1 1 0

⎤

⎦ −δ2 + α1(1 + α2),

α1, α2

α1, α2 > 0, δ ≥ 0
δ2 − α1α2 < 0

S
SU(2)
α1,α2,δ

S̃L(2, R)ell

⎡

⎣
0 −δ −α1

−1 −(1 − α2) δ

1 1 0

⎤

⎦ −δ2 − α1(1 − α2),

−α1, −α2

α1, α2 > 0, δ ≥ 0
δ2 − α1α2 < 0

S
S̃L(2,R)ell
α1,α2,δ

S̃L(2, R)hyp

⎡

⎣
0 −δ −γ1

−1 −(1 − γ2) δ

1 1 0

⎤

⎦ −δ2 − γ1(1 − γ2),

−γ1, −γ2

γ1, γ2 ∈ R, δ ≥ 0
δ2 − γ1γ2 > 0

S
S̃L(2,R)hyp
γ1,γ2,δ
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We have the following characterization of structures with a Cartan–Schouten con-
nection.

Proposition 7 Let S be a left-invariant nonholonomic Riemannian structure on a
three-dimensional Lie group G.

(i) Suppose G is unimodular; then∇ is Cartan–Schouten if and only if ϑ = 0. (When
G is non-unimodular and ∇ is Cartan–Schouten, we have ϑ > 0.)

(ii) Suppose G is non-unimodular; then ∇ is Cartan–Schouten if and only if �0 =
�1 = χ2 = 0 and �2 + 1

2ϑ = 2κ .

Accordingly, every equivalence class of structures on a unimodular Lie group in
Fig. 1 has a Cartan–Schouten connection. On the other hand, for structures on a non-

unimodular group, the equivalence classes SAff(R)0×R

0,1 , SG3.2
1 , S

Gh
3.4

1 and S
Gh
3.5

1 (see
Table 2) are exactly those with a Cartan–Schouten connection.

4 Flat structures

In this section we consider the flat nonholonomic Riemannian structures on three-
dimensional manifolds. We first characterize flatness in three dimensions; this is
followed by a classification of the flat left-invariant structures.

4.1 Characterization

Let S = (M,D,D⊥, g) be a nonholonomic Riemannian structure on a three-
dimensional manifold M. Let (X0, X1, X2) be a local frame defined on an open
neighbourhood U ⊆ M such that X0 spans D⊥ and (X1, X2) is an orthonormal
frame for D. The structure constants of (X0, X1, X2) are denoted by cki j ; we may

assume that c021 = 1. The dual frame (ν0, ν1, ν2) satisfies the structure equations
dνk = ∑

0≤i< j≤2 c
k
i jν

j ∧ νi .

Lemma 1 S is locally flat on U if and only if there exists θ ∈ C∞(U) such that

X1[θ ] = c121 and X2[θ ] = c221.

If such a function θ exists, then the rotated frame (cos θX1 − sin θX2, sin θX1 +
cos θX2) is parallel.

Proof Let (Y1,Y2) be another orthonormal frame for D. There exists an orthogonal
transformation taking (X1, X2) to (Y1,Y2). That is, there exist σ ∈ {−1, 1} and
θ ∈ C∞(U) such that

{
Y1 = σ cos θX1 − sin θX2

Y2 = σ sin θX1 + cos θX2.
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ByProposition 4, the frame (Y1,Y2) is a parallel frame forD if andonly if �Y2,Y1� = 0.
We have �Y2,Y1� = (X1[θ ]−σc121)X1+(X2[θ ]−σc221)X2, and so (Y1,Y2) is parallel
exactly when X1[θ ] = σc121 and X2[θ ] = σc221. Changing the sign of θ if necessary,
we may take σ = 1. ��

Lemma 2 There exists a rotation (Y1,Y2) of (X1, X2) such that �Y2,Y1� = 0 if and
only if the following equations hold:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(c110 − c220)c
1
21 + (c210 + c120)c

2
21 + c020c

1
10 − 1

2c
0
10(c

2
10 + c120) + c010κ

= − 1
2 X1[c210 + c120] + X1[κ] + X2[c110]

(c210 + c120)c
1
21 − (c110 − c220)c

2
21 − c010c

2
20 + 1

2c
0
20(c

2
10 + c120) + c020κ

= 1
2 X2[c210 + c120] + X2[κ] − X1[c220].

