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Abstract An n-crown Cn,n on 2n vertices is a graph obtained from complete bipartite
graph Kn,n by removing edges of a perfect matching. Given a finite simple graph G,
one can associate a simplicial complex �(G). In this paper, we use combinatorial
data from the associated simplicial complex�(Cn,n) of the crown graph Cn,n and give
a formula to find Betti numbers of the form βi,i+1 of edge ideals of Cn,n . We also
present a formula to find a particular Betti of the edge ideal of a crown graph. We
explicitly compute the projective dimension of the edge ideals of crown graphs using
domination parameters of the graphs.
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1 Introduction

Throughout this paper k will denote a field. Let G = (V, E) be a finite simple (no
loops ormultiple edges) undirected graphwith vertex setV (G) = {x1, x2, . . . , xn} and
edge set E(G). We can associate to G a quadratic square-free monomial ideal I (G) =
(xi x j |{xi , x j } ∈ E(G) in the polynomial ring R = k[x1, x2, . . . , xn], where the vertex
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xi is identified with the variable xi . The ideal I (G) is called the edge ideal of G and
was first introduced by Villarreal (1995). We study edge ideals mainly to investigate
relations between algebraic properties of edge ideals and combinatorial properties of
graphs; see Hà and Van Tuyl (2007), Morey and Villarreal (2012), Villarreal (1995)
and their references. We mainly focus on describing invariants of I (G) in terms of G.

For any edge ideal I (G) in R = k[x1, x2, . . . , xn] there exists anN-gradedminimal
free resolution

0 →
sp⊕

j=1

R(− j)βp, j → · · · →
s1⊕

j=1

R(− j)β1, j → R → R/I (G) → 0.

of R/I (G) over R, in which R(− j) represents the graded free module obtained by
shifting the degrees of elements of R by j . The number βi, j is called i th graded
Betti number of R/I (G) in degree j and we write βi, j (G) for βi, j (R/I (G)). The
length p of the resolution is called projective dimension of R/I (G) and is denoted by
pd(R/I (G)) (for the sake of brevity, we write pd(G) = pd(R/I (G))), that is,

pd(G) = max{i | βi, j (G) �= 0 for some j}.

Also, the Castelnuovo–Mumford regularity or simply regularity of R/I (G) is denoted
by reg(R/I (G)) (we write reg(G) = reg(R/I (G))) is defined by

reg(G) = max{ j − i | βi, j (G) �= 0}.

Many authors have investigated these invariants, e.g., (Barile 2005; Hà and Van Tuyl
2008; Jacques 2004; Jacques and Katzman 2005; Katzman 2006; Kummini 2009;
Mahmoudi et al. 2011; Zheng 2004). The projective dimension and regularity of a
forest, which is a graph with no cycles, was first characterized by Zheng (2004). Later
Hà and Van Tuyl (2008) extended this characterization of regularity to that for chordal
graphs. Katzman (2006) proved some results on non-vanishingness of the graded Betti
numbers. For other results and problems in this area we refer to Hà and Van Tuyl
(2007). The regularity of a certain class of edge ideals was characterized in Francisco
et al. (2009), Hà and Van Tuyl (2008), Khosh-Ahang and Moradi (2014), Kummini
(2009), Mahmoudi et al. (2011), Woodroofe (2014) and Zheng (2004) with a notion of
the three-disjointness of edges which we are going to discuss in Sect. 2. In this paper,
we give a formula (Theorem 3.1) to find the Betti numbers of the form βi,i+1 of edge
ideals of a crown graph. We also prove a result (Theorem 3.9) to find a particular Betti
number of a crown graph. In addition to this, we compute the projective dimension of
the edge ideals of crown graphs.

Nowwe describe the organization of the paper. In Sect. 2 we recall some definitions
and introduce the notion of the strongly disjoint set of bouquets. Moreover, in this
section, we recall some well-known results by Hochster (1975) and Katzman (2006).
In Sect. 3 we introduce the crown graphs and prove some results . In particular, we
prove Theorems 3.1 and 3.9. In Sect. 4 we discuss domination parameters of graphs
and present a result on projective dimension of edge ideals of crown graphs.
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2 Preliminaries

In this section, we prepare some definitions on graphs and recall some known results
about the Betti numbers and the regularity of edge ideals. We also fix some notations
that are used in subsequent sections.

