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Abstract The Burnside ring B(G) of a finite group G, a classical tool in group theory
and representation theory, is studied from the point of view of computational com-
mutative algebra. Starting from a table of marks, we describe efficient algorithms for
computing a presentation, the image of the mark homomorphism, the prime ideals
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methods for identifying p-residual subgroups, direct products of subgroups of coprime
order, commutator subgroups, and perfect subgroups.
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1 Introduction

The Burnside ring is a classical tool in the theory of finite groups. It was introduced
for the first time by Burnside (1911) in his book. Given a finite group G, it is usually
defined as the Grothendieck ring of isomorphism classes of finite G-sets. It can be
viewed as the representation ring of permutation representations of G.

Many papers have been written about the Burnside ring B(G), most of them from
a group theoretical point of view. In this series of papers we change the perspective
and consider the structure of B(G) as a commutative ring. As such, we can use the
methods of computational commutative algebra to deal with it algorithmically. Since
many properties of groups are reflected in the structure of this ring, we set ourselves the
goal to find efficient algorithms for checking or computing them. For this endeavour,
our starting point, i.e., the input of all algorithms, is the table of marks of a finite group.
Although it is known that different groups can have the same table of marks (see for
instance Thévenaz 1988), there is still a lot of information about the group contained
in it. In particular, the table of marks determines a presentation of the Burnside ring
and thus makes it possible to perform effective computations with this commutative
ring.

Let us describe the contents in more detail. In Sect. 2 we recall the definition and
the basic properties of the Burnside ring B(G). Given representatives H1, . . . , Hs

for the conjugacy classes of subgroups of G, it is a free Z-module with basis
[G/H1], . . . , [G/Hs]. Then, in Sect. 3, we provide the definition and the basic prop-
erties of the table of marks T (G). After we order H1, . . . , Hs such that #H1 ≤ · · · ≤
#Hs , the matrix T (G) = (mi j ) ∈ Mats(Z) is defined by mi j = #(G/Hi )

Hj , where
the action is by left multiplication. We also observe that using only the knowledge
of T (G), we cannot check whether one subgroup is conjugate to a normal subgroup
of another, or identify the conjugacy class of the normalizer of a subgroup.

In Sect. 4 we introduce the mark homomorphism �G : B(G) −→ Z
s and spell

out a direct method for checking whether a tuple is in the image of �G which avoids
the use of possibly hard-to-compute standard congruences. Moreover, using this mark
homomorphism, we write down an algorithm to compute a “canonical presentation”
of B(G) of the form B(G) ∼= Z[x1, . . . , xs−1]/IG . The defining ideal IG is then
identified in Sect. 5 as a vanishing ideal of a finite point set, called the set of mark
points, and its primary decomposition allows us to write down all prime ideals ofB(G)

explicitly. In particular, we conclude that B(G) is a 1-dimensional, reduced, Cohen–
Macaulay ring.

In Sect. 6 we begin a study of the Zariski topology on Spec(B(G)). The prime ideal
graph (first introduced in Nicolson 1978) of B(G) has the s minimal primes as its
vertices and a connecting edge between two vertices if and only if somemaximal ideal
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contains both minimal primes. Among others, we provide algorithms for computing
the prime graph as a labeled graph, and for computing the prime graph of a finite
nilpotent group. In particular, we show that the prime graph of a finite nilpotent group
is a direct product of complete graphs, and we get an alternative proof of Dress’
well-known connectedness theorem (cf. Dress 1969, Prop. 2) in this case.

The next section contains a characterization of the singular locus of B(G), an
algorithm for its computation, as well as an algorithm for identifying the conjugacy
class of the p-residual subgroup of a subgroup of G. Finally, in Sect. 8, we compute
idempotents and quasi-idempotents ofB(G) and determine the connected components
of Spec(B(G) effectively. The quasi-idempotents are the least multiples ri ei of the
idempotents ei of the ghost ring Z

s such that ri ei ∈ Im(�G). Since we identify Z
s

with the integral closure of B(G) in its full ring of quotients, they are the generators
of the conductor of B(G). To compute them efficiently, we do not use the usual
formula involving commutator subgroups (which cannot be identified from T (G))
but a straightforward diagonalization algorithm for T (G).

To find the connected components of Spec(B(G)), we apply the naive breadth-first
search algorithm.Thenweuse the characterizationofDress (1969)which characterizes
perfect subgroups of G via the connected components of Spec(B(G)) to compute the
conjugacy classes of perfect subgroups of G. For the last task, namely to compute
the primitive idempotents of B(G), we can use the information about the connected
components ofB(G) and represent their characteristic functions as linear combinations
of the rows of T (G). Again this results in an algorithm which relies only on the table
of marks, in contrast to an implementation of the usual formula for the primitive
idempotents (cf. Yoshida 1983) involving the Möbius function of the subgroup lattice.

All algorithms in this paper were implemented in the computer algebra system
ApCoCoA (see The ApCoCoA Team 2013), using the tables of marks coming from
GAP (see The GAP Group 2014). Our definitions and notation follow the books
byKreuzer andRobbiano (2000, 2005), unless explicitly noted otherwise.Goodproofs
of some standard results aboutBurnside rings thatwe need can be found inKarpilovsky
(1995).

2 Definition and basic properties

In the following we let G be a finite group. A finite set X is called a G-set if there
is an action of G from the left on X , i.e., a map ϕ : G × X −→ X such that
ϕ(gh, a) = ϕ(g, ϕ(h, a)) and ϕ(e, a) = a for g, h ∈ G, a ∈ X , and the neutral
element e ∈ G. As usual, we write g · a = ϕ(g, a). The subsets G · a for a ∈ X
are called the orbits of the action. Choosing representatives a1, . . . , an for the orbits,
we have a disjoint union X = G · a1 ·∪ · · · ·∪ G · an . For every a ∈ X , the subgroup
Ga = {g ∈ G | g · a = a} is called the stabilizer of a. There is a bijection between
the set of left cosets G/Gai and G · ai defined by gGai �→ g · ai .

If we choose two representatives ai , bi ∈ X of the same orbit G · ai = G · bi ,
the subgroups Gai and Gbi are conjugate to each other, since bi = g · ai implies
Gbi · g ·ai = g ·ai , and therefore g−1Gbi g ·ai = ai . This shows g−1Gbi g ⊆ Gai , and
the reverse containment follows similarly. Thus, for i ∈ {1, . . . , n}, the orbit G · ai
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of ϕ may be identified with the set of all G/H where H ranges over the conjugacy
class of the subgroup Gai .

Definition 2.1 The Burnside ring B(G) of G is defined to be the set of all formal
differences of isomorphism classes of finiteG-sets. Addition is given by disjoint union
of G-sets, and multiplication by their cartesian product equipped with the diagonal
action.

For a G-set X , let [X ] denote its isomorphism class. Since every finite G-set is
the disjoint union of its orbits, the Burnside ring is generated as a Z-module by the
isomorphismclasses of orbit types.Aswe sawabove, these isomorphismclasses can be
identified with the sets [G/H ]where H ranges over the conjugacy class of a subgroup
of G. For G-sets X,Y , the addition in B(G) is defined by [X ] + [Y ] = [X ·∪ Y ], and
the multiplication is defined by [X ] · [Y ] = [X × Y ]. Our first goal is to make these
operations explicit in terms of the G-sets [G/H ]. The following proposition describes
the additive structure of B(G) explicitly.

Proposition 2.2 (Burnside) Let G be a finite group.

(a) Two G-sets X, Y are isomorphic as G-sets if and only if [X ] = [Y ] in B(G).
(b) Let H1, . . . , Hs be representatives of the conjugacy classes of subgroups of G.

Then B(G) is a free Z-module with basis {[G/H1], . . . , [G/Hs]}.
Proof See for instance Karpilovsky (1995, Thm. 2.1). 	


To get also the multiplicative structure of B(G) under control, we introduce the
table of marks of a finite group next.