(3)

Proof Let (Y1,Y2) = (cos θX1 − sin θX2, sin θX1 + cos θX2) be a rotation of
(X1, X2), where θ ∈ C∞(U). By Lemma 1, we have that �Y2,Y1� = 0 if and only
if X1[θ ] = c121 and X2[θ ] = c221. We claim that there exists θ ∈ C∞(U) satisfying
the conditions X1[θ ] = c121, X2[θ ] = c221 if and only if (3) hold. If such a function θ

exists, then

dθ = X0[θ ]ν0 + c121ν
1 + c221ν

2

= ([X2, X1][θ ] − c121X1[θ ] − c221X2[θ ])ν0 + c121ν
1 + c221ν

2

= (X2[c121] − X1[c221] − (c121)
2 − (c221)

2)ν0 + c121ν
1 + c221ν

2

= (κ − 1
2 (c

2
10 − c120))ν

0 + c121ν
1 + c221ν

2.

The right-hand side is independent of θ ; accordingly, let � = (κ − 1
2 (c

2
10 − c120))ν

0 +
c121ν

1 + c221ν
2. Then d� = f01 ν0 ∧ ν1 + f02 ν0 ∧ ν2, where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f01 = c110c
1
21 + c210c

2
21 − c010(

1
2 (c

2
10 − c120) − κ)

+ X1[ 12 (c210 − c120) − κ] + X0[c121]
f02 = c120c

1
21 + c220c

2
21 − c020(

1
2 (c

2
10 − c120) − κ)

+ X2[ 12 (c210 − c120) − κ] + X0[c221].

Using d2 = 0 on the structure equations for dν1 and dν2, we get

{
X0[c121] = −c120c

0
10 + c110c

0
20 − c220c

1
21 + c120c

2
21 + X1[c120] − X2[c110]

X0[c221] = −c220c
0
10 + c210c

0
20 + c210c

1
21 − c110c

2
21 + X1[c220] − X2[c210].
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Hence

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f01 = (c110 − c220)c
1
21 + (c210 + c120)c

2
21 + c020c

1
10 − 1

2c
0
10(c

2
10 + c120) + c010κ

+ 1
2 X1[c210 + c120] − X1[κ] − X2[c110]

f02 = (c210 + c120)c
1
21 − (c110 − c220)c

2
21 − c220c

0
10 + 1

2c
0
20(c

2
10 + c120) + c020κ

− 1
2 X2[c210 + c120] − X2[κ] + X1[c220].

Suppose θ exists, so that d� = d2θ = 0; then f01 = f02 = 0, which yields the
equations (3). Conversely, if (3) hold, then d� = 0, i.e., � is closed. Hence � is
locally exact: there exists an open neighbourhood U ′ ⊆ U and θ ∈ C∞(U ′) such that
� = dθ . The rotated frame (Y1,Y2) then satisfies �Y2,Y1� = 0. ��

Using the condition for flatness in Lemma 2 (which depends on the choice of
an orthonormal frame for D), we shall derive an invariant characterization of the flat
structures.We have the decomposition TM = D⊕span{Z}, where Z is theReeb vector
field of the normalized contact formω. LetR : TM → span{Z} be the projection onto
the distribution spanned by Z . In particular, we have R([X2, X1]) = dω(X1, X2)Z .

Theorem 3 S is locally flat on U if and only if

d∇
P F = F ◦ ρ on U . (4)

Here F = g� ◦ (Ric +A
sym + A

skew) and ρ ∈ Ω2(D,D) is given by ρ(X1, X2) =
P(R([X2, X1])).
Proof Since (g� ◦ Ric)(Xa) = Ric(Xa, X1)X1 + Ric(Xa, X2)X2, Ric(Xa, Xa) = κ

and Ric(Xa, Xb) = 0 for a �= b, we have

d∇
P (g� ◦ Ric)(X1, X2) = ∇X1(g

� ◦ Ric)(X2) − ∇X2(g
� ◦ Ric)(X1)

− (g� ◦ Ric)(�X1, X2�)

= ∇X1(κX2) − ∇X2(κX1) + (c121κX1 + c221κX2).

