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Abstract In this paper, we consider a measure of asymmetry for Reuleaux polygons,
and show that the n-th (n ≥ 3, n odd) regular Reuleaux polygons are the most sym-
metric ones among all n-th Reuleaux polygons. As a byproduct, we show that the
Reuleaux triangles are the most asymmetric planar convex bodies of constant width.
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1 Introduction

Measures of (central) symmetry, or as we prefer, asymmetry for convex bodies have
been extensively investigated (see Besicovitch 1951; Groemer and Wallen 2001; Guo
2012; Guo and Jin 2011; Jin and Guo 2010, 2012; Lu and Pan 2005; Schneider
2009; Toth 2012). Among these researches, it is important to determine the extremal
bodies in a class of convex bodies for a given asymmetry measure. A survey of results
of this kind (up to 1963) has been published by Grünbaum (1963). In some of these
investigations the definition of suchmeasures is restricted to certain subsets of the class
of all convex bodies. For example, in Besicovitch (1951), Besicovitch considered a
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measure of asymmetry for domains of constant width in the euclidean plane R
2, and

showed that the most asymmetric domains are Reuleaux triangles.
Groemer and Wallen (2001) introduced a measure of convex domains of constant

width, and determined the extremal bodies with respect to this asymmetry measure.
More specifically, they also obtained that the most asymmetric domains are Reuleaux
triangles.

Motivated by the work of Groemer andWallen, replacing area by perimeter, Lu and
Pan (2005) introduced another measure of asymmetry for convex domains of constant
width. They showed that Reuleaux triangles are the most asymmetric domains of
constant width in this sense.

In this paper, using the Lu–Pan measure of asymmetry, we show that the regular
Reuleaux polygons have better symmetry than the irregular ones. Precisely, we prove
the following theorem:

Theorem 1 If K is a Reuleaux polygon of order n (n ≥ 5, n odd), then

n + 1

n − 1
≤ λ(K ) < 2,

where λ(·) denotes the Lu–Pan measure of asymmetry for convex bodies. Moreover,
equality holds on the left-hand side if and only if K is regular.

From Theorem 1, we obtain the following result (see also Lu and Pan 2005):

Theorem 2 Let K be a convex domain of constant width. Then

1 ≤ λ(K ) ≤ 2.

Equality holds on the left-hand side if and only if K is a circular disc. Equality holds
on the right-hand side if and only if K is a Reuleaux triangle.

2 Preliminaries

Let C be a convex body, that is, a closed bounded convex subset of R
d . Let Kd be

the set of all d dimensional convex bodies. A convex body K is said to be of constant
width if its width function, i.e., the support function of K + (−K ), is constant (see
Chakerian and Groemer 1983; Heil and Martini 1993; Schneider 1993). Let Wd be
the set of all convex bodies of constant width in Kd . It is well-known that K is of
constant width if and only if each boundary point of K is incident with (at least) one
diameter (a chord of maximal length) of K .

By a diameter of K ∈ K2 of direction u we mean a line segment of direction u in
K of maximal length. If K ∈ W2 then for any u there is exactly one diameter D(u)

of K of direction u, and the two lines that pass through the endpoints of D(u) and are
orthogonal to u are support lines of K . The diameter D(u) splits K into two convex
domains, say K+(u) and K−(u), where K+(u) lies in the ’positive’ half-plane with
respect to the line of direction u containing D(u) (Groemer and Wallen 2001).
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Groemer andWallen (2001) defined the asymmetry function α(K ) of K ∈ W2, by

α(K ) = max{A(K+(u))/A(K−(u)) : u ∈ S1}.

Here S1 is the unit circle and A(·) is the area.
They proved that

1 ≤ α(K ) ≤ α0,

where α0 = 4π−3
√
3

2π−3
√
3
. Equality holds on the left-hand side if and only if K is a circular

disc. Equality holds on the right-hand side if and only if K is a Reuleaux triangle.
Lu and Pan (2005) modified the definition of α(K ), defined another measure λ(K )

of asymmetry for K ∈ W2 as follows:

λ(K ) = max{L(K+(u))/L(K−(u)) : u ∈ S1},

where L(K+(u)) and L(K−(u)) are, respectively, the lengths of the arcs bd(K ) ∩
bd(K+(u)) and bd(K ) ∩ bd(K−(u)).

They proved that

1 ≤ λ(K ) ≤ 2,

Equality holds on the left-hand side if and only if K is a circular disc. Equality holds
on the right-hand side if and only if K is a Reuleaux triangle.

3 Proof of Theorems 1–2

Let K ∈ W2 and V ⊂ bd(K ). The set V is called a pinching set if each diameter
of K is incident with (at least) one point of V . A convex body K of constant width
is called a Reuleaux polygon if it admits a finite pinching set. In fact, each Reuleaux
polygon contains a polygon with the vertices being same as the Reuleaux polygon. In
this case we say that the polygon generates the Reuleaux polygon. For example, each
Reuleaux triangle can be generated by an equilateral triangle.

