Beitr Algebra Geom (2017) 58:93—-129 @ CrossMark
DOI 10.1007/s13366-016-0311-9

ORIGINAL PAPER

Characterizations of zero-dimensional complete
intersections

1

Martin Kreuzer - Le Ngoc Long!2

Received: 11 May 2016 / Accepted: 25 July 2016 / Published online: 29 July 2016
© The Managing Editors 2016

Abstract Given a0-dimensional subscheme X of a projective space [P’y overafield K,

we characterize in different ways whether X is the complete intersection of n hyper-
surfaces. Besides a generalization of the notion of a Cayley—Bacharach scheme, these
characterizations involve the Kihler and the Dedekind different of the homogeneous
coordinate ring of X or its Artinian reduction. We also characterize arithmetically
Gorenstein schemes in novel ways and bring in further tools such as the module
of regular differential forms, the fundamental class, and the Jacobian module of X.
Throughout we strive to work over an arbitrary base field K and keep the scheme X
as general as possible, thereby improving several known characterizations.

Keywords Zero-dimensional scheme - Complete intersection - Kdhler different -
Dedekind different - Arithmetically Gorenstein scheme - Cayley—Bacharach scheme -
Hilbert function

Mathematics Subject Classification Primary 14M10; Secondary 13N05 - 13C40 -
13D40 - 14M05

B Martin Kreuzer
martin.kreuzer @uni-passau.de

Le Ngoc Long
nglong16633 @gmail.com

Fakultit fiir Informatik und Mathematik, Universitit Passau, 94030 Passau, Germany

Department of Mathematics, Hue University’s College of Education, 34 Le Loi, Hue, Vietnam

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s13366-016-0311-9&domain=pdf
http://orcid.org/0000-0002-4732-2627

94 Beitr Algebra Geom (2017) 58:93-129

1 Introduction

Given a 0-dimensional scheme X in a projective space P over a field K, it is an
interesting question to characterize algebraically and geometrically when X is the
complete intersection of n hypersurfaces. In general, characterizations of complete
intersection rings using differentials, differents, and complementary modules have
been studied by R. Berger, E. Kunz, H.-J. Nastold, G. Scheja, U. Storch, and others in
the 1960s and 1970s. Many of these results we collected and unified in the book (Kunz
1986) which we use as our reference. In this paper we are specifically interested in zero-
dimensional subschemes of projective spaces, for which the homogeneous coordinate
ring is a 1-dimensional standard graded Cohen Macaulay ring.

In the case n = 2, i.e., for subschemes of the projective plane, Davis and Maroscia
(1984) characterized complete intersections via the Cayley—Bacharach property and
the symmetry of the Hilbert function of X. Later it turned out that these conditions
characterize arithmetically Gorenstein schemes for arbitrary n > 2 (see Davis et al.
1985; Kreuzer 1992). The attempt to refine this characterization by showing that X is
the zero-set of a section of a vector bundle and then forcing the vector bundle to split
into a direct sum of line bundles led to rather complicated and unwieldy conditions
(see Kreuzer 1992 for the case n = 3 and Kreuzer et al. 2000 for the general case).

On the algebraic side, Wiebe (1969) proved for 0-dimensional local rings that they
are complete intersections if and only if the O-th Fitting ideal of the maximal ideal
is non-zero. If we assume that the 0-dimensional scheme X is contained in the affine
space D4 (Xo), this characterization can be applied to the Artinian reduction R/ (x¢) of
the homogeneous coordinate ring R = K[Xo, ..., X,]/Ix of X. Similarly, assuming
char(K) = 0, Scheja and Storch (1975) characterized 0-dimensional local complete
intersections by the non-vanishing of the Kihler different, i.e., the O-th Fitting ideal
of the Kihler differential module. Unfortunately, these characterizations do not allow
finer distinctions such as the characterization of arithmetically Gorenstein schemes X.