It is not difficult to show that ∇X1X2 = −c121X1 and ∇X2X1 = c221X2. Hence

d∇
P (g� ◦ Ric)(X1, X2) = X1[κ]X2 − κc121X1 − X2[κ]X1 − κc221X2

+ (c121κX1 + c221κX2)

= −X2[κ]X1 + X1[κ]X2.

Similar calculations yield

d∇
P (g� ◦ A)(X1, X2) = (X1[c220] − 1

2 X2[c210 + c120])X1 + (X2[c110]
− 1

2 X1[c210 + c120])X2 + 2 (g� ◦ A
sym)(�X2, X1�).
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Here A = Asym + Askew. In addition, we have (g� ◦Ric ◦ ρ)(X1, X2) = −c020κX1 +
c010κX2 and

(g� ◦ A ◦ ρ)(X1, X2) = −(c010c
1
10 + 1

2c
0
20(c

2
10 + c120))X1

−(c020c
2
20 + 1

2c
0
10(c

2
10 + c120))X2.

Let f01 and f02 be defined as in the proof of Lemma 2. There exists a parallel frame
for D if and only if f01 = f02 = 0. From the foregoing calculations, it follows that

(d∇
P F − F ◦ ρ)(X1, X2) = f02X1 − f01X2.

(As d∇
P F − F ◦ ρ is skew-symmetric, it is fully determined by its evaluation of

X1 ∧ X2.) This proves the result. ��
Corollary 1 Suppose ϑ = 0; thenS is locally flat on U if and only if d∇

P F ≡ 0 on U .

Proof If ϑ = 0, then P(Z) = 0, and so ρ ≡ 0. Hence S is flat exactly when d∇
P F

vanishes. ��
Corollary 2 If K ≡ 0 on U , then S is locally flat on U .
Proof If K ≡ 0, then Ric, Asym and Askew all vanish identically. Hence F ≡ 0, and
the condition d∇

P F = F ◦ ρ is trivially satisfied. ��

4.2 Classification

Let S = (G,D,D⊥, g) be a left-invariant nonholonomic Riemannian structure on
a three-dimensional simply connected Lie group G. Suppose that (X0, X1, X2) is a
left-invariant frame onG such that X0 spansD⊥ and (X1, X2) is an orthonormal frame
forD. Let cki j be the structure constants of the frame; as before, we take c021 = 1. With
respect to (X1, X2), we have

d∇
P F(X1, X2) = 2 (g� ◦ A

sym)(�X2, X1�) =
[
c210 + c120 −(c110 − c220)

c220 − c110 −(c210 + c120)

] [
c121
c221

]
(5)

and

(F ◦ ρ)(X1, X2) =
[
κ + 1

2 (c
2
10 + c120) c220

−c110 κ − 1
2 (c

2
10 + c120)

] [−c020
c010

]
. (6)

We shall consider the following cases: (I) ϑ = 0; (II-a) ϑ > 0 and G is unimodular;
(II-b) ϑ > 0 and G is non-unimodular.

Theorem 4 (Case I: ϑ = 0) S is flat if and only if G is unimodular (hence ∇ is a
Cartan–Schouten connection) or G = Aff(R)0 × R.
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Proof By Corollary 1, S is flat if and only if d∇
P F vanishes. From (5), this happens

exactly when A
sym(�X2, X1�) = 0. Suppose χ1 > 0. Then A

sym is invertible, and
�X2, X1� = 0 implies that every left-invariant frame forD is parallel; that c121 = c221 =
0; and that ∇ is a Cartan–Schouten connection. Moreover, G must be unimodular.
Conversely, every such structure is clearly flat.

On the other hand, suppose χ1 = 0. Then A
sym ≡ 0, and so every such structure in

this case is flat. From Theorem 1 (see also Fig. 1), these are the following structures
(up to NH-isometry and rescaling):

• the structure on SU(2) with metric (at identity) being the Killing form restricted
to D1 (when κ > 0);

• any structure on the Heisenberg group H3 (when κ = 0);
• the structure on S̃L(2, R) with elliptic-type distribution and metric (at identity)
being the Killing form restricted to D1 (when κ < 0); also, any structure on
Aff(R)0 × R (see Remark 1).