2.1 Simplicial complexes and Hochster’s formula

Definition 1 Let [n] = {1, 2, . . . , n}. A simplicial complex � on [n] is a collection
of subsets of [n], called faces, such that {i} ∈ � for all i ∈ [n] and if X ∈ � andY ⊆ X
then Y ∈ �.

If � is a simplicial complex on the vertex set [n] and every subset of [n] belongs
to �, then � is called a simplex. A face X ∈ � of cardinality |X | = m + 1 is called a
face of dimension m or an m-face of �. The dimension of �, denoted by dim(�), is
the maximum of dimension of all its faces.

Let W ⊆ [n]. We define the subcomplex �W of � to be the simplicial complex

�W = {F ∈ � | F ⊆ W }.

Definition 2 The Stanley–Reisner ideal of a simplicial complex � with vertex set
{x1, . . . , xn} is a squarefree monomial ideal I� of R = k[x1, . . . , xn] generated by
all monomials xi1 · · · xi j such there is no face of � with vertices xi1 , . . . , xi j . The
quotient ring k[�] = R/I� is called Stanley-Reisner ring of the simplicial complex
�.

Remark 2.1 LetG be a finite simple graph.We can associate toG a simplicial complex
�(G) which has faces

{{xi1 , . . . , xi�} | no {xi j , xik } is an edge of G}.

One can note that the edge ideal I (G) of G is the Stanley–Reisner ideal I�(G) of
�(G).

The following theorem is the main tool for computing Betti numbers of Stanley–
Reisner ring k[�].
Theorem 2.2 [Hochster (1975)’s Formula] The ith Betti of the Stanley–Reisner ring
k[�] = R/I� is given by

βi, j (k[�]) =
∑

W⊆[n],|W |= j

dimk H̃ j−i−1(�W ;k).

Note that if � = �(G) for some graph G, then above formula is given as

βi, j (R/I�(G)) =
∑

H⊆G induced
|V (H)|= j

dimk H̃ j−i−1(�(H);k).
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Let G = (V, E) be a finite simple graph with vertex set V . A set W ⊂ V of vertices
of G is called independent or stable if no two of them are adjacent in G. We call the
graph G = (V, E) a bipartite graph if V can be partitioned into two disjoint and
independent sets X and Y so that V = X ∪ Y and for any edge e ∈ E(G), one of
the vertices of e lies in X and the other in Y . We call G a complete bipartite graph of
the type (|X |, |Y |) if for any vertex in X and for any vertex in Y we have an edge in
E(G). A complete bipartite graph of type (m, n) is denoted by Km,n .

The simplicial complex�(Km,n) associated to the complete bipartite graph Km,n is
the union of two disjoint simplices one of dimension m −1 and the other of dimension
n − 1. The associated simplicial complex of the complete bipartite graph K3,4 given
in Fig. 1 is pictorially given in Fig. 2.

We can see that �(Km,n) being the union of two disjoint simplices, the only non-
zero reduced homology groups for such simplicial complexes are those in 0th position.
In order to find Betti numbers of the complete bipartite graphs Km,n , we use the simple
description of associated simplicial complex �(Km,n) with Theorem 2.2.

Consider a complete bipartite graph Km,n with vertex set V = {x1, . . . , xm, y1, . . . ,
yn}, where V is partitioned into X = {x1, . . . , xm} and Y = {y1, . . . , yn} as indepen-
dent sets. Let � = �(Km,n). Suppose ∅ �= W ⊆ V such that W ⊆ X or W ⊆ Y ,
then �W is a simplex and has zero reduced homology everywhere. On other hand if
W ∩ X �= ∅ and W ∩ Y �= ∅, then �W is the disjoint union of two simplices. This
implies that

H̃i (�W ;k) =
{
k if i = 0
0 if i �= 0.