The main idea in this paper is to combine these two approaches and to use the
Kihler differents of the algebras R/K[xg] and R/K together with some geometric
properties to characterize 0-dimensional complete intersection schemes. For instance,
we prove the following theorem which provides one possible answer to the question
posed by Griffiths and Harris (1978): if X is a Cayley—Bacharach scheme, when is X
a complete intersection?

Theorem 1.1 Let X be a smooth 0-dimensional subscheme of P.. Then X is a com-
plete intersection if and only if X is a Cayley—Bacharach scheme and the Hilbert
function of the Kiihler different vx of X satisfies HFy (rx) # 0, where rx is the
regularity index of the Hilbert function of X.

As a consequence, we will see that this condition is also equivalent to the Kéh-
ler different being a principal ideal generated by a homogeneous non-zerodivisor of
degree rx. The latter characterization is the graded version of a result given by Lenstra
(1993) in the local case which in turn is a slight sharpening of a result used by Wiles
(1995). Along the way, we prove a number of further characterizations of smooth
0-dimensional complete intersections.
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Let us describe the contents of this paper in more detail. In Sect. 2 we recall the
definition of the Kihler different. In fact, we introduce three Kihler differents which
will be used later on. Assuming that X is contained in D4 (X(), as we always do, the
residue class xg of Xg in the homogeneous coordinate ring R = K[Xo, ..., X,1/Ix
of Xis a non-zerodivisor. Then we define the Kéhler different 9x = Fy (Q}e / K[XO]), the

reduced Kihler different 9 = FO(Q% y K), where R = R/(xo), and the higher Kihler

different 13‘3(5 )= F 1 (Q}e x)- After discussing the basic properties of these differents,
we have a closer look at the Hilbert function of J. Using some examples, we see that
this is a tricky invariant and that even its eventual value, the Hilbert polynomial of 9,
is in general difficult to determine.

Section 3 deals with the Dedekind different of a O-dimensional scheme X . To define
it, we need to assume that X is locally Gorenstein. We make the construction in Her-
zog et al. (1971) explicit and embed the canonical module of X in its homogeneous
coordinate ring to get the Dedekind complementary module whose inverse ideal is the
Dedekind different. Notice that this construction depends on the choice of a system
of traces for the local rings of X. However, if X is smooth, we can use the canonical
traces and get a well-defined result. The section ends with some relations between the
Kihler and the Dedekind different of X.

Many characterizations of O0-dimensional complete intersections use the Cayley—
Bacharach property. In Sect. 4 we generalize the notion of a Caylay—Bacharach scheme
(CB-scheme) to the case of a not necessarily reduced scheme X defined over an arbi-
trary base field K. Many concepts such as the degree of a point in X require careful
adjustments in this generality. We also characterize CB-schemes via the existence of
particular elements in the first homogeneous component of the Dedekind complemen-
tary module and use this result to generalize the characterization of arithmetically
Gorenstein schemes via the Cayley—Bacharach property and the symmetry of their
Hilbert function (see Kreuzer 1992).

The heart of the paper is contained in Sect. 5 where we characterize 0-dimensional
complete intersections in several ways. The first characterization generalizes the
above-mentioned result by Scheja and Storch (1975) and uses the non-vanishing of
the reduced Kéhler different. A second criterion uses a single value of the Hilbert
function of ¥ to distinguish complete intersections from arithmetically Gorenstein
schemes. The third characterization answers the question of P. Griffiths and J. Harris
for smooth 0-dimensional schemes by requiring a CB-scheme to have HFy, (rx) # 0.
If we replace the Kahler different by the Dedekind different, we get a characterization
of O-dimensional arithmetically Gorenstein schemes, as Proposition 5.8 shows.