3 The table of marks

Let G be a finite group and X a G-set. For a subgroup H of G, we denote by XH =
{x ∈ X | h · x = x for all h ∈ H} the set of fixed points of X under the action of H .
The number #XH is called themark of H on X . If K is a further subgroup of G, we
consider the action of K on G/H defined by k · gH = kgH . Then the mark of K
on G/H is denoted by

m(H, K ) = #{gH ∈ G/H | KgH = gH} = #(G/H)K .

Notice that KgH = gH is equivalent to K ⊆ gHg−1, and also to g−1Kg ⊆ H . This
shows m(H, K ) = 0 if K is not conjugate to a subgroup of H .

Definition 3.1 Let s be the number of conjugacy classes of subgroups of G, and let
H1, . . . , Hs be subgroups of G which represent these conjugacy classes. We assume
that these subgroups are numbered such that #Hi ≤ #Hj for i ≤ j . Then the matrix
T (G) ∈ Mats(Z) whose entry in position (i, j) is m(Hi , Hj ) is called the table of
marks of G.

Let us collect some easy properties of the table of marks of G.
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Remark 3.2 (a) Since H1 = {e} is the trivial subgroup of G, we have m(H1, H1) =
ord(G) and m(H1, Hj ) = 0 for j > 1. Thus the first row of T (G) is always
(#G, 0, . . . , 0).

(b) Since Hs = G, we have G/Hs = {e}, and therefore m(Hs, Hj ) = 1 for j =
1, . . . , s. Thus the last row of T (G) is always (1, . . . , 1).

(c) The first column of T (G) corresponds to the conjugacy class [{e}] of the trivial
subgroup which fixes all elements of [G/Hi ]. Hence the first entry of the i-th row
if T (G) is #(G/Hi ).

(d) For j > i , the group Hj satisfies #Hj ≥ #Hi . Thus it is not conjugate to a
subgroup of Hi and we have m(Hi , Hj ) = 0. Hence the matrix T (G) is a lower
triangular matrix.

The table of marks of a finite group can be made unique in the following way.

Remark 3.3 In Definition 3.1, we required that the conjugacy classes of subgroups
of G and their representatives H1, . . . , Hs are ordered such that #Hi ≤ #Hj for
i ≤ j . In fact, it would have been sufficient to require that i ≤ j if Hi is conjugate to a
subgroup of Hj . But in both cases, the table of marks T (G) is not uniquely determined
by G, since there may be several conjugacy classes of subgroups of the same order. To
remedy this situation, we fix the following ordering of the rows and columns of T (G).

(a) First order H1, . . . , Hs in increasing cardinality. Equivalently, the first column
of T (G) will be ordered decreasingly.

(b) If Hi , . . . , Hj have the same number of elements, order them such that the diag-
onal entries of T (G) satisfy mii ≥ · · · ≥ m j j .

(c) If the rows of T (G) corresponding to [G/Hi ], . . . , [G/Hj ] have the same first
element and the same diagonal element, reorder them descendingly with respect
to the lexicographic order. Process these blocks from top to bottom in T (G).

In this way, we arrive at a table whichwe call the canonical table ofmarks ofG. In the
following, unless we explicitly mention otherwise, we shall always use the canonical
table of marks of a finite group.

The table of marks of a finite group can be calculated using methods of computa-
tional group theory (see for instance Holt et al. 2005, Section 10.5 or Pfeiffer 1997). In
this paper, it is considered as the input for all further algorithms. Whenever necessary,
we used the computer algebra system GAP (see The GAP Group 2014) to determine
it. Let us consider some examples.

Example 3.4 The table ofmarks of a finite groupG has size 2×2 if and only ifG = Cp

is a cyclic group of prime order p. In this case, we have T (Cp) = (p 0
1 1

)
.

Example 3.5 The table of marks of the symmetric group S3 is

T (S3) =

⎛

⎜⎜
⎝

6 0 0 0
3 1 0 0
2 0 2 0
1 1 1 1

⎞

⎟⎟
⎠
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Example 3.6 The table of marks of the cyclic group C4 of order four is

T (C4) =
⎛

⎝
4 0 0
2 2 0
1 1 1

⎞

⎠

Example 3.7 The table of marks of the Klein four-group V4 is

T (V4) =

⎛

⎜⎜⎜⎜
⎝

4 0 0 0 0
2 2 0 0 0
2 0 2 0 0
2 0 0 2 0
1 1 1 1 1

⎞

⎟⎟⎟⎟
⎠

The following proposition contains a small observation about the distribution of
zeros in T (G).

Proposition 3.8 Let r be the number of distinct prime factors of #G. Then every
column of T (G), except the first one, contains at least r zeros.

Proof Let p1, . . . , pr be the distinct primes dividing#G. Let H1, . . . , Hr be subgroups
of G such that Hi represents the conjugacy class of the pi -Sylow subgroups of G. For
every non-trivial subgroup U of G, there exists a prime pi dividing #U . By Cauchy’s
theorem, the subgroup U contains an element of order pi . Now consider the action
ofU on the setsG/Hj for j �= i . Since pi does not divide the order of Hj , the groupU
is not conjugate to a subgroup of Hj . Hence the action has no fixed points, i.e., we
have m(Hj ,U ) = 0. Together with the zero in the first row of T (G), this provides
the claimed zeros. 	


Examples 3.6 and 3.7 show that for a p-group G, the second column of T (G) may
contain one or more zeros, so the bound given in the proposition is sharp. We end this
section with a collection of further properties of the table of marks of a finite group.

Proposition 3.9 Let T (G) = (mi j ) ∈ Mats(Z) be the table of marks of a finite
group G, and let H1, . . . , Hs be subgroups of G such that [G/Hi ] corresponds to the
i-th row of T (G).

(a) For i = 1, . . . , s,we havemii = [NG(Hi ) : Hi ], where NG(Hi ) is thenormalizer
of Hi in G, i.e., the largest subgroup of G containing Hi as a normal subgroup.

(b) For i = 1, . . . , s, the subgroup Hi of G is a normal subgroup if and only if
mi1 = mii . More generally, the number mi1/mii is the size of the conjugacy
class of Hi in G.

(c) Let i ∈ {1, . . . , s}. Every entry in the i-th row of T (G) is a multiple of mii . More
precisely, the entry mi j equals the product of mi1 by the number of conjugates
of Hi containing Hj .

(d) The number of distinct conjugates of Hj contained in Hi is given by (mi j m j1)/

(m j j mi1).
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Proof Claim (a) follows from Solomon (1967, Lemma 2). The first part of claim (b)
follows immediately from (a). The second part of (b) and (c) follow from the facts that
Hj gHi = gHi is equivalent to Hj ⊆ gHi g−1 and #NG(Hi ) elements g give the same
conjugate gHi g−1. Claim (d) follows from a similar counting argument (see Pfeiffer
1997, Prop. 1.4). 	


Finally,we note that there exist certain types of informationwhich cannot be derived
from the table of marks.

Remark 3.10 Let T (G) be the table of marks of a finite group G.

(a) Using only the knowledge of T (G), it is not possible to check whether one
subgroup of G is conjugate to a normal subgroup of another one (see Huerta-
Aparicio et al. 2009, Theorem 4.2.5).

(b) It is also not possible to identify the normalizer of a subgroup (seeHuerta-Aparicio
et al. 2009, Theorem 4.2.6).

4 Computing a presentation

In the following we letG be a finite group and T (G) its table of marks. Our goal in this
section is to compute a natural presentation of the Burnside ring B(G). The additive
structure of B(G) is determined by the fact that the sets [G/H ], where H ranges over
a set of representatives of the conjugacy classes of subgroups of G, form a Z-basis
of B(G). The multiplicative structure is obtained from the following observation.

Proposition 4.1 Let H1, . . . , Hs be subgroups of G which represent the distinct equiv-
alence classes of subgroups of G under conjugation. Then the map

�G : B(G) −→
s∏

i=1

Z given by [G/U ] �→ (m(U, Hi ))i=1,...,s

is an injective ring homomorphism. It is called the mark homomorphism.