Fig. 1 K3,4
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Theorem 2.3 (Jacques 2004) The N-graded Betti numbers of the complete bipartite
graph Km,n is given by the expression

βi, j (Km,n) =

⎧
⎪⎨

⎪⎩

∑
p+q=i+1

p,q≥1

(m
p

)(n
q

)
if j = i + 1

0 if j �= i + 1.

2.2 Strongly disjoint set of bouquets

Definition 3 Agraph B with vertex set V (B) = {x, y1, . . . , ym} and edge set E(B) =
{{x, yi } | i = 1, . . . , m}, m ≥ 1, is called a bouquet . Thus a bouquet can also be
viewed as a complete bipartite graph of type (1, m) (Fig. 3).

The notion of bouquets for simple graphs was first introduced by Zheng (2004).
Borrowing the terminology from Zheng (2004 Definition 1.7), the vertex x is called
the root of B, the edges {x, yi } stems of B, and the vertices yi (1 ≤ i ≤ m), the
flowers of B. We call B a bouquet of a graph G if B is the subgraph of G. Let
B = {B1, B2, . . . , Br } be a set of bouquets of G. We fix the notations

R(B) = {x ∈ V (G) : x is a root of some bouquet in B},
S(B) = {s ∈ E(G) : s is a stem of some bouquet in B},
F(B) = {y ∈ V (G) : y is a flower of some bouquet in B}.

The ordered pair (|F(B)|, |R(B)|) determines the type of B. Next we define the
disjointness on the set of bouquets of G.

Definition 4 (Hà and Van Tuyl 2008) A chain of length � in a finite simple graph G
with vertex set V (G) = {x1, . . . , xn} is a sequence (e1, e2, . . . , e�+1) of edges of G
such that

(1) e1, . . . , e�+1 are all distinct edges of G,
(2) ei = {xi , xi+1}.

One can see that (2) implies ei ∩ ei+1 �= ∅ for 1 ≤ i ≤ �. Two edges e and e′ are
said to be connected if there exists a chain (e1, . . . , e�+1)where e = e1 and e′ = e�+1.
If e and e′ are two distinct edges of G, then the distance between e and e′, denoted by
dG(e, e′), in G is give as

Fig. 3 A bouquet

x
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y2 y3
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dG(e, e′) = min{� | (e = e1, . . . , e�+1 = e′) is a chain}.

If there is no such chain, we define dG(e, e′) = ∞. Two edges e and e′ are said to be
t-disjoint in G if dG(e, e′) ≥ t . A subset E ⊂ E(G) is said to be pairwise t-disjoint if
any pair of distinct edges in E is t-disjoint.

Remark 2.4 Let G = (V, E) be finite simple graph. If W ⊆ V , then we define the
induced subgraph GW of G on the vertex set W to be the subgraph with vertex set W
andwhose edge set consists of all the edges of E(G) connecting two vertices in W . Let
e1 = {xi , x j } and e2 = {xk, xl} be two distinct edges of G, then we see that e1 and e2
are 3-disjoint if {xi , x j }∩{xk, xl} = ∅ and GW = e1∪e2, where W = {xi , x j , xk, xl}.
Example 2.5 Let G be the graph in Fig. 4. One can see directly from Fig. 5 that
the edges e1 = {x1, x2} and e4 = {x4, x5} are 3-disjoint in G. It is because GW =
e1 ∪ e4, where W = {x1, x2, x4, x5}. Whereas, Fig. 6 clearly reveals that the edges
e4 = {x4, x5} and e5 = {x1, x3} are not 3-disjoint. This is because GW ′ = e3∪e4∪e5,
where W ′ = {x1, x3, x4, x5}.

Definition 5 (Kimura 2012) Let B = {B1, B2, . . . , Bm} be a set of bouquets of G.
Then we say G is strongly disjoint if the following conditions hold.

(1) V (Bi ) ∩ V (B j ) = ∅ for all i �= j .
(2) We can choose a stem si ∈ Bi for all Bi ∈ B, i = 1, . . . , m, so that the set

{s1, . . . , sm} is pairwise 3-disjoint in G.