In the last section we present some characterizations which use the first Kidhler dif-
ferent 193(5) of R/K. After collecting some properties of this different and its Hilbert
function, we show that it can be used to characterize smooth 0-dimensional complete
intersections in the same way as with ¥ by the Cayley—Bacharach property and one
non-zero value of its Hilbert function. Finally, we introduce the module of regular dif-
ferential forms Qx and the fundamental class cx : Q}Q KT Qx of X. Then smooth

0-dimensional complete intersections are also characterized by cx (€2 }e / x) = 193(5) Qx.
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Lastly, smooth arithmetically Gorenstein schemes are characterized by the Cayley—
Bacharach property and the dimension of their Jacobian module Jx = Q2x/ CX(Q}Q / )

Unless mentioned explicitly otherwise, we adhere to the definitions and notation
introduced in the books (Kreuzer and Robbiano 2000, 2005). The examples in this
paper were calculated using a package implemented by the second author in the com-
puter algebra system The ApCoCoA Team (2007).

2 Kihler differents of zero-dimensional schemes

In this paper we always work in the following setting. Let K be an arbitrary field,
and let P = K[Xj, ..., X,] be the polynomial ring in n 4 1 indeterminates over K,
equipped with the standard grading. Then P is the homogeneous coordinate ring of
projective n-space P .

Our main object of study is a (non-empty) O-dimensional subscheme X of P% .
Its homogeneous vanishing ideal in P is denoted by Ix. Then R = P/Ix is the
homogeneous coordinate ring of X. It is a 1-dimensional standard graded Cohen—
Macaulay K -algebra. Its homogeneous maximal ideal will be denoted by m.

Assumption In the following we assume that no point of the support of X is contained
in the hypersurface at infinity Z(Xg). Consequently, the residue class xo of X¢ in R
is a non-zerodivisor.

The ring R = R/(xo) is called the Artinian reduction of R. It is a O-dimensional,
local K-algebra, and hence a finite dimensional K-vector space of dimension d =
deg(X). The maximal ideal of R is denoted by m. It follows that R is a finite free
K[xp]-module of rank d. The modules of Kihler differentials of the three algebras
R/K, E/K, and R/ K [xg] are related as follows (cf. Kunz 1986).

Proposition 2.1 The element x is a non-zerodivisor for the module <2 }e /K xo] and we

1 1 ~ 1 . . :
have QR/K[XO]/xo QR/K[XO] = Qﬁ/[(' Furthermore, there exists a canonical homoge
neous exact sequence

0 — Rdxy — Q}Q/K — Q}Q/K[m] — 0

Now the Fitting ideals of these three Kihler differential modules are given the
following names. (For some basic properties of Fitting ideals we refer the reader
to Kunz 1986, Appendix D.)

Definition 2.2 (a) The ideal 9g /gy, = FO(Q}Q / K[xo]) of R is called the Kéhler
different of X (or of R/K[xo]). For short, we also write ¥x instead of ¥/ g [x,)-

(b) The ideal ¥ K= FO(Q% ; K) of R is called the reduced Kihler different of X.
We also write Jx instead of Uz /K for short.

(c) The ideal ﬁ,(;/’K = F1(Q} ) is called the higher Kéhler different of X (or of
R/K). This ideal is also denoted by 195(5 ) for short.

Recall that the scheme X is called a complete intersection if its homogeneous
vanishing ideal can be generated by n homogeneous polynomials, i.e., if there exist
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homogeneous polynomials Fi, ..., F,, € P such that Ix = (Fy, ..., Fy). Itis well-
known that the Kihler different is given by vx = (H) g in this case, i.e., it is

the principal ideal generated by the Jacobian determinant of (Fi, ..., F,;). A similar
description can be given for Jx.

Given a finitely generated graded module M over a standard graded K -algebra, we
let HFy, : Z — N be the map defined by HFy, (i) = dimg (M;). Recall that this
map is called the Hilbert function of M. This is an integer function of polynomial
type, i.e., it agrees with the value of the Hilbert polynomial HP,, (i) in large degrees
i > 0. The number ri(M) = min{i > 0 | HF;(j) = HPy;(j) for all j > i} is called
the regularity index of M. Instead of HFg, we also write HFx and call it the Hilbert
function of X.