With the exception of those on Aff(R)0 × R, these are all structures on unimodular
Lie groups with Cartan–Schouten connections. ��
Remark 2 The case when χ1 = 0 was essentially proved in Agrachev and Barilari
(2012). Indeed, it was shown that for a sub-Riemannian structure (M,D, g) on a three-
dimensional simply connected manifold (which may be viewed as a nonholonomic
Riemannian structure with ϑ = 0) with constant κ and χ1 = 0, there exists a rotation
(X̂1, X̂2) of the frame (X1, X2) such that [X̂1, Z ] = κ X̂2, [X̂2, Z ] = −κ X̂1 and
[X̂2, X̂1] = Z , i.e., such that (X̂1, X̂2) is parallel.

Theorem 5 (Case II-a: ϑ > 0, G unimodular) S is flat if and only if �0 = ϑ�1 and
�2 = 0 (in which case κ2 = χ2

1 ). Consequently, any flat structure is NH-isometric up
to rescaling to exactly one of the following structures:

S
SE(1,1)
α1,0

(when �0 < 0), SH3 (when �0 = 0), S
S̃E(2)
α1,0

(when �0 > 0).

Proof We take (X0, X1, X2) to be the canonical frame (described in Sect. 3.2). Since
G is unimodular, we have c221 = 0 and c121 = −c020 = ‖P(Z)‖, whence �X2, X1� =
dω(X1, X2)P(Z) = ρ(X1, X2). Furthermore, we have χ2 = 0, i.e., Askew ≡ 0. The
condition (4) becomes

2 (g� ◦ A
sym)(�X2, X1�) = (g� ◦ (Ric +A

sym))(�X2, X1�)

⇐⇒ Ric(�X2, X1�) = A
sym(�X2, X1�)

⇐⇒ Ric(X1) = A
sym(X1)

⇐⇒ Asym(X1, X1) = κ and Asym(X1, X2) = 0.

In terms of the structure constants, this is equivalent to the conditions c110 = 0, c120 =
−(c020)

2, which are in turn equivalent to �0 = ϑ�1 and �2 = 0. Furthermore, this
implies that κ2 = χ2

1 . In terms of the classification in Theorem 2, these are the
following structures:
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• the equivalence classes SSE(1,1)
α1,α2 with α2 = 0 (when �0 < 0);

• the equivalence class SH3 (when �0 = 0);

• the equivalence classes SS̃E(2)
α1,α2 with α2 = 0 (when �0 > 0).

��
Theorem 6 (Case II-b: ϑ > 0, G non-unimodular)

(i) If G = Aff(R)0 × R, then S is flat.
(ii) Suppose χ2 = 0; S is flat if and only if ∇ is a Cartan–Schouten connection.
(iii) Suppose χ2 > 0; any flat structure is NH-isometric up to rescaling to exactly one

of the following structures:

S
G3.2
α,β with α = −β

8

(
1 ±

√
1 − 4β2

)
, − 1

2 ≤ β < 0

S
Gh
3.4

α,β , 0 < h < 1 with α = − (h2 − 1)β

8h2
(
1 ±

√
1 − 4β2

)
, 0 < β ≤ 1

2

S
Gh
3.4

α,β , 1 < h with α = − (h2 − 1)β

8h2
(
1 ±

√
1 − 4β2

)
, − 1

2 ≤ β < 0

S
Gh
3.5

α,β with α = − (h2 + 1)β

8h2
(
1 ±

√
1 − 4β2

)
, − 1

2 ≤ β < 0.

Proof Considering the equivalence class representatives in Table 2, a direct (but
tedious) calculation, using the condition that (5) equals (6), yields the result. We
illustrate with the case of G3.2. Take (X0, X1, X2) to be the canonical frame. Consider
first the family of equivalence classes SG3.2

β ; we have

(d∇
P F − F ◦ ρ)(X1, X2)

=
[− 1

4 (β − 2)2 0
0 1

4 (β − 2)2

] [
1 − β

0

]
−

[−(β − 1)2 0
0 − 3

4β(β − 4
3 )

] [
1
0

]

=
[ 1
4β

2(β − 1)
0

]
.

Hence a member of the equivalence classSG3.2
β is flat exactly when β = 1. From Sect.