Remark 2.6 One can see that if B = {B1, B2, . . . , Bm} is a strongly disjoint set of
bouquets in G, then no two vertices in R(B) are adjacent in G. For if not, suppose the
roots of bouquets Bi and B j are adjacent, then for each stem of B1 and for each stem
of B2 there exists a chain of length 2 which connects them. Thus the distance between
any stem of B1 and any stem of B2 is 2.

Fig. 4 G
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Example 2.7 Consider the graph G in Fig. 7. Then one can see that G contains a
bouquet B1, given in Fig. 8, of type (1, 4) and a bouquet B2, given in Fig. 9, of type
(1, 3). Since we can choose a stem s = {x1, x2} ∈ B1 and a stem s′ = {y1, y2} ∈ B2
so that dG(s, s′) ≥ 3, we see that the set B = {B1, B2} of bouquets forms a strongly
disjoint set of bouquets of G.

Definition 6 (Kimura 2012, Definition 2.3) Let G be a finite simple graph. Then G is
said to contain a strongly disjoint set of bouquets if there exists a strongly disjoint set
B of bouquets such that V (G) = F(B) ∪ R(B). However, If V (G) = F(B) ∪ R(B)

and E(G) = S(B), then we say G coincides with strongly disjoint set B of bouquets.

Now before we proceed further, we recall some results due to Katzman (2006),
mentioned in the introduction. For any graph G, we fix

η(G) = max{|E| | E ⊂ E(G) is a pairwise 3-disjoint in G}.

Theorem 2.8 (Katzman 2006) Let G be a finite simple graph on V and R =
k[x1, . . . , xn].
(1) The graded Betti number βi,2i (G) coincides with the number of subsets W of V

for which GW consists of i pairwise disjoint edges.
(2) If there exists a subset W ⊂ V such that GW coincides with a strongly disjoint

set B of bouquets of type (i, j), then βi,i+ j (G) �= 0.

Fig. 7 G

x1

x2

x3

x4x5

y1

y2y3

y4

Fig. 8 B1

x1

x2

x3

x4x5

Fig. 9 B2

y1

y2y3

y4

123



130 Beitr Algebra Geom (2019) 60:123–136

Fig. 10 C3,3 x1
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3 Crown graphs

3.1 Crown graphs and Betti numbers

Definition 7 An n-crown graph Cn,n on 2n vertices, n ≥ 3, is a simple graph with
vertex set V (Cn,n) = {x1, . . . , xn, y1, . . . , yn} and edge set E(Cn,n) = {{xi , y j } | 1 ≤
i, j ≤ n and i �= j}. It can also be considered as a subgraph of complete bipartite
graph Kn,n with edges of the type {xi , yi }, 1 ≤ i ≤ n being removed (Fig. 10).

The corresponding simplicial complex �(Cn,n) of an n-crown graph Cn,n is the
union of two n − 1 dimensional simplices and the n edges {xi , yi }, 1 ≤ i ≤ n.

A graph G is said to be chordal if every cycle of length greater than 3 in G has a
chord (an edge which is not part of the cycle). However, G is said to be weakly chordal
if every cycle of length greater than 4 in G and Gc (complement of G) has a chord.
Crown graphs is a particular series of graphs which ceases to be Cohen-Macaulay.
Crown graphs are neither chordal nor weakly chordal for they contain induced cycles
of length greater than four without any chords. Moreover, they are not unmixed. One
would be interested to see the relation between the combinatorial properties of crown
graphs and the algebraic properties of their respective edge ideals. We shall prove
some results in order to compute Betti numbers of edge ideals of crown graphs.

Theorem 3.1 Let Cn,n be an n-crown graph on vertex set V (Cn,n) = {x1, . . . , xn,

y1, . . . , yn}. Then

βi,i+1(Cn,n) = (2i+1 − 2)

(
n

i + 1

)
.