Remark 2.3 The Hilbert function of X satisfies HFx (i) = 0 for i < 0 and
1 =HFx(0) < HFx(l) < .-+ < HFx(rx) =d =HFx(rx+1)="---

for some number rx > 0 which is called the regularity index of X.

In the rest of this section we collect some general results and examples illustrating
properties of the Hilbert function of the Kéahler different of X. Later we will see that
the reduced Kéhler different is much less interesting (it vanishes most of the time) and
that one can prove similar things for the Hilbert function of the higher Kéhler different
(see Sect. 6).

Remark 2.4 Since xq is a non-zerodivisor of R and ¥ is an ideal in R, the Hilbert
function HFy, is non-decreasing. Therefore it has an initial degree min{i € Z |
HFy, (i) # 0} and an eventual value HFy, () for j > 0 which is also known as the
Hilbert polynomial of #x and denoted by HPy,.

Recall that the minimal prime divisors of Iy are homogeneous prime ideals which
correspond to points in P}, = Proj(P). The set of these points is called the support
of X and will be denoted by Supp(X) = {pi,..., ps}. To each point p; we have
the associated local ring O ,, its homogeneous vanishing ideal 3; in P, and the
associated homogeneous ideal p; in R.

Definition 2.5 (a) A point p; € Supp(X) is called a reduced point of X, if Oy, is
areduced ring.

(b) A point p; € Supp(X) is called a smooth point of X, or X is called smooth at p;,
if Ox, j,/K is a finite separable field extension.

(c) We say that X is reduced (resp. smooth) if it is reduced (resp. smooth) at all
points of its support.

Clearly, if p; is a smooth point of X then it is a reduced point of X. The converse
is true if K is a perfect field (cf. Kunz 1986, Propositions 5.18 and 7.12).

If X is a smooth complete intersection, then we know the Hilbert function of .
More generally, if X is reduced then the Hilbert function of ¥x can be described in
terms of the subset Y of smooth points of X, as the following proposition shows.
Notice that for Y = @ we have Iy ;x = m.
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Proposition 2.6 Let X be a 0-dimensional reduced complete intersection in P, We
write Iy = (Fy, ..., Fy), where F; € P is a homogeneous polynomial of degree d;
for j =1,...,n. (Recall that we have rx = > 7_, d; — n in this case.) Let Y be the
subscheme of X consisting of all smooth points in Supp(X). Then we have

HFy(@i — ifY # ()
R L A,

foralli € 7.

Proof Let Iy;x be the ideal of Y in R and put A := H Then we have
Ux = (A)g. Inthe case Y = ¢J, we have A € p; N ---Npy = (0) by Kunz (1986,
Theorem 10.12). This implies 9 = (0).

In the case Y # ¢, we use Kunz (1986, Theorem 10.12) again to conclude that the
element A + Iy x is a non-zerodivisor of Ry = R/Iyx and that we have A € p; for
all j € {1, ..., s} suchthat p; ¢ Supp(Y). Now we fix the degree i > 0 and suppose
HFy (i) =t. Let{g1 + I'y/x, - .., & + Iy/x} be a K-basis of the vector space (Ry);.
Then the set {A- g1+ Iy/x, ..., A- g+ Iy/x} € (Ry)i+ry is K-linearly independent.
It follows that the vector space (A - R); 1, has K-dimension greater than or equal to
t, in other words, we have HFy (i 4 rx) > HFy ().

On the other hand, we observe that A - 7 = 0 in R for every homogeneous element
h € Iy;/x\{0}, since Xisreduced. Forevery f € R;,wewrite f = a1g1+---+a;g+h
forsomeary,...,a; € Kandh € (Iy/x)i. ThenA- f = A-(a1g1+---+arg+h) =
alA-g1+-FaA-gre{A-g1,...,A-g)k (as A-h = 0in R). Thus (¥x);1ry =
(A“R)itry € (A-g1,..., A gt)k,and hence HFy, (i +rx) <t = HFy(i). Therefore
the conclusion follows. O

In particular, if X is smooth, this proposition simplifies as follows.