Let K be a Reuleaux polygon generated by the polygon with vertices e1e2 · · · en ,
n odd. It is obvious that each diameter of K meets at least one of {e1, e2, . . . , en}.
Define

λ(K , ei ) = max{L(K+(u))/L(K−(u)) : u ∈ S1, ei ∈ D(u)}.

Clearly, we have λ(K ) = max{λ(K , ei ), i = 1, 2, . . . n}.

Proof of Theorem 1 Let the width of K be ω. (1) For simplicity, we start with the case
n = 5. By the definition of Reuleaux polygons, |e1e3| = |e1e4| = |e2e4| = |e2e5| =
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|e3e5| = ω. We shall denote these vertices ei (i = 1, 2, 3, 4, 5) by cyclic index. That
is ei = e j if i ≡ j (mod 5). Then,

λ(K , ei )

= max

{ |êi ei+1| + | ̂ei+1ei+2| + | ̂ei+2ei+3|
| ̂ei+3ei+4| + |êi+4ei | ,

| ̂ei+2ei+3| + | ̂ei+3ei+4| + |êi+4ei |
|êi ei+1| + | ̂ei+1ei+2|

}
,

i = 1, 2, 3, 4, 5. Here |êi ei+1| denotes the length of the circle arc between ei and ei+1
in the boundary of K . By Barber’s Theorem (Chakerian and Groemer 1983), we have
|̂e1e2| + |̂e2e3| + |̂e3e4| + |̂e4e5| + |̂e5e1| = ωπ . Therefore, we have

λ(K ) = β(K ) − 1,

where

β(K ) = max

{
ωπ

|êi ei+1| + | ̂ei+1ei+2| , i = 1, 2, 3, 4, 5

}
.

Set ai = ωπ

|êi ei+1|+| ̂ei+1ei+2| , i = 1, 2, 3, 4, 5. By the inequality between harmonic and

arithmetic means, we have

5

2
= 5(a−1

1 + a−1
2 + a−1

3 + a−1
4 + a−1

5 )−1 ≤ a1 + a2 + a3 + a4 + a5
5

.

Equality holds if and only if a1 = a2 = a3 = a4 = a5.
So,

β(K ) = max{ai , i = 1, 2, 3, 4, 5} ≥ a1 + a2 + a3 + a4 + a5
5

≥ 5

2
.

Equality holds if and only if |̂e1e2| = |̂e2e3| = |̂e3e4| = |̂e4e5| = |̂e5e1|.
Therefore, we have λ(K ) ≥ 3

2 , and equality holds if and only if K is a regular
Reuleaux polygon.

Now, we prove that λ(K ) < 2. In fact, we need to prove ai < 3, i = 1, 2, 3, 4, 5.
This is equivalent to bi > π

3 ω, where bi = |êi ei+1|+| ̂ei+1ei+2|, i = 1, 2, 3, 4, 5, and
e6 = e1, e7 = e2. So, we only need to prove 	 ei +	 ei+1 > π

3 , i = 1, 2, 3, 4, 5, where
	 e1 = 	 e3e1e4, 	 e2 = 	 e4e2e5, 	 e3 = 	 e5e3e1, 	 e4 = 	 e1e4e2, 	 e5 = 	 e2e5e3.

We only prove 	 e1 + 	 e2 > π
3 .

Construct the triangle 
e1e4e′
5 such that 
e1e4e′

5
∼= 
e2e4e5, and e′

5, e3 lie on
different sides of the line e1e4. Consider 
e3e4e5 and 
e3e4e′

5, and notice 	 e3e4e′
5 >

	 e3e4e5, we have |e3e′
5| > |e3e5| = ω. Since |e3e′

5| > |e1e3| = |e1e′
5| = ω, and we

have 	 e3e1e′
5 > π

3 , which implies 	 e1 + 	 e2 > π
3 .

Therefore, we have proved 3
2 ≤ λ(K ) < 2. The case for n = 5 follows.
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(2) Now we consider the general case n ≥ 5, and n is odd. Set n = 2m + 1,m ≥
2. Then by the definition of Reuleaux polygon, we have |ei em+i | = ω, i =
1, 2, . . . , 2m + 1, where ek+2m+1 = ek, k = 1, 2, . . . , 2m + 1. Therefore,

λ(K , ei ) = max

{ ∑i+m
k=i |êkek+1|∑i+2m

k=i+m+1 |êkek+1|
,

∑i+2m
k=i+m |êkek+1|∑i+m−1
k=i |êkek+1|

}
, i = 1, 2, . . . , 2m + 1.

So,

λ(K ) = max

{ ∑i+m
k=i |êkek+1|∑i+2m

k=i+m+1 |êkek+1|
, i = 1, 2, . . . , 2m + 1

}
.

By the inequality between harmonic and arithmetic means, using the same technique
as in step (1), we obtain λ(K ) ≥ m+1

m , and equality holds if and only if K is a regular
Reuleaux polygon.