Proof From Theorem 2.2, we have

βi,i+1(Cn,n) =
∑

W⊆X∪Y
|W |=i+1

dimk H̃0(�W ;k),

where X = {x1, . . . , xn}, Y = {y1, . . . yn} and � = �(Cn,n). We know that
H̃0(�,k) + 1 is the number of connected components of �W . Therefore, we will
have a non-zero contribution to βi,i+1(Cn,n) if the number of connected components
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of �W is greater than one. Since �(Cn,n) is the union of two simplices connected
by one dimensional faces of the type {xk, yk}, 1 ≤ k ≤ n, one can see that �W

has at most two connected components for any subset W of V (Cn,n). If W ⊆ X or
W ⊆ Y , then �W is a simplex and has zero reduced homology everywhere. However,
ifW ⊂ X∪Y is of the form {xr1 , . . . , xr�

, ys1 , . . . , ysm }, where �, m ≥ 1, �+m = i+1
and {r1, . . . , r�} and {s1, . . . , sm} are disjoint subsets of {1, . . . , n}, then �W consists
of two connected components. This implies that βi,i+1(Cn,n) is same as the number of
subsets W of V (Cn,n) of the above type. One suitable subset is obtained by choosing
one element (say xk) from X and other i elements from Y − {yk}. There are

(n
1

)(n−1
i

)

subsets of this type. Similarly, we get another
(n
2

)(n−2
i−1

)
subsets if we choose two ele-

ments (say xk, xk′ ) from X and other i − 1 elements from Y − {yk, yk′ }. Continuing
this way to obtain

βi,i+1(Cn,n) =
(

n

1

)(
n − 1

i

)
+

(
n

2

)(
n − 2

i − 1

)
+ · · · +

(
n

i

)(
n − i

1

)

=
∑

p+q=i+1
p,q≥1

(
n

p

)(
n − p

q

)
. (3.1)

By using a well known formula

∑

r+s=m
r,s≥1

(
n

r

)(
n − r

s

)
= (2m − 2)

(
n

m

)
,

we can rewrite (3.1) as

βi,i+1(Cn,n) = (2i+1 − 2)

(
n

i + 1

)
.

��
Corollary 3.2 LetCn,n be an n-crown graph on vertex set V (Cn,n) = {x1, . . . , xn, y1,
. . . , yn}. Then βi,i+1(Cn,n) = 0 for all i ≥ n.

Proof The proof of this result directly follows from Theorem 3.1. ��
Example 3.3 Let C4,4 be a 4-crown graph (given in Fig. 11) on vertex set V (C4,4) =
{x1, x2, x3, x4, y1, y2, y3, y4}. One can see that βi,i+1(C4,4) = 0 for all i ≥ 4. Using
Theorem 3.1, the Betti numbers βi,i+1, i = 1, 2, 3 of C4,4 are given by

β1,2(C4,4) = (22 − 2)

(
4

2

)
= 12,

β2,3(C4,4) = (23 − 2)

(
4

3

)
= 24,

β3,4(C4,4) = (24 − 2)

(
4

4

)
= 14.
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Fig. 12 �(C3,3)
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By using Macaulay 2 (see Grayson and Stillman 1992), the corresponding Betti table
is given by

0 1 2 3 4 5 6
total: 1 12 30 38 32 16 3

0: 1 . . . . . .
1: . 12 24 14 . . .
2: . . 6 24 32 16 3

which is read as follows:

0 1 · · · i · · ·
total:

0:
...

j: βi,i+ j (C4,4)

...

Unlike complete bipartite graphs, Hochster’s formula is somewhat daunting to use
for computing all Betti numbers of crown graphswith large number of vertices because
one has to compute the dimensions of all the homology groups H̃ j−i−1(�W ,k), where
� = �(Cn,n) and W varies over all subsets of V (Cn,n) of size j . We will try to find
other Betti numbers of edge ideals of crown graphs without using Hochster’s formula
(Fig. 12).

Lemma 3.4 Let Cn,n be an n-crown graph on vertex set V (Cn,n) = {x1, . . . , xn, y1,
. . . , yn} and edge set E(Cn,n). If e and e′ are any two distinct edges in E(Cn,n), then
dCn,n (e, e′) ≤ 3.