Corollary 2.7 Let X be a smooth 0-dimensional complete intersection in P,

(a) The Kdhler different of X is given by vx = (H)R’ where H is a

homogeneous non-zerodivisor of R of degree rx = > '_, di —n.
(b) The Hilbert function of ¥x satisfies HF g (i) = HFx (i — rx) for alli € Z.

Remark 2.8 In the setting of the proposition, the regularity index of the Kahler dif-
ferent is rx + ry. If we remove the condition that X is reduced, then we have
HFy, (i) > HFy (i — rx) for all i € Z. This follows from the first part of the proof of
the proposition.

The following example shows that, even if X is a complete intersection, the eventual
value of the Hilbert function of Jx may not be equal to deg(X).

Example 2.9 Let K be a field with char(K) ¢ {2, 3}, and let X C IP’%( be the 0-
dimensional complete intersection defined by the ideal Ix = (F, G), where we have
F = X1(X1—2X0)(X1+2X0)and G = (X2—X0)(X7+X3—4X3). Thendeg(X) = 9
and Supp(X) = {p1,..., p7},where py = (1:0:1), pp=(1:0:2),p3=(1:0:
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—2),pa=010:2:1),ps=(1:2:0,ps={0:-2:1),and p; =(1:-2:0).
By 3; we denote the associated homogeneous prime idealin P of p; for j =1, ..., 7.
The homogeneous primary decomposition of the ideal Iz is Ix = I} N - - - N [7, where
I; =, forj #5,7, Is = (X1 — 2Xo, X3), and Iy = (X1 + 2X0, X3). This means
that X is not reduced at p5 and p7, and so X is not smooth at those points. In this
case we have ¥x = (F.G) ) = (4xoxfxs — 16x3x3 — 3x7x3 — 2x0x3 + 6x3 ). In

9(x1,x2)
particular, the Jacobian determinant 5’(()5 ’)(;’2)) is a zerodivisor of R. This shows that the

smoothness of X in the above corollary is a necessary hypothesis. Furthermore, we
have

HFx : 136899
HFy, : 000013677

Hence the Hilbert function of ¥ can stabilize at a value # deg(X).

The next example shows that, in general, the initial degree of the Hilbert function
of ¥x can be less than rx.

Example 2.10 Let X C P% be the set of five Q-rational points: p; = (1 : 1 : 0),
pp=0:1:1),p3=0:=1:1),pg=1:2:1),and ps = (1 : =2 :1). We have
HFx : 13455-.- and rx = 3. Moreover, we have HFy, : 00113455... and
Px = (xox1 — x1X2, x%x% — %xg, xfxz — %xlxg). Thus, in this case, the initial degree
of the Hilbert function of ¥ is less than rg = 3.

The following condition will play an important role in this paper.

Definition 2.11 A 0-dimensional scheme X C IP”,’< is called arithmetically Goren-
stein if R is a Gorenstein ring.

Note that if X is a complete intersection then it is arithmetically Gorenstein, but
the converse is not true in general, as the next example shows. Moreover, for an
arithmetically Gorenstein scheme X, later results will show that the initial degree of
the Hilbert function of ¥x is at least . The next example also illustrates that this
initial degree can be strictly higher.

Example 2.12 Let X C IP’%7 be the following set of five distinct [F7-rational points
on the twisted cubic curve: py = (1 : 0: 0 :0), pp =1 :1:1:1), p3 =
1:=1:1:=1),pa=0:2:4:8),and ps = (8 : 4 : 2 : 1). We have
HFx : 1455.-- and rgx = 2. An application of Theorem 7 in Geramita and
Orecchia (1981) shows that X is arithmetically Gorenstein. Moreover, a calculation
gives us ¥x = (xox3 — 3x3, x1x3, x0x3 — 3x3,x}) and HFy, : 000455,
Hence X is not a complete intersection and the initial degree of HFy is 3 > rx.