For a proof, see for instance Bouc (2000, Sec. 3.2). Since the image of �G is a free
Z-submodule of Zs , we have the following easy Algorithm 1 to check whether or not
a given tuple is in Im(�G).

Remark 4.2 In the classical theory of Burnside rings, containment in the image of�G

is usually checked via the so-called standard congruences. Typically, these congru-
ences require the computation of a sum which extends over all cyclic subgroups of
a certain group. Although it is possible to determine the cyclic subgroups of a given
group from the table of marks, a more efficient version of this method could be based
on the computation of the syzygies of the row vectors of T (G).

On the right-hand side of �G , the Z-module Z
s is a ring by component-wise

multiplication. It is called the ghost ring of G. In order to have a more invariant
representation of the ghost ring, we can use the set C(G) of equivalence classes of
subgroups of G under conjugation and write the ghost ring as ZC(G).
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Algorithm 1 (Checking for Mark Homomorphism Images)
Input: The table of marks T (G) = (mi j ) ∈ Mats(Z) of a finite group G and a tuple
(a1, . . . , as) ∈ Z

s

Output: YES or NO depending on whether or not (a1, . . . , as) is in Im(�G)

1: If (a1, . . . , as ) = (0, . . . , 0) then return YES.
2: Let k = max{i ∈ {1, . . . , s} | ai �= 0}.
3: for i = k to 1 do
4: If ai is not an integer multiple of mii then return NO.
5: If ai = b · mii then subtract b · (mi1, . . . ,mis ) from (a1, . . . , as ).
6: end for
7: Check whether (a1, . . . , as ) = (0, . . . , 0) and return the corresponding truth value.

The fact that�G is a ringhomomorphism implies thatwe can compute the product of
two classes [G/Hi ], [G/Hj ] ∈ B(G) by multiplying the corresponding rows of T (G)

component-wise and representing the result as a Z-linear combination of the rows
of T (G). Thus we get equalities

[G/Hi ] · [G/Hj ] =
s∑

k=1

ci jk [G/Hk]

with ci jk ∈ Z. In fact, since this product corresponds to the decomposition of the
natural action of G on G/Hi × G/Hj , the numbers ci jk will be non-negative. Thus
we arrive at the following algorithm for computing a presentation of B(G) using
generators and relations.

Algorithm 2 (Computing a Presentation of the Burnside Ring)
Input: The table of marks T (G) = (mi j ) ∈ Mats(Z) of a finite group G.
Output: A list F = [ f1, . . . , fm] such that B(G) = Z[x1, . . . , xs−1]/〈 f1, . . . , fm〉.
1: Introduce new indeterminates x1, . . . , xs−1 and an empty list F = [ ].
2: Repeat the following steps for 1 ≤ i ≤ j ≤ s − 1. Then return the list F and stop.
3: Compute the component-wise product vi j = (mi1m j1, . . . ,mism js ) ∈ Z

s .
4: Represent vi j as a Z-linear combination vi j = ∑s

k=1 ci jk · (mk1, . . . ,mks ) of the rows of T (G).

5: Append the polynomial xs−i xs− j − ∑s−1
k=1 ci jk xs−k − ci js to the list F .

Corollary 4.3 Let T (G) ∈ Mats(Z) be the table of marks of G. Then Algorithm 2
computes a tuple F = ( f1, . . . , fm) of polynomials in Z[x1, . . . , xs−1] such that
B(G) ∼= Z[x1, . . . , xs−1]/〈 f1, . . . , fm〉.

Under this isomorphism, the set [G/Hi ] corresponds to the residue class x̄s−i if Hi

is a subgroup of G in the conjugacy class corresponding to the i-th row of T (G).

Proof Let H1, . . . , Hs be subgroups of G such that the conjugacy class [G/Hi ] cor-
responds to the i-th row of T (G) for i = 1, . . . , s. From the description of �G via
component-wise multiplication and the fact that the last row of T (G) is (1, . . . , 1)
it is clear that [G/Hs] represents the multiplicative identity element of B(G). Since
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the sets [G/Hi ] are a Z-basis of B(G), it follows that [G/H1], . . . , [G/Hs−1] is a
system of Z-algebra generators. We represent [G/Hi ] by an indeterminate xs−i . Then
the multiplicative structure of B(G) is determined by the relations resulting from
the multiplication table of the algebra generators. These relations are precisely the
polynomials computed in Steps 4 and 5 of the algorithm. 	


Let us compute this algebra structure in some examples.

Example 4.4 Let G = S3 be the symmetric group on three symbols. Using the table
of marks given in Example 3.5 and the algorithm, we compute:

(6, 0, 0, 0) · (6, 0, 0, 0) = 6 · (6, 0, 0, 0)

(6, 0, 0, 0) · (3, 1, 0, 0) = 3 · (6, 0, 0, 0)

(6, 0, 0, 0) · (2, 0, 2, 0) = 2 · (6, 0, 0, 0)

(3, 1, 0, 0) · (3, 1, 0, 0) = (6, 0, 0, 0) + (3, 1, 0, 0)

(3, 1, 0, 0) · (2, 0, 2, 0) = (6, 0, 0, 0)

(2, 0, 2, 0) · (2, 0, 2, 0) = 2 · (2, 0, 2, 0)

Therefore the algorithm computes the following presentation:

B(S3) ∼= Z[x1, x2, x3]/〈x23 − 6x3, x3x2 − 3x3, x3x1 − 2x3,

x22 − x3 − x2, x2x1 − x3, x
2
1 − 2x1〉

Example 4.5 For a prime p, the Burnside ring of the cyclic group Cp with p elements
satisfies B(Cp) ∼= Z[x]/〈x2 − p x〉.
Example 4.6 The Burnside ring of the Klein four-group (see Example 3.7) has the
presentation

B(V4) ∼= Z[x1, x2, x3, x4]/〈x24−4x4, x4x3−2x3, x4x2−2x2, x4x1−2x1, x
2
3−2x3

x3x2−x4, x3x1−x4, x
2
2 − 2x2, x2x1 − x4, x

2
1 − 2x1〉.

The presentation of B(G) computed by Algorithm 2 will be called the canonical
presentation and the ideal will be called the (canonical) defining ideal of B(G) and
denoted by I (G). In the next section, we begin our study of the algebraic structure
of B(G) based on the canoncial presentation. But before, let us end this section with
a criterion which tells us when we can simplify the canonical presentation of B(G)

somewhat.

Proposition 4.7 Let H1, . . . , Hs be subgroups of G which represent the distinct con-
jugacy classes of subgroups of G.

(a) For i, j ∈ {1, . . . , s}, let [G/Hi ] · [G/Hj ] = ∑s
k=1 ci jk[G/Hk] with ci jk ∈ N.

Then ci jk �= 0 implies that Hk is conjugate to a subgroup of Hi and to a subgroup
of Hj .
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(b) If there exits a prime p dividing ord(G) such that G has a p-complement, i.e., a
subgroup of complementary order to a p-Sylow subgroup of G, then the first row
of T (G) is the component-wise product of two other rows of T (G).

Proof Claim (a) follows from Solomon (1967, Lemma 1). To prove (b), we let Hi be a
p-Sylow subgroup of G and Hj a subgroup of complementary order. Since no prime
divides both the order of Hi and the order of Hj , no subgroup of G is conjugate to
a subgroup of both Hi and Hj . Hence the claim follows from (a) by multiplying the
rows corresponding to [G/Hi ] and [G/Hj ] in T (G). 	


In particular, part (b) of this proposition says that the canonical defining ideal
of B(G) contains a polynomial of the form xs−1 − xi x j with i, j ∈ {1, . . . , s − 2}.
Therefore we can substitute xs−1 by xi x j in I (G) and get a simplified presentation
B(G) ∼= Z[x1, . . . , xs−2]/J (G) of B(G). We call J (G) the simplified defining ideal
of B(G). The following example shows that not every canonical presentation of a
Burnside ring can be simplified.