Proof Let V = V1 ∪ V2 be a bipartition of V (Cn,n), where V1 = {x1, . . . , vn} and
V2 = {y1, . . . , yn}. Suppose e = {xi , y j } and e′ = {xr , ys}. Wewill take the following
cases into consideration:

Case 1. If r = i (or s = j). Then the edges e and e′ are adjacent with e ∩ e′ =
{xi } (or {y j }). Hence dCn,n (e, e′) = 1.

Case 2. If s = i and r = j . Then we have e′ = {x j , yi }. Since y j ∈ V2, there exists
a vertex xk ∈ V1, k �= i, j , such that e2 = {xk, y j } ∈ E(Cn,n). Since k �= i , xk must
be adjacent to yi in V2 so that e3 = {xk, yi } ∈ E(Cn,n). Also e3, e′ are adjacent since
e3 ∩ e′ = {yi }. One can see from Fig. 13 that we have a chain e = e1, e2, e3, e4 = e′
of length 3 that connects e and e′. Therefore, dCn,n (e, e′) = 3.
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Fig. 13 Cn,n
...
...
...
...

...

...

...

V1 V2

x1

xi

xj

xk

xn

y1

yi

yj

yn

Case 3. If s �= i and s �= j (or r �= j and r �= i), then xs and yi (or xr and y j ) are
adjacent. Hence dCn,n (e, e′) = 2. ��
Lemma 3.5 If e and e′ are any two distinct edges of an n-crown Cn,n, then e and e′
are 3-disjoint if and only if e = {xi , y j } and e′ = {x j , yi } for some i, j, 1 ≤ i, j ≤ n.

Proof The proof of this lemma directly follows from Lemma 3.4. ��
Theorem 3.6 LetCn,n be an n-crown graph with vertex set V (Cn,n) = {x1, . . . , xn, y1,
. . . , yn} and edge set E(Cn,n). If E ⊂ E(Cn,n) be a 3-disjoint subset, then |E| = 2.
That is, η(Cn,n) = 2.

Proof The proof of this theorem follows from Lemmas 3.4 and 3.5. ��
Corollary 3.7 Let � be the set of all pairwise 3-disjoint subsets of E(Cn,n). Then
|�| = (n

2

)
.

Proof LetE be a pairwise 3-disjoint subset of E(Cn,n). Then by Theorem 3.6, |E| = 2.
Also, Lemma 3.5 guarantees us that E = {{xi , y j }, {x j , yi }} for some 1 ≤ i �= j ≤ n.
Since there are n(n − 1) edges in Cn,n , there exists

(n
2

)
subsets of E(Cn,n) of the form

E. ��
Corollary 3.8 Let Cn,n be a crown graph with vertex set V (Cn,n) = {x1, . . . , xn, y1,
. . . , yn} and edge set E(Cn,n). If there exists a strongly disjoint set of bouquets B of
Cn,n. Then |B| = 2.

Proof Let B be a strongly disjoint set of bouquets of Cn,n . Using Theorem 3.6, we
see that if E is a pairwise 3-disjoint subset of E(Cn,n), then |E| = 2. Therefore, if B
strongly disjoint set of bouquets, then |B| = 2. ��
Theorem 3.9 LetCn,n be an n-crown graph with vertex set V (Cn,n) = {x1, . . . , xn, y1,
. . . , yn} and edge set E(Cn,n) and R = k[x1, . . . , xn, y1, . . . , yn], then β2,4(Cn,n) =(n
2

)
.

Proof Let W ⊂ V (Cn,n). Using Theorem 3.6, we note that if GW coincides with
i disjoint edges then i is atmost equal to 2. Also, Lemma 3.5 implies that any sub-
set W ⊂ V (Cn,n) for which Cn,n W coincides with 2 disjoint edges is of the form
{xi , y j , x j , yi }, 1 ≤ i �= j ≤ n. The number of such subsets W of V (Cn,n) is equal
to number of pairwise 3-disjoints subsets of E(Cn,n) which, by Corollary 3.7, is equal
to

(n
2

)
. Finally, in view of Theorem 2.8 (1), one can see that β2,4(Cn,n) = (n

2

)
. ��
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Corollary 3.10 Let Cn,n be an n-crown graph. Then reg(Cn,n) ≥ 2.