As mentioned above, the Kéhler different of a complete intersection X is a principal

ideal. The following example shows that the Kéhler different can be principal without X
being a complete intersection.
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Example 2.13 Let X C IP%Q be the set consisting of six QQ-rational points: p; = (1 :
0:0,p=0:0:1D,p3=0:1:0,pa=0:1:1,ps5=00:2:0),
and pg = (1 : 2 : 1), and let Y be the fat point scheme defined by the saturated
homogeneous ideal

Iy =P 0 NPy NP3 NP,

Then Y is an almost complete intersection, i.e., Iy is minimally generated by three
homogeneous polynomials in P. In particular, Y is not a complete intersection. But
in this case vy is the principal ideal generated by the homogeneous polynomial

x(S) — %xgx% + %xoxit — %x? + %x%x% - %xlzx; + 5)(1153t — 2x§.
Moreover, the Hilbert function of ¥y is HFy,, : 000001344 .. and its regularity
index satisfies ri(dy) = 7 < 8 = 2ry.

In the last part of this section we collect some results about the eventual value
of HFy,, i.e., the Hilbert polynomial of ¥x.

Remark 2.14 Tf X is a fat point scheme in P/}, then the Hilbert polynomial of the
Kahler different v is exactly the number of reduced points of the scheme X, and we
have ri(dx) < nrx (see Kreuzer et al. 2015, Theorem 2.5).

Apart from some other special cases, to exactly determine the Hilbert polynomial
of the Kihler different for an arbitrary O-dimensional subscheme X of P% is not an
easy task. Hence we try at least to find (possibly sharp) bounds for it.

Proposition 2.15 Ler X C ]P”Il( be a 0-dimensional scheme, and let X¢y, be the set of
smooth points in its support Supp(X) = {p1, ..., ps}. Then we have

Z dimg (OX,pj) =< HPﬁX < deg(X) — (s — #Xsm).

pPj eXsm
Proof Let B; C P be the associated prime ideal of p; for j =1,..., s, and set
= n %
Pj €Supp(X)\Xsm

It follows from Kunz (1986, Theorem 10.12) that 9x C p; = B;/Ix for every point
pj € Supp(X)\ Xy . Hence we get v C I/Ix, and consequently

HFy, (i) < HF1, (i) = HFx (i) — HFp/7 (i) < deg(X) — deg(Y)

for all i € N, where Y is the O-dimensional subscheme of P’}( defined by I. Observe
that the scheme Y has degree deg(Y) > s — #Xg,. Thus we obtain

HPy, < deg(X) — deg(Y) = deg(X) — (s — #Xgm).
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Next we prove the first inequality of HP . If X, = , then there is nothing to prove,
since we always have HPy, > 0. Now let us consider the case #X;,, > 1. W.Lo.g.
we may assume that X¢y = {p1,..., po} where ¢ := #Xy. Then Kunz (1986,
Theorem 10.12) implies 9x ¢ p; forall j = 1,..., o. It follows from Homogeneous
Prime Avoidance (see for instance Kreuzer and Robbiano 2005, Proposition 5.6.22)
that there exists a homogeneous element 2 € (9x),,\{0} for some m > 0 such
that h ¢ UQ 1(pj)m- This implies that ;. # 0 in OXp for j = 1,...,0. Let
j el ..,Q} letsx; = dlm[((OXp ), andlet{eﬂ, ..., €jx;tbeak- bas1sof(9x,pj.
For any non-zero elementa € Oy pi> itis not difficult to verify that {ae;y, ..., aej, j}
is a K-basis of Ox p,, then sois {h ) ejkeji, ..., hpjejkej,{j}, where 1 <k < »x;.
Now we consider the isomorphism of K-vector spaces 1 : R, — ]_[j 1 0%, p; ;
given by «(f) = (fp,, ... fp,), Where fp, € OX,, is the germ of f at p; for
J =1,...,5 (cf. Kreuzer 1994, Lemma 1.1). Forall j = 1,..., ¢ and for all k; =
1,...,xj,weletf]kj =171((0,...,0,€j;,;,0,...,0) € Ry Then we get