Example 4.8 Consider the table of marks of the alternating group A6. The second
column corresponds to the conjugacy class of a subgroup generated by a double trans-
position. It contains zero entries in the following rows:

120 0 6 0 0 0 0 0 0 0 0 0 0 · · · 0
120 0 0 6 0 0 0 0 0 0 0 0 0 · · · 0
72 0 0 0 0 0 0 2 0 0 0 0 0 · · · 0
40 0 4 4 0 0 0 0 0 0 0 4 0 · · · 0

Since A6 has no subgroups having 40, 72, or 120 elements, and therefore no row
in T (A6) starts with 9, 5, or 3, the first row of T (A6) is not the product of other rows.
Thus the canonical presentation of B(A6) cannot be simplified.

5 Computing the prime spectrum

From the description of the additive and the multiplicative structure of B(G) it fol-
lows immediately that B(G) is a 1-dimensional reduced Cohen–Macaulay ring. The
next proposition yields more precise information. It provides an important connection
between the entries of the table of marks T (G) of G and the defining ideal I (G).

Proposition 5.1 For i = 1, . . . , s, let pi = (ms−1 i , ms−2 i , . . . ,m1i ), and let XG =
{p1, . . . , ps} ⊂ Z

s−1. Then the following claims hold.

(a) The vanishing ideal

I(X) = { f ∈ Z[x1, . . . , xs−1] | f (p1) = · · · = f (ps) = 0}

of XG equals the ideal I (G).
(b) The ideal I (G) is reduced. Its minimal primes are the linear ideals pi = 〈x1 −

ms−1 i , . . . , xs−1 − m1i 〉, where i ∈ {1, . . . , s}.

123



Beitr Algebra Geom (2017) 58:427–452 437

Proof To prove (a), we note that XG is a set of s points in an (s − 1)-dimensional
affine space. Since the table of marks is lower triangular and invertible, these points
are in linearly general position, i.e., any subset of t points of XG spans a (t − 1)-
dimensional affine space. Consequently, the vanishing ideal of XG does not contain a
linear polynomial and its leading term ideal with respect to a degree compatible term
ordering is 〈xi x j | i, j = 1, . . . , s〉, the monomial ideal generated by all terms of
degree two. Now it is clear that the generators of I (G) computed by Algorithm 2 are
a Gröbner basis, and thus a system of generators, of I (G) for such a term ordering.

Now we prove (b). The vanishing ideal of a set of points is the intersection of
the vanishing ideals of the individual points, in our case of the ideals pi . Since these
ideals are clearly prime ideals of height s − 1, it follows that I (G) is reduced and the
representation I (G) = p1 ∩ · · · ∩ ps is its primary decomposition. 	


Part (a) of this proposition says that the ideal I (G) is an ideal of points, i.e., the
vanishing ideal of a finite set of points. Let us give this point set a name.

Definition 5.2 LetT (G) = (mi j ) ∈ Mats(Z) be the table ofmarks of a finite groupG.
For i = 1, . . . , s, let pi = (ms−1 i , ms−2 i , . . . ,m1i ), and let XG = {p1, . . . , ps}
⊂ Z

s−1. Then XG is called the set of mark points of G.

One question one may ask is whether and how the geometry of the point set XG

reflects group-theoretic properties of G. In view of the proposition and the fact that
Z[x1, . . . , xs]/pi ∼= Z, it is clear that B(G) is a one-dimensional reduced ring and that
its prime ideals can be described as follows.

Corollary 5.3 In the setting of the proposition, the spectrum Spec(B(G)) can be
described as follows.

(a) There are s minimal primes p̄1, . . . , p̄s which can be computed from the table of
marks as the residue class ideals of the ideals pi = 〈x1−ms−1 i , . . . , xs−1−m1i 〉.

(b) The maximal ideals ofB(G) are of the form m̄i p wheremi p = pi +〈p〉 and p ∈ N

is a prime number.
(c) A maximal ideal m̄i p contains two minimal primes p̄i, p̄ j if and only if the reduc-

tions p̄i , p̄ j ∈ F
s−1
p of the mark points pi and p j agree.

Proof Claim (a) was already shown in the proposition and (b) follows from (a) and the
isomorphism Z[x1, . . . , xs−1]/pi ∼= Z since every maximal ideal contains a minimal
prime.

To prove (c), we note that p j ⊂ mi p is equivalent to xk − ms−k j ∈ mi p for
k = 1, . . . , s − 1. By reducing modulo p, we see that this is equivalent to

xk − m̄s−k j ∈ 〈x1 − m̄s−1 i , . . . , xs−1 − m̄1i 〉

in Fp[x1, . . . , xs−1], and therefore to m̄s−k j = m̄s−k i for k = 1, . . . , s − 1. 	

Let us determine the prime spectrum of B(G) in a concrete case.

Example 5.4 Let us consider a group G = Z/pnZ where p is a prime number and
n ≥ 1. The subgroups Hi = 〈 p̄ n−i 〉 with i ∈ {0, . . . , n} are normal and represent all
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conjucagy classes of subgroups of G. Notice that #Hi = pi for i = 0, . . . , n. The
table of marks of G is given by

T (G) =

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

pn 0 0 · · · 0 0 0
pn−1 pn−1 0 · · · 0 0 0

...
...

...
...

...

p2 p2 p2 · · · p2 0 0
p p p · · · p p 0
1 1 1 · · · 1 1 1

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

By the corollary, the minimal primes of B(G) are p̄1, . . . , p̄n+1, where pn+1−i =
〈x1 − p, x2 − p2, . . . , xi − pi , xi+1, . . . , xn〉 for i = 0, . . . , n. (Here we let pn+1 =
〈x1, . . . , xn〉.)

Thus we see that Spec(B(G)) has n + 1 irreducible components, and using the
prime p in part (c) of the corollary, it follows that Spec(B(G)) is connected.

Via Corollary 5.3.c, we can study the connected components of Spec(B(G)). The
first result in this directionwas shown byA.Dress who characterized them and showed
that Spec(B(G)) is connected if and only if G is solvable (see Dress 1969). In the
following section we want to examine and refine this result.

6 The prime ideal graph

Let G be a finite group, let T (G) = (mi j ) ∈ Mats(Z) be its table of marks, let B(G)

be its Burnside ring, let I (G) be its canonical defining ideal, and let XG be its set
of mark points. Corollary 5.3(c) allows us to interpret the connected components of
Spec(B(G)) as the connected components of the following graph.

Definition 6.1 Let XG = {p1, . . . , ps} be the set of mark points of a finite group G.
Using XG as the set of vertices, we define a graph �G by letting (pi , p j ) be an edge
of �G if and only if there exists a prime number p such that we have p̄i = p̄ j in Fs−1

p .
The graph �G is called the prime ideal graph of G.

Thus two minimal primes p̄i , p̄ j of the Burnside ring B(G) have a common point
in Spec(B(G)) if and only pi and p j are joined by an edge in �G . The prime ideal
graph of G was first considered in Nicolson (1978). To study it further, we use the
following subgroups.

Lemma 6.2 For every subgroup H of G and every prime number p, there exists a
unique smallest normal subgroup O p(H) such that H/Op(H) is a p-group. It is
called the p-residual subgroup of H.

Proof This follows from the fact that, given two normal p-subgroups K1, K2 of H , the
subgroup K1∩K2 is also normal in H and we have an injective group homomorphism
H/(K1 ∩ K2) ↪→ H/K1 × H/K2 given by h(K1 ∩ K2) �→ (hK1, hK2). 	


123



Beitr Algebra Geom (2017) 58:427–452 439

Notice that, in general, the conjugacy class of the p-residual subgroup Op(H)

of H cannot be identified using the defining property directly, since one cannot check
whether a subgroup ofG is conjugate to a normal subgroup of H based on T (G) alone
(see Remark 3.10.a). However, in Sect. 7 we provide an algorithm for performing this
task using the prime ideal graph �G . The following proposition says that �G can be
considered as a labelled graph.

Proposition 6.3 Let XG be the set of mark points and �G the prime ideal graph of a
finite group G. Let pi , p j ∈ XG be two distinct points, and let Hi , Hj be subgroups
of G corresponding to the i-th and j-th column of T (G), respectively.