Proof This follows directly from Theorem 3.9 since β2,4(Cn,n) �= 0. ��

4 Projective dimension of crown graphs

As mentioned earlier, the projective dimension of a module is the length of its
minimal free resolution. We define the projective dimension of a graph G to be
the projective dimension of the R-module k[�(G)] = R/I (G), and we write
pdk(G) = pd(R/I (G)). In general, the projective dimension of a graph will be
dependent on the characteristic of our choice of the field. However in our case it
is independent and we write the projective dimension of G as pd(G). In this section
we find the projective of the crown graph Cn,n .

4.1 Dominations parameters of graphs

Let G = (V, E) be a finite simple graph. We define the neighborhood of a vertex
u ∈ V to be the set NG(u) = {v ∈ V | {u, v} ∈ E}. For a subset U ⊂ V , we define
the open neighborhood of U to be the set NG(U ) = ∪u∈U NG(u) and the closed
neighborhood ofU is the set NG [U ] = NG(U )∪U . Furthermore, if F ⊆ E , we write
NG [F] for the set NG[V (F)], where V [F] is the set of vertices of the edges in F .

A dominating set for G is a subsetU ⊆ V such that NG [V ] = V (G). Theminimum
size γ (G) of all dominating sets for G is called domination number, whereas the
maximum size �(G) of a minimal dominating set is called upper domination number
of G. We define the independent domination number i(G) of G as

i(G) = min{|A| | A ⊆ V (G) is independent and dominating set}.

Let X, Y ⊆ V (G). We say X dominates Y in G if Y ⊆ NG(X). Let γ (Y, G)

denotes the least size of a subset X that dominates Y in G. We define the independence
domination number τ(G) as

τ(G) = max{γ (A, G◦) | A ⊆ V (G◦) is an independent set},

where G◦ is the graph obtained from G by removing the isolated vertices. Indepen-
dence domination number was first introduced by Aharoni et al. (2002).

A vertex v ∈ V (G) is said to vertex-wise dominate an edge e ∈ E(G) if v ∈ NG [e].
We call a set W ⊆ V (G) a vertex-wise dominating set, if for each edge e ∈ E(G) there
exists a vertex w ∈ W that vertex-wise dominates e. However, an edge e ∈ E(G) is
said to edge-wise dominate a vertex v ∈ V (G) if v ∈ NG[e]. We call a set F ⊆ E(G)

an edge-wise dominating set, if for each vertex v ∈ V (G◦) there exists an edge e′ ∈ F
that edge-wise dominates v. The edge-wise domination number ε(G) is defined as

ε(G) = min{|F | | F ⊆ E(G) is an edge dominating set}.
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Theorem 4.1 (Dao and Schweig 2013) For any graph G = (V, E),

|V (G)| − i(G) ≤ pd(G) ≤ |V (G)| − max{τ(G), ε(G)}.

Lemma 4.2 Let Cn,n be an n-crown graph on vertex set V (Cn,n) = X ∪ Y , where
= X{x1, . . . , xn} and Y = {y1, . . . , yn}. Then,

(1) the independent domination number i(Cn,n) of Cn,n is two,
(2) the independence domination number τ(Cn,n) of Cn,n is two,
(3) the edge-wise domination number ε(Cn,n) of Cn,n is two.

Proof (1) One can see that the only independent and dominating sets of Cn,n are X, Y
and {xi , yi }, 1 ≤ i ≤ n. Therefore, we conclude that the independent domination
number i(Cn,n) of Cn,n is two.

(2) If A is an independent set of Cn,n , then either A is of the form {xi , yi }, 1 ≤ i ≤ n
or A ⊆ X, Y . For if A = {xi , yi }, 1 ≤ i ≤ n, then γ (A,Cn,n) = 2. Suppose
A ⊆ X, Y , then it is not hard to see that γ (A,Cn,n) = 2. Hence, in either case
γ (A,Cn,n) = 2 for any independent set A of Cn,n . Therefore, we conclude that
τ(Cn,n) is two.