(hf117 --~ahf1x1,-~-,hfgl9 ~--,hfgxg>l( - (ﬁX)rX—}—m - Rrx+m~

We show that {hfu,...,hfl,{l,...,thl,...,th,{Q} is K-linearly independent.
Remark that for ji, j» € {1, ..., 0}andfork; € {1,..., %}, wherei =1, 2, we have

Fivk - Fiska # 0if j1 = joand fix, - foky = Oif j1 # jo,and hf7 . # 0in Ropy .
Suppose for contradiction that there are c11, ..., 1y, -+ -5 Cols -+ - s Cox, € K, not all

equal to zero, such that Z?:l Z;j’zl cjk;hfjk; = 0.W.lo.g. we may assume ¢y # 0.
We then have

—2kj=1

hff = (Z Ciky hfir fu1 + Z Z Cjk;hfjk; fu) = Z cik b fik -

Thus, in OX,pw we get the equality hple%1 = Zkl 5 Clk M p e11€1k,, in contra-

diction to the fact that {hme%l, hperiern, ..., hperery} is a K-basis of Ox p,.
Therefore we obtain
HPyy > dimg (hfi1, - f1oegs oo o0 BSols oo s By ) K
0
= z}fj = Z dimK(OX,p_,-)
Jj=1 I’jexsm
and the proposition is completely proved. O

Clearly, the lower bound for HPy, is attained for a smooth scheme X. Our next
example shows that the upper bound for HPy,, is also sharp.

Example 2.16 Letus go back to Example 2.9. The scheme X is a complete intersection
with deg(X) = 9, and it is not smooth at two points ps and p7. In this case we have
o =5and

HPy, =degX) — (s —0)=7>5=0= 2, dimg (Ox. p;)
pjexsm

andri(vx) =7 < 8 = 2rx.
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3 Dedekind differents of zero-dimensional schemes

In this section we continue to use the notation introduced above. Recall that the graded
R-module wg = Homg . |(R, K[xo])(—1) is called the canonical module of R. It
is a finitely generated graded R-module with Hilbert function HF,,, (i) = deg(X) —
HFx(—i) for all i € 7Z. (For further details about this module, we refer to Kreuzer
1994.)

It is known that, for a locally Gorenstein scheme X, one can embed the canonical
module of R as a fractional ideal into its homogeneous ring of quotients (see Herzog
etal. 1971). Subsequently, we need to make this construction explicit. The presentation
follows the construction given in Kreuzer (2000), generalizing it to the case at hand.

In a first step, we want to describe the homogeneous ring of quotients Q" (R) of R.
It is defined as the localization of R with respect to the set of all homogeneous non-
zerodivisors of R. In view of Kreuzer (1994, Lemma 1.1), there is a homogeneous
injection of degree zero

— N

T:R— R:= HOXP/T]%HOXP,[T,,T] ()

given by 7(f) = (fplTli, ...,fpj,TSi), where f € R; fori > 0, and where 71, ..., T
are indeterminates with deg(7}) = - - - = deg(Ty) = 1. In particular, we have 7(x() =
(T1, ..., T;). Now we can describe Qh (R) as follows.