(a) The points pi , p j are joined by an edge in �G if and only if we have O p(Hi ) =
Op(Hj ).

(b) If the two points pi , p j are joined by an edge in �G then there exists an integer
α ∈ Z such that #Hi = pα · #Hj .

(c) There exists at most one prime number p such that mi,p = m j,p, i.e., there exists
at most one edge in �G joining pi and p j in �G.

Proof Claim (a) was shown in Dress (1969, Prop. 1.d). Claim (b) follows immediately
from (a), and (c) is a consequence of (b). 	


By attaching the corresponding prime p to every edge of �G , we get the labelled
prime ideal graph of G. Although it is straightforward, let us spell out the algorithm
to compute the (labelled) prime ideal graph of G.

Algorithm 3 (Computing the Labelled Prime Ideal Graph)
Input: The table of marks T (G) = (mi j ) ∈ Mats(Z) of a finite group G.
Output: A set of triples (i, j, q) such that the pairs (i, j) are the edges of �G and q is
the label of (i, j).
1: Using ord(G) = m11, compute the prime factorization ord(g) = q

α1
1 · · · qαr

r with distinct primes qi .
2: Start with an empty list �.
3: for i = 1, . . . , r do
4: Compute the reduced points p̄ j = (m̄s−1 j , . . . , m̄1 j ) ∈ Fqi for j = 1, . . . , s.
5: For all 1 ≤ j < k ≤ s such that p̄ j = p̄k , append the triple ( j, k, qi ) to �.
6: end for
7: Return the list �.

To get a better feeling for prime ideal graphs, let us have a look at some examples.

Example 6.4 For the cyclic group C8 = Z/8Z, there is a unique normal subgroup of
each order in {1, 2, 4, 8}. Hence the diagonal elements in the table of marks are equal
to the elements in the first column and henceforth divisible by two, except for m44,
of course. Consequently, the mark points of C8 all reduce to (0, . . . , 0) modulo two,
and �G is the following complete graph on four vertices.
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As we shall see later, prime ideal graphs which are complete graphs are typical for
p-groups. Also the following case of a cyclic group is easy to understand.

Example 6.5 Consider the cyclic group C10 ∼= C2 ×C5. From Proposition 6.8 below,
we could determine its prime ideal graph as a direct product of graphs. Instead, let us
compute it in a more direct manner. Since C10 has unique normal subgroups of orders
1, 2, 5, and 10, its table of marks is given by

T (C10) =

⎛

⎜⎜
⎝

10 0 0 0
5 5 0 0
2 0 2 0
1 1 1 1

⎞

⎟⎟
⎠

Hence the prime ideal graph of C10 is the following labelled square.

For non-commutative groups, the prime ideal graph has a more intricate structure.
Let us look at the simplest case first.

Example 6.6 The symmetric group S3 has four conjugacy classes of subgroups: {e},
C2, A3, and S3. It table of marks was computed in Example 3.5. If we reduce it modulo
two and modulo three, we see that �S3 is the following labelled graph.

Our last introductory example has already some features of more general cases:
complete subgraphs representing Sylow subgroups which are attached to the vertex
“1” corresponding to the trivial subgroup, and “tentacles” attached to these subgraphs.

Example 6.7 The table of marks of the alternating group A4 is given by

T (A4) =

⎛

⎜⎜⎜⎜
⎝

12 0 0 0 0
6 2 0 0 0
4 0 1 0 0
3 3 0 3 0
1 1 1 1 1

⎞

⎟⎟⎟⎟
⎠

Thus its prime ideal graph has the following shape.
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Notice that there are two complete subgraphs attached to node “1”: one of them,
labelled by “3”, is a complete graph on two vertices, and the other one, labelled by “2”,
is the complete graph on three vertices. As we shall see later, they correspond to a 3-
Sylow subgroup generated by a 3-cycle and the 2-Sylow subgroup V4 generated by the
double transpositions. It is interesting to observe that the three 2-element subgroups
in V2 are conjugate to each other in A4 and thus contribute only one vertex to the
complete subgraph. When we connect B(A4) and B(V4) using the restriction and
induction maps, this will come to create tricky intricacies.

The next proposition explains the behaviour of B(G) and �G under direct products
of groups.

Proposition 6.8 Let G1,G2 be two finite groups such that ord(G1) and ord(G2) are
relatively prime.

(a) There is a canonical isomorphism of rings B(G1) ⊗ B(G2) −→ B(G1 × G2)

given by [G1/H1] ⊗ [G2/H2] �→ [G1 × G2/H1 × H2].
(b) The table of marks of G1 × G2 can be obtained by taking the Kronecker product

T (G1) ⊗ T (G2) and reordering the rows and columns such that the subgroups
representing the conjugacy classes of subgroups ofG1×G2 are listed in increasing
order.

(c) The graph �G1×G2 is the Cartesian product of the graphs �G1 and �G2 , i.e., its
set of vertices is the Cartesian product of the set of vertices {v1, . . . , vs} of �G1

and the set of vertices {w1, . . . , wt } of �G2 , and there is an edge from (vi , w j )

to (vk, wl) if and only if vi = vk and there is an edge in �G2 from w j to wl or if
w j = wl and there is an edge in �G1 from v1 to vk .

Proof Part (a) is contained in Karpilovsky (1995, Thm. 2.9). It follows from the fact
that every subgroup of G1 ×G2 is of the form H1 × H2 with subgroups H1 ⊆ G1 and
H2 ⊆ G2 (see Karpilovsky 1995, Lemma 2.8).

To prove part (b), we first note that subgroups H1 × H2 and K1 × K2 are conjugate
in G1 × G2 if and only if H1, K1 are conjugate in G1 and H2, K2 are conjugate
in G2. Thus the size of T (G1 × G2) is the product of the sizes of T (G1) and T (G2).
Furthermore, we have m(H1×H2, K1×K2) = m(H1, K1) ·m(H2, K2). This implies
the claim.

Finally we show (c). Let p be a prime dividing ord(G2). Since it does not affect the
prime ideal graph, we use the reordered form T (G1) ⊗ T (G2) of the table of marks
ofG1×G2. If we look at the last row of blocks of this matrix, we see that two columns
can be equal modulo p only if the two corresponding columns of the last block are
equal modulo p. Hence, if there is an edge from (vi , w j ) to (vk, wl), then w̄ j = w̄l .
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Now there are two cases. If i = k, i.e., if we choose the same block column both
times, the entries of w̄ j = w̄l are multiplied by the same numbers in each row. Hence
the two columns in T (G1)⊗T (G2) are equal. But if we have i �= j , i.e., if we choose
columns from two distinct block columns, we can use the fact that each row of blocks
is obtained by multiplying T (G2) by a divisor of ord(G1). Since p does not divide
ord(G1), the mod p reductions of the two columns of T (G1) ⊗ T (G2) cannot be
equal.

For a prime p dividing ord(G1), we argue in the same way, but using the matrix
T (G2) ⊗ T (G1). Altogether, the claim follows. 	


The following example is an application of this proposition.

Example 6.9 Given the group C30 ∼= C2 × C3 × C5, we can apply the preceding
proposition two times and get the following prime ideal graph.

For a finite abelian group, the preceding proposition allows us to reduce the descrip-
tion of the prime ideal graph to the case of a finite abelian p-group for some prime p.
More generally,we can characterize arbitrary finite p-groups using their labelled prime
ideal graph. The next lemma is a crucial ingredient for this characterization.

Lemma 6.10 Let p be a prime, let G be a finite p-group, and let H, K ⊂ G be two
non-trivial, proper subgroups of G. Then the prime p divides m(H, K ) = #(G/H)K .

Proof Let us write down the class equation for the operation of K on G/H :

#(G/H) = #(G/H)K +
∑

{x∈G/H |K �=Kx }
[K : Kx ]

Since H is a proper subgroup of G, the prime p divides #(G/H). Since K is a non-
trival p-group and Kx �= K , the prime p divides all summands [K : Kx ]. Hence p
divides #(G/H)K . 	