(3) It is not hard to see that any two distinct edges in E(Cn,n) will form an edge-
wise dominating set of Cn,n . Furthermore, the set {xi , yi }, 1 ≤ i ≤ n being an
independent set, we conclude that ε(Cn,n) = 2. ��

Theorem 4.3 Let Cn,n be a n-crown graph. Then pd(Cn,n) = 2n − 2.

Proof The proof of this theorem directly follows from Theorem 4.1 and Lemma 4.2.
��

References

Aharoni, R., Berger, E., Ziv, R.: A tree version of König’s theorem. Combinatorica 22, 335–343 (2002)
Barile, M.: On ideals whose radical is a monomial ideal. Commun. Algebra 33, 4479–4490 (2005)
Dao,H., Schweig, J.: projective dimension, graphdomination parameters and independence complex homol-

ogy. J. Combin Theory. Ser. A 432(2), 453–469 (2013)
Francisco, C.A., Hà, H.T., Van Tuyl, A.: Splittings of monomial ideals. Proc. Am. Math. Soc. 137, 3271–

3282 (2009)
Grayson, D., Stillman, M.E.: Macaulay 2, A Software System for Research in Algebraic Geometry. http://

www.math.uiuc.edu/Macaulay2/ (1992)
Hà, H.T., Van Tuyl, A.: Resolutions of square-free monomial ideals via facet ideals: a survey. In: Algebra,

Geometry and Their Intersections, Contemporary Mathematics 448, pp. 215–245. American Mathe-
matical Society, Providence (2007)

Hà, H.T., Van Tuyl, A.: Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers. J.
Algebraic Combin. 27, 215–245 (2008)

Hochster, M.: Cohen–Macaulay Rings, Combinatorics, and Simplicial Complexes. Ring Theory II (Proc.
Second Conf., Univ. Oklahoma, Norman, Okla.), pp. 171–223 (1975)

Jacques, S., Katzman, M.: The Betti Numbers of Forests, math. AC/0501226v2 (2005) (preprint)
Jacques, S.: Betti numbers of Graph Ideals. Ph.D. Thesis, University of Sheffield, Great Britain (2004)
Katzman, M.: Characteristic-independence of Betti numbers of graph ideals. J. Combin. Theory Ser. A

113(3), 435–454 (2006)

123

http://www.math.uiuc.edu/Macaulay2/
http://www.math.uiuc.edu/Macaulay2/


136 Beitr Algebra Geom (2019) 60:123–136

Khosh-Ahang, F., Moradi, S.: Regularity and projective dimension of edge ideal of C5-free vertex decom-
posable graphs. Proc. Am. Math. Soc. 142, 1567–1576 (2014)

Kimura, K.: Non-vanishingness of Betti Numbers of Edge Ideals, Harmony of Gröbner Bases and the
Modern Industrial Society, pp. 153–168. World Scientific Publishing, Hackensack (2012)

Kummini, M.: Regularity, depth and arithmetic rank of bipartite edge ideals. J. Algebraic Combin. 30(4),
429–445 (2009)

Mahmoudi, M., Mousivand, A., Crupi, M., Rinaldo, G., Terai, N., Yassemi, S.: Vertex decomposability and
regularity of very well-covered graphs. J. Pure Appl. Algebra 215(10), 2473–2480 (2011)

Morey, S., Villarreal, R.H.: Edge Ideals: Algebraic and Combinatorial Properties, Progress in Commutative
Algebra 1, pp. 18–126. de Gruyter, Berlin (2012)

Villarreal, R.H.: Rees algebras of edge ideals. Comm. Algebra 23, 3513–3524 (1995)
Woodroofe, R.: Matchings, coverings, and Castelnuovo–Mumford regularity. J. Commut. Algebra 6(2),

287–304 (2014)
Zheng, X.: Resolutions of facet ideals. Commun. Algebra 32, 2301–2324 (2004)

123


	On Betti numbers of edge ideals of crown graphs
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Simplicial complexes and Hochster's formula
	2.2 Strongly disjoint set of bouquets

	3 Crown graphs
	3.1 Crown graphs and Betti numbers

	4 Projective dimension of crown graphs
	4.1 Dominations parameters of graphs

	References