Proposition 3.1 The map 7 extends to an isomorphism of graded R-modules

W Q"(R) —> [ Oxp IT;. T/,
j=1

where for every element f/g € Q"(R) with f € Ry and a non-zerodivisor g € R; we
have

V(=) == -
(g) l(g) gpl ! Ps

[yt _ (@Tk—l Sy Th= l)

In particular, we have Q" (R) = Ry,.
Proof For a non-zerodivisor g € R;, the element g, € Ox, p; is a unit element

forall j = 1,...,s (see Kreuzer 1998, Lemma 1.5). Let f/g € Q"(R) with f €
R and a non-zerodivisor g € R;. Then 7(f) = (fy, le, s I Tsk) and 7(g) =

(gplTll, e, gpsTS’), so we get

f) wf) (fm k-1 Ips k—l) S -1
w(l)=2l o (Lot I Oy [T;. T 1.
(g i(e)  \gp ' gps 6,,1;[1 %pilli 1]

Thus the map W : Q"(R) — Hi’:l Ox.p; T}, Tj_l] is well defined. It is clearly true

that W is R-linear, homogeneous of degree zero. If \I!(g) = 0, then ;{% =0€ Ox p,
; :
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forall j = 1,...,s. This implies fpj =0forall j =1,...,s,and so f = 0, since
the map7 is injective. Hence the map W is an injection. Now we show that the map W is
surjective. Let (g1, ..., gs) € H;:l OXJ,J.[Tj, Tj_l]. Fori > Owehavedimg (R;) =
deg(X) = dimg (Hj-zl OX,p_,'[Tja Tj_l])i. Thus, fori > 0, (Tligl, cee, Tsigs) is of
the form W(f) for some f € R. Therefore the element (gi, ..., gs) is the image
of f /xé, and the claim follows. O

Recall that a trace map of a finite algebra 7/S is a T-basis of the module
Homg (T, S). The second task we want to tackle is the construction of a trace map for
the algebra O"(R)/K [xo, Xy 1. For this we need to restrict our attention to a special
class of 0-dimensional schemes.

Definition 3.2 A 0-dimensional scheme X C IP)’}( is called locally Gorenstein if at
each point p; € Supp(X) the local ring Ox p; is a Gorenstein ring.

The next proposition says that in the locally Gorenstein case the desired trace map
exists.

Proposition 3.3 Let X C IP"}( be a 0-dimensional locally Gorenstein scheme with

Supp(X) = {p1,..., ps}, and let Ly = K|[xo, xo_l]. Then the following statements
hold true.

(a) The algebra Q"(R)/Lq has a homogeneous trace map o of degree zero.

(b) The map = : Q"(R) — MLO(Q}‘(R), Lo) given by ¥ (1) = o is an isomor-
phism of graded Q" (R)-modules.

(¢) A homogeneous element o' € MLO(Q}’(R), Ly) is a trace map of the algebra
O"(R)/ Ly if and only if there exists a unit u € Q" (R) such thato’' =u - o.

Proof According to Proposition 3.1, we may identify Q" (R) = Hj-:l Ox p, T, T /.*1].
Then we have '

HO_mLO(Qh(R), Lo) = Hom, ( I1 OX’I,_,.[TJ', Tj_1]7 L())
j=1

N
= [[Hom,;(Ox [T}, T; "1, Lo)

Jj=1

N
= H1H<3_mLO(L0 ®k Ox p;» Lo)
J:

)
= []Lo®k HomK(OX’pj, K).

Jj=1

Since X is locally Gorenstein, the algebra O p;/ K is a finite Gorenstein algebra for
every j € {1, ..., s}. It then follows from Kunz (1986, E.16) that there is a trace map
o; € HomK(OX”,,j, K) such that HomK((’)X’pj, K) = OX,[)]‘ cojforj=1,...,s.

By Kunz (1986, F.16), the map 0 = 5 ® i, : Ox p, [T}, Tj_l] — KI[Tj, Tj_l] =
Lo is a homogeneous trace map of degree zero of the algebra Ox [T}, Tj_l] /Lo.
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Hence the trace system o = (o1, ..., o) satisfies Hom; (Q"(R), Lo) = Q"(R) -0,
and claim (a) follows.

Since (c) follows from (b), it remains to prove claim (b). To this end, we show that
Anngig)(