Now we are ready to characterize p-groups as follows.

Proposition 6.11 Let G be a finite group and p a prime number. Then the following
conditions are equivalent.

(a) The group G is a p-group.
(b) The prime ideal graph is a complete graph and all of its edges have the label p.
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Proof Given a finite p-groupG, the lemma shows that p divides all elements of T (G)

except the ones in the last row. Hence the reductions mod p of all mark points are
equal to (0, . . . , 0) and the prime ideal graph is a complete graph, all of whose edges
are labelled by p.

Conversely, if all mod p reductions of the mark points are equal, they have to be
equal to the last mark point, i.e., to zero. Thus all entries of the first s−1 rows of T (G)

are powers of p. In particular, the entry m11 = ord(G) is a power of p. 	

Using the last two propositions, we can describe the prime ideal graph of finite

abelian and, more generally, of finite nilpotent groups.

Remark 6.12 Let G be a finite nilpotent group.

(a) It is well-known that G is the direct product of its p-Sylow subgroups. Using
Proposition 6.8, it follows that the prime ideal graph of G is the direct product of
the prime ideal graphs of these p-Sylow subgroups. Every p-Sylow subgroup S is
a p-group. Hence its prime ideal graph is the complete graph on s nodes, where s
is the number of conjugacy classes of subgroups of S.

(b) For an abelian p-groupG, the number s equals the number N (G) of its subgroups.
This number has been studied classically, although it is difficult to give a closed
formula for N (G). For an attempt in this direction, see Călugăreanu (2004). In
simple cases it is, however, possible to evaluate N (G) in closed form. For instance,
we have N (Cp × Cp) = p + 3 and N (Cp × Cp × Cp) = 2p2 + 2p + 4.

One immediate consequence of this remark is that the spectrum of the Burnside
ring of a finite nilpotent group is connected. To continue with a more refined study
of the prime ideal graph and the connected components of the spectrum of B(G), we
need to introduce additional tools first.

7 The singular locus

In this sectionwedetermine the regular and the singular points in the spectrumofB(G).
Recall that the Burnside ring is 1-dimensional and reduced. Hence its localizations at
the minimal primes p̄i are fields and thus regular. The following proposition classifies
the maximal ideals which correspond to regular points of Spec(B(G)). We use the
notation introduced in the previous sections.

Proposition 7.1 Let i ∈ {1, . . . , s}, and let p ∈ N be a prime number. For themaximal
ideal m̄i p of B(G), the following conditions are equivalent.

(a) The localization B(G)m̄i p is a regular local ring.
(b) The minimal prime p̄i is the only minimal prime of B(G) contained in m̄i p.

Proof If B(G)m̄i p is a regular local ring, it is an integral domain, and therefore the
zero ideal is its only minimal prime. Conversely, if the localization B(G)m̄i p contains
only one minimal prime, the fact that it is a reduced ring implies that it is an integral
domain and that p̄i B(G)m̄i p is the zero ideal. From the fact that m̄i p = p̄i + 〈p〉 is
follows that the maximal ideal of B(G)m̄i p is generated by one element, namely by p̄,
and hence that B(G)m̄i p is a regular local ring. 	
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As a consequence, we can characterize the singular locus Sing(B(G)) of the spec-
trum of B(G) as follows.

Proposition 7.2 Let i ∈ {1, . . . , s}, and let p ∈ N be a prime number. For themaximal
ideal m̄i p of B(G), the following conditions are equivalent.

(a) We have m̄i p ∈ Sing(B(G)).
(b) The ring B(G)m̄i p has a non-trivial zerodivisor.
(c) There is an edge in the prime ideal graph �G starting at the mark point pi which

is labeled by the prime p.
(d) The prime p divides [NG(Op(Hi )) : Op(Hi )].
Proof The equivalence of (a) and (b) was shown in the proof of the preceding propo-
sition. The equivalence of (a) and (c) follows from Corollary 5.3.c and the preceding
proposition.

Next we show that (c) implies (d). Let j ∈ {1, . . . , s} be such that Op(Hi ) is
conjugate to Hj . By Dress (1969, Prop. 1.d), there exists an edge (pi , p j ) in �G

which is labeled by p. In particular, the reductions p̄i , p̄ j ∈ F
s−1
p are the same.

Notice that, by (c), we may assume that i �= j . Hence the first non-zero entry m j j =
[NG(Op(Hi )) : Op(Hi )] in the j-th column of T (G) has to be congruent to zero
modulo p.

Finally, we prove that (d) implies (c). Let j ∈ {1, . . . , s} be such that Op(Hi ) is
conjugate to Hj . Since p divides m j j = [NG(Hj ) : Hj ], the p-Sylow subgroup of
NG(Hj )/Hj is non-trivial. Hence Hj is a normal subgroup of a subgroup U of G
such thatU/Hj is a non-trivial p-group, and therefore we have Hj = Op(U ). Letting
k ∈ {1, . . . , s} be the index such that U is conjugate to Hk , we see that (p j , pk) is an
edge in �p which is labeled by p, and thus also (pi , pk) is such an edge. 	


From this description of the set of edges of �G labeled by a fixed prime p we
obtain that the corresponding graph is a disjoint union of complete graphs. Each of
these complete graphs corresponds to exactly one singular maximal ideal of B(G).
This yields Algorithm 4 for computing Sing(B(G)).

Given one of the complete subgraphs of �G labeled p, the vertex with the lowest
index j , i.e. the conjugacy class [Hj ] corresponding to the smallest group Hj , is the
one such that Op(Hi ) is conjugate to Hj for all pi in this subgraph. Hence we get
Algorithm 5 for identifying the conjugacy class of Op(Hi ).

8 Idempotents and quasi-idempotents

As in the previous sections, we letG be a finite group and we assume that we are given
its table of marks T (G) = (mi j ) ∈ Mats(Z).

Definition 8.1 The Q-algebra BQ(G) = Q ⊗ B(G) is called the Burnside algebra
of G.

By Proposition 5.1, the Burnside algebra of G is given by

BQ(G) = Q[x1, . . . , xs−1]/(p1 ∩ · · · ∩ ps)
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Algorithm 4 (Computing Sing(B(G)))
Input: The table of marks T (G) = (mi j ) ∈ Mats(Z) of a finite group G
Output: A set S of pairs (i, p) such that the corresponding maximal ideals m̄i p are
precisely the singular prime ideals of B(G)).
1: Let S = ∅ and let D be the set of prime numbers dividing the order of G.
2: for p ∈ D do
3: Using Algorithm 3, compute the labeled prime ideal graph of G.
4: Let V = {1, 2, . . . , s}.
5: while V �= ∅ do
6: Choose i ∈ V, remove it from V, and let L = {pi }.
7: repeat
8: Compute the set M of all p j /∈ L such that for some pk ∈ L there is an edge (p j , pk ) of �G

labeled p.
9: Append M to L .
10: until M = ∅
11: Append all pairs ( j, p) such that p j ∈ L to S and remove those j from V.
12: end while
13: end for
14: return S

Algorithm 5 (Identifying Op(Hi ))
Input: The table of marks T (G) = (mi j ) ∈ Mats(Z) of a finite group G, a prime p,
and i ∈ {1, . . . , s}
Output: The index � ∈ {1, . . . , s} such that [Op(Hi )] = [H�]
1: Using Algorithm 3, compute the labeled prime ideal graph of G.
2: Let L = {pi }.
3: repeat
4: Compute the set M of all p j /∈ L such that for some pk ∈ L there is an edge (p j , pk ) of �G

labeled p.
5: Append M to L .
6: until M = ∅
7: return � = min{ j | p j ∈ L}

where pi = 〈x1 − ms−1 i , . . . , xs−1 − m1i 〉, for i ∈ {1, . . . , s}. Thus the Chinese
Remainder Theorem implies that BQ(G) is isomorphic toQs . Since this ring consists
only of zero-divisors and units, it is the full ring of quotients of B(G).