Now we prove λ(K ) < 2. To do this we need to show

i+2m∑
k=i+m+1

|êkek+1| >
π

3
ω, i = 1, 2, . . . , 2m + 1.

This is equivalent to

i+m−1∑
k=i

	 ek >
π

3
, i = 1, 2, . . . , 2m + 1,

where 	 ek := 	 ek+mekek+m+1.
We only give a proof for the case i = 1. We translate 
e j em+ j em+ j+1, j = 2,

. . . ,m, to 
e1e′
m+ j e

′
m+ j+1, respectively, (i.e., 
e j em+ j em+ j+1 ∼=
e1e′

m+ j e
′
m+ j+1)

such that e′
m+ j ∈ bdB(e1, ω), j = 2, . . . ,m + 1, where B(e1, ω) := {x ∈ R

2 :
|xe1| ≤ ω} denotes the circle with center e1 and radius ω, and e′

m+2 = em+2.
If |em+1e′

2m+1| > ω = |em+1e2m+1|, then we obtain
∑m

k=1
	 ek = 	 em+1e1e′

2m+1
> π

3 .
In what follows we prove

|em+1e
′
2m+1| > |em+1e2m+1|. (∗)

Comparing 
em+1e2me2m+1 and 
em+1e′
2me

′
2m+1, the inequality above holds, if the

following conditions hold:

(i) |e2me2m+1| = |e′
2me

′
2m+1|;

(ii) 	 em+1e2me2m+1 < 	 em+1e′
2me

′
2m+1;

(iii) |em+1e2m | < |em+1e′
2m |.

Now (i) is true from the fact that 
eme2me2m+1 ∼= 
e1e′
2me

′
2m+1.
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For (ii), we calculate 	 em+1e2me2m+1 = 	 e2m−1e2me2m+1 − 	 em+1e2me2m−1 =
π−	 em

2 + π−	 em−1
2 − 	 e2m − 	 em+1e2me2m−1,

	 em+1e′
2me

′
2m+1 = 	 e′

2m−1e
′
2me

′
2m+1 − 	 em+1e′

2me
′
2m−1 = π−	 em

2 + π−	 em−1
2 −

	 em+1e′
2me

′
2m−1.

Thus, (ii) holds if

	 em+1e2me2m−1 > 	 em+1e
′
2me

′
2m−1. (∗∗)

Notice that

	 em+1e2me2m−1 =
2m−2∑
j=m+1

	 e j e2me j+1

and

	 em+1e
′
2me

′
2m−1 =

2m−2∑
j=m+1

	 e′
j e

′
2me

′
j+1,

where e′
m+1 = em+1, e′

m+2 = em+2, and we should prove that 	 e j e2me j+1 >
	 e′

j e2me
′
j+1, j = m + 1, . . . , 2m − 2. Translate the 4-gon e j e j+1e2me1 to the 4-

gon e′
j e

′
j+1e

′′
2me1. So, |e1e′′

2m | = |e1e2m | < ω, which implies that e′′
2m ∈ intB(e1, ω),

interior of B(e1, ω). Notice that e′
j , e

′
j+1, e

′
2m ∈ bdB(e1, ω), therefore, 	 e j e2me j+1 =

	 e′
j e

′′
2me

′
j+1 > 	 e′

j e
′
2me

′
j+1.

It remains to show (iii). We claim that |em+1ei | < |em+1e′
i |, i = m + 2, . . . , 2m.

First, we have |em+1em+2| = |em+1e′
m+2|.

Second, we consider
em+1em+2em+3 and
em+1e′
m+2e

′
m+3.We have |em+1em+3|

< |em+1e′
m+3|. Using the same technique as in (ii), we can prove |em+1ei | <

|em+1e′
i |, i = m + 2, . . . , 2m, by induction. ��

Proof of Theorem 2 For each convex domain K of constant width ω, there exists
Reuleaux polygons Ki , i = 1, 2, . . . , such that Ki → K , as i → ∞ with respect to
the Hausdorff metric. Since L(·) is continuous, we have 1 ≤ λ(K ) ≤ 2.

If K is a circular disc, then λ(K ) = 1. Conversely, if λ(K ) = 1, then for every
u ∈ S1 we have L(K−(u)) = L(K+(u)), which implies that K is centrally symmetric
(see Groemer 1996 Theorem 4.5.9, or Groemer and Wallen 2001 p. 519). But since K
is of constant width it must be a circular disc.

If K is a Reuleaux triangle, then λ(K ) = 2. Conversely, if λ(K ) = 2, then there
exists a direction u and a diameter |e1e2| = D(u) of K such that L(K−(u)) =
π
3 ω, L(K+(u)) = 2π

3 ω. Set K+(u)′ := B(e1, ω)∩ B(e2, ω)∩K+(u). Then K+(u) ⊂
K+(u)′. Since L(K+(u)) = 2π

3 ω, we have that K+(u) = K+(u)′. This implies that
K is Reuleaux triangle. ��
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