3.2, this is exactly the structure on G3.2 with a Cartan–Schouten connection. On the
other hand, consider the family of equivalence classes SG3.2

α,β ; then

(d∇
P F − F ◦ ρ)(X1, X2) =

[− α
β3 (16α

2 + 4αβ + β4)
1
4β (16α2 + 4αβ + β4)

]
.

Thus the structure is flat if and only if 16α2 +4αβ +β4 = 0. It is not difficult to show
that this occurs exactly when α = −β

8 (1 ± √
1 − 4β2) and − 1

2 ≤ β < 0. ��
Remark 3 Every left-invariant nonholonomic Riemannian structure onH3 andAff(R)0
× R is flat. On the other hand, apart from those with Cartan–Schouten connections,
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there are no flat structures on the semisimple groups SU(2) and S̃L(2, R). Every other
group (apart fromH3 andAff(R)0×R) admits a one-parameter family of flat structures,
up to equivalence.

Remark 4 The classical Chaplygin problem (see, e.g., Fedorov, Y., García-Naranjo
2010; Barrett et al. 2016) may be modelled by a left-invariant nonholonomic Rie-
mannian structure on the Euclidean group SE(2). The reduced dynamics on the Lie
algebra se(2) exhibit three qualitatively different cases (of increasing analytical com-
plexity): the “Chaplygin skate” (when ϑ = 0); the “Chaplygin sleigh” (when ϑ > 0
and κ2 = χ2

1 ); and the “hydrodynamic Chaplygin sleigh” (when ϑ > 0 and κ2 �= χ2
1 ).

The equivalence classes of structures corresponding to theChaplygin sleigh areSS̃E(2)
α1,0

.
Accordingly, the flat structures for the Chaplygin problem correspond precisely to the
case of the Chaplygin skate and the Chaplygin sleigh.

Appendix Real Lie algebras of dimension three

The classification of real three-dimensional Lie algebras is well known. Our prefer-
ence is for the Bianchi–Behr enumeration (MacCallum 1999; Krasiński et al. 2003;
Mubarakzyanov 1963). In terms of an appropriate ordered basis (E1, E2, E3), the
commutator relations are given by

⎧
⎪⎨

⎪⎩

[E2, E3] = n1E1 − aE2

[E3, E1] = aE1 + n2E2

[E1, E2] = n3E3.

The coefficients a, n1, n2 and n3 for each type of algebra may be found in Table 3,
together with the (unique) simply connected Lie group corresponding to each algebra.

Table 3 Bianchi–Behr classification of real three-dimensional Lie algebras

Type Bianchi a n1 n2 n3 Simply connected Lie group Unimodular

3g1 I 0 0 0 0 R3 •
g2.1 ⊕ g1 III 1 1 −1 0 Aff(R)0 × R

g3.1 II 0 1 0 0 H3 •
g3.2 IV 1 1 0 0 G3.2
g3.3 V 1 0 0 0 G3.3

g03.4 VI0 0 1 −1 0 SE(1, 1) •
gh3.4 VIh

h>0
h �=1 1 −1 0 Gh3.4

g03.5 VII0 0 1 1 0 S̃E(2) •
gh3.5 VIIh h>0 1 1 0 Gh3.5
g3.6 VIII 0 1 1 −1 S̃L(2, R) •
g3.7 IX 0 1 1 1 SU(2) •
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Remark 5 The Abelian group R3 and the group G3.3 do not admit completely non-
holonomic left-invariant distributions. Accordingly, there do not exist left-invariant
nonholonomic Riemannian structures on these groups.

Remark 6 Apart from S̃L(2, R) (the universal cover of SL(2, R)) there exists, up to Lie
group automorphism, at most one completely nonholonomic left-invariant distribution
on each three-dimensional simply connectedLie group.On S̃L(2, R) there exist exactly
two such distributions up to automorphism, according as whether the Killing form
restricted to the distribution (at identity) is definite or indefinite. Following Agrachev
and Barilari (2012), if the Killing form is definite on a given distribution, we shall
say that the distribution is of elliptic type, and denote the group as S̃L(2, R)ell . On the
other hand, when the Killing form is indefinite on the distribution, we shall say that it
is of hyperbolic type, and write S̃L(2, R)hyp for the group.
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