Proposition 8.2 In the above setting, let γG : BQ(G) −→ Q
s be the composition

BQ(G) ∼= Q[x1, . . . , xs−1/(p1 ∩ · · · ∩ ps) ∼=
s∏

j=1

Q[x1, . . . , xs−1]/p j ∼= Q
s

(a) The map γG is an isomorphism of Q-algebras and the canonical diagram

B(G) ↪−→ BQ(G)

�G

⏐⏐⏐�

⏐⏐⏐� γG

Z
s ↪−→ Q

s

is commutative.
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(b) The ghost ring Z
C(G) is isomorphic to the integral closure of the Burnside ring

B(G) in its full ring of quotients.

Proof First we show (a). The map �G is given by �G([G/Hi ]) = (mi1, . . . ,mis)

for i = 1, . . . , s. For i = s, i.e., for [G/Hs] = [G/G], the diagram commutes
since this is the unit element in B(G) and all maps are algebra homomorphisms.
Now let i ∈ {1, . . . , s − 1} and j = s − i . Then [G/Hi ] is the residue class of
xs−i = x j under the canonical presentation. The Chinese Remainder Theorem maps
x̄ j to (x̄ j , . . . , x̄ j ) where the residue classes have to be taken appropriately. The iso-
morphism Q[x1, . . . , xs−1]/pk → Q maps x̄ j to m̄s− j k = m̄ik . Therefore the image
of [G/Hi ] under γG is (mi1, . . . ,mis), and the diagram commutes.

Claim (b) follows from (a) since Zs is integrally closed im Q
s . 	


After identifying the mark homomorphism �G : B(G) −→ Z
s as the embedding

of the Burnside ring into its integral closure, we recall the notion of the conductor
of B(G). This is defined as the ideal

f(B(G)) = {a ∈ B(G) | a · Zs ⊂ Im(�G)}

Equivalently, f(B(G)) can be described as the annihilator of Zs/Im(�G) or as the
largest ideal of B(G) which is also an ideal of Zs .

Clearly, an element a ∈ B(G) is contained in the conductor if and only if a ei ∈
Im(�G) for i = 1, . . . , s. If we write �G(a) = (a1, . . . , as), then this is equivalent
to ai ei ∈ Im(�G) for i = 1, . . . , s. Keeping in mind that Im(�G) is a free Z-module
of rank s and that, consequently, Zs/Im(�G) is a torsion group, we are led to the
following definition.

Definition 8.3 For i = 1, . . . , s, let ri be the smallest positive integer such that
ri ei ∈ Im(�). Then the elements �−1

G (r1e1), . . . , �
−1
G (rses) are called the quasi-

idempotents of B(G) and the numbers ri are called its quasi-idempotent indices.

Bywhat we remarked above, the quasi-idempotents ofB(G) generate the conductor
f(B(G)). Algorithm 6 computes the quasi-idempotent indices of B(G).

Algorithm 6 (Computing the Quasi-Idempotent Indices)
Input: The table of marks T (G) = (mi j ) ∈ Mats(Z) of a finite group G.
Output: A tuple (r1, . . . , rs) ∈ N

s containing the quasi-idempotent indices of B(G).
1: for i = 1 to s do
2: Let (v1, . . . , vs ) = (mi1, . . . ,mis ) and ri = mii .
3: repeat
4: Let j = max{k ∈ {1, . . . , i − 1} | vk �= 0}.
5: Multiply (v1, . . . , vs ) by lcm(|v j |,m j j )/|v j | and let ri = vi .
6: Add or subtract a suitable multiple of (m j1, . . . ,m js ) to (v1, . . . , vs ) to get v j = 0.
7: until (v1, . . . , vs ) = (0, . . . , 0)
8: end for
9: return the tuple (r1, . . . , rs ).
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It is easy to see that this algorithm is correct and performs nothing but a step-
wise diagonalization of T (G). To understand its performance better, we apply it to a
concrete example.

Example 8.4 The table of marks of the alternating group A5 is given by

T (A5) =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

60 0 0 0 0 0 0 0 0
30 2 0 0 0 0 0 0 0
20 0 2 0 0 0 0 0 0
15 3 0 3 0 0 0 0 0
12 0 0 0 2 0 0 0 0
10 2 1 0 0 1 0 0 0
6 2 0 0 1 0 1 0 0
5 1 2 1 0 0 0 1 0
1 1 1 1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

Now let us use Algorithm 6 to compute the quasi-idempotents of B(A5).

(1) For i = 1, we have (v1, . . . , vs) = 60e1, an therefore r1 = 60.
(2) For i = 2, we have to multiply (30, 2, 0, . . . , 0) by 2 and subtract the first row

of T (A5). Hence we get r2 = 4.
(3) For i = 3, we have to multiply (20, 0, 2, 0, . . . , 0) by 3 and subtract the first row

of T (A5). We obtain r3 = 6.
(4) For i = 4,wefirst have tomultiply (15, 3, 0, 3, 0, . . . , 0) by two and subtract three

times the second rowofT (A5). The intermediate result is (−60, 0, 0, 6, 0, . . . , 0).
Now we add the first row and conclude that r4 = 6.

(5) For i = 5, we multiply (12, 0, 0, 0, 2, 0, . . . , 0) by 5, subtract the first row
of T (A5) and get r5 = 10.

(6) Continuing in this way, we also find r6 = r7 = 2, r8 = 3, and r9 = 1.

In particular, the result r9 = 1 says that B(A5) contains the non-trivial idempotent
element �−1

G (e9), and hence Spec(B(A5)) is not connected.

The quasi-idempotent indices could also have been computed using the following
formula.

Remark 8.5 For a positive integer n, let sqfr(n) be the squarefree part of n, i.e.,
the product of the distinct prime numbers dividing n. Nicolson (1978) proved the
formula ri = sqfr([Hi : H ′

i ]) · mii , where H ′
i is the commutator subgroup of Hi .

Since it is possible (although a bit tedious) to identify the row of T (G) corresponding
to H ′

i , we could have computed ri directly using this formula. However, we think that
Algorithm 6 is much more efficient.

From the quasi-idempotent indices, we can compute the actual quasi-idempotents
of B(G) as follows.

Remark 8.6 To compute the quasi-idempotents of B(G) from the table of marks, we
can, for instance, use either of the following two ways.
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(a) In Algorithm 6, start with the tuple ei (representing the fact that we initialize v

to contain the i-th row of T (G)) and keep track of the operations performed by
Steps 5 and 6 of this algorithm, so that the final tuple (ci1, . . . , cis) contains the
coefficients of the representation of ri ei in terms of the rows of T (G).

(b) After runningAlgorithm 6, write ri ei as a linear combination of the rows of T (G),
i.e., write ri ei = ∑s

j=1 ci j (m j1, . . . ,m js) with ci j ∈ N.

In both cases, the elements qi = ∑s
j=1 ci j [G/Hj ] with 1 ≤ i ≤ s are the quasi-

idempotents of B(G).

Now let us turn to the actual idempotents of B(G). Recall that an idempotent e
of B(G) is called a primitive idempotent if it is not of the form e = e′ + e′′ with
idempotents e′, e′′ such that e′e′′ = 0. The following proposition was shown in Dress
(1969, Prop. 2). It characterizes the primitive idempotents of B(G).

Proposition 8.7 The primitive idempotents of B(G) are in 1–1 correspondence with
the connected components of Spec(B(G)). These, in turn, are in 1–1 correspondence
with the indices i ∈ {1, . . . , s} such that Hi is a perfect subgroup of G.

This proposition suggests that we should first look for a way to compute the con-
nected components of Spec(B(G)). Based on the algorithm for computing the prime
ideal graph (see Algorithm 3), this can be achieved by a simple breadth-first search.
Of course, for large graphs, many more efficient algorithms are well-known.

Algorithm 7 (Computing the Connected Components of Spec(B(G)))
Input: The table of marks T (G) = (mi j ) ∈ Mats(Z) of a finite group G.
Output: A list of lists [C1, . . . ,Ct ] such that each Ci contains the indices j of the
minimal primes p̄ j in one connected component of Spec(B(G)).
1: Using Algorithm 3, compute the prime ideal graph of G.
2: Let L = [1, 2, . . . , s] and M = [ ].
3: repeat
4: Choose i in L and remove it from L .
5: Let C = [i].
6: repeat
7: Find all j in L such that (i, j) is an edge of the prime ideal graph.
8: Remove these elements j from L and append them to C .
9: until no new element j is appended to C .
10: Put C into the list M .
11: until L = [ ]
12: return the list M .

Let us apply this algorithm in the case of the group A5 discussed above.

Example 8.8 For the group A5, the table of marks given in Example 8.4 and Algo-
rithm 3 indicate that there are two connected components of Spec(B(G)). To check
this, we follow the steps of Algorithm 7.

(1) First compute theprime ideal graph andget�G = {(1, 2), (1, 3), (1, 5), (2, 4),
(3, 6), (4, 8), (5, 7)}.

123



Beitr Algebra Geom (2017) 58:427–452 449

(2) Let L = [1, 2, . . . , 9] and M = [ ].
(4), (5) Choose i = 1, let L = [2, . . . , 9], and let C = [1].
(6)–(9) Then iteration stops when C = [1, 2, . . . , 8] and L = [9].

(10) Let M = [C].
(4), (5) Choose i = 9, let L = [ ], and let C ′ = [9].

(10) Let M = [C,C ′].
The algorithms returns the pair M = [[1, . . . , 8], [9]]. Hence Spec(B(G)) has two
connected components, namely the set of prime ideals containing one of p̄1, . . . , p̄8,
and the set of prime ideals containing p̄9.

This example and the following one illustrate the observation in Dress (1969, p.
216), that Spec(B(G)) has two connected components, one of which is a single point,
if and only if the group G is minimally simple.

Example 8.9 For the group A6, Algorithm 7 finds four connected components
of Spec(B(G)), namely C = {p̄1, . . . , p̄19} and three isolated points. So, although
the group A6 is simple, it is not minimally simple.

Notice that, by the proposition above, every connected component of Spec(B(G))

contains exactly one minimal prime p̄i such that Hi is a perfect group. Moreover,
this group is the smallest subgroup Hi for which p̄i is in that connected component.
Hence we can find the conjugacy classes of perfect subgroups ofG using the following
Algorithm 8.

Algorithm 8 (Computing the Perfect Subgroups of G)
Input: The table of marks T (G) = (mi j ) ∈ Mats(Z) of a finite group G.
Output: A tuple ( j1, . . . , jt ) such that the subgroups Hji are precisely the perfect
subgroups among H1, . . . , Hs .
1: Let P be the empty tuple.
2: Using Algorithm 7, compute the lists C1, . . . ,Ct such that Ci contains the indices j of all minimal

primes p̄j in the i-th connected component of Spec(B(G)).
3: for i = 1 to t do
4: Append the minimal number ji in Ci to P .
5: end for
6: return the tuple P = ( j1, . . . , jt ).

The correctness of this algorithm follows from Dress (1969, Prop. 2), since a sub-
group U of G which has no non-trivial solvable quotients is necessarily perfect, so
that the perfect subgroups are the smallest elements of the equivalence classes corre-
sponding to the connected components of Spec(B(G)).

Corollary 8.10 Using Algorithm 8, we can check effectively whether the group G
is solvable: it suffices to check whether H1, the trivial subgroup, is the only perfect
subgroup of G.

One last job remains to be done: we would like to have an algorithm for computing
the primitive idempotents in terms of the basis of B(G). Knowing the connected
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components of Spec(B(G)), they are easy to compute because their image in the
ghost ring is the sum of the corresponding primitive idempotents ei of Zs . Thus we
get Algorithm 9.

Algorithm 9 (Computing Primitive Idempotents of B(G))
Input: The table of marks T (G) = (mi j ) ∈ Mats(Z) of a finite group G and a
set C ⊆ {1, . . . , s} corresponding to a connected component of Spec(B(G)).
Output: A tuple (c1, . . . , cs) such that the primitive idempotent corresponding to C is
c1[G/H1] + · · · + cs[G/Hs].
1: Let (ε1, . . . , εs ) be the characteristic function of C , i.e., let εi = 1 if i ∈ C and εi = 0 if i /∈ C .
2: Write the tuple (ε1, . . . , εs ) as a Z-linear combination of the rows of T (G). Let (c1, . . . , cs ) be the

coefficient vector.
3: return the tuple (c1, . . . , cs ).

Another way to describe the primitive idempotents of B(G) is the formula

eπ
G,Hi

= (#NG(Hi ))
−1 ·

∑

D≤NG (Hi )

#D · χ(D, Hi ) · [G/D]

proved in Yoshida (1983). However, for effectively evaluating this formula, in addition
to identifying the perfect subgroups Hi of G, we need to determine NG(Hi ), and this
is in general not possible using only the knowledge of T (G) (see Remark 3.10).
Moreover, the formula uses the Möbius function of the subgroup lattice of G which
is not easy to compute. Thus we believe that Algorithm 8 is much more efficient.

For an example, let us return to the alternating group A5 once again.

Example 8.11 For thegroup A5 discussed above, the connected components ofSpec(B
(G)) were shown to be indexed by C1 = {1, 2, . . . , 8} and C2 = {9}. Let us compute
the corresponding primitive idempotents.

(1) To find the idempotent for C1, we have to write the tuple (1, 1, . . . , 1, 0) as
a linear combination of the rows of T (G). The result is the coefficient tuple
(1,−2,−1, 0, 0, 1, 1, 1, 0). Hence the first primitive idempotent is

eC1 = [G/H1] − 2[G/H2] − [G/H3] + [G/H6] + [G/H7] + [G/H8]

(2) For the component C2, we have to write (0, 0, . . . , 0, 1) as a linear combination
of the rows of T (G). Alternatively, using eC2 = 1 − eC1 , we get

eC2 = −[G/H1]+2[G/H2]+[G/H3]−[G/H6]−[G/H7]−[G/H8]+[G/H9]

In this example the spectrum of B(G) consists of a connected component and
a single irreducible component. As shown in Raggi-Cárdenas and Valero-Elizondo
(2005), this is equivalent to G being perfect and all subgroups of G being solvable.
Let us see an example of this type where G is not a simple group.
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Example 8.12 The table of marks of the group G = SL2(F5) is given by

T (SL2(F5)) =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

120 0 0 0 0 0 0 0 0 0 0 0
60 60 0 0 0 0 0 0 0 0 0 0
40 0 4 0 0 0 0 0 0 0 0 0
30 30 0 2 0 0 0 0 0 0 0 0
24 0 0 0 4 0 0 0 0 0 0 0
20 20 2 0 0 2 0 0 0 0 0 0
15 15 0 3 0 0 3 0 0 0 0 0
12 12 0 0 2 0 0 2 0 0 0 0
10 10 1 2 0 1 0 0 1 0 0 0
6 6 0 2 1 0 0 1 0 1 0 0
5 5 2 1 0 2 1 0 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

The second row of this table shows that H2 is a normal subgroup, whence G is not
simple. The prime divisors of #G = 120 are 2, 3, and 5. Besides H1 = {e}, the only
other perfect subgroup of G turns out to be G itself: there are no subgroups of index
2 or 3, and the subgroups of index 5 are equal to their normalizer.

Thus Spec(B(G)) has two connected components. When we reduce the table mod-
ulo 2, 3, and 5, we see that p̄1, . . . , p̄11 are all in one connected component, and the
irreducible component of p̄12 is the second connected component of B(G).

Finally, we compute the primitive idempotents. For the first component we have to
write (1, 1, . . . , 1, 0) as a linear combination of the rows of T (G). We get

eC1 = [G/H2] − 2[G/H4] − [G/H6] + [G/H9] + [G/H10 + [G/H11]

and the other primitive idempotent is then eC2 = [G/H12] − eC1 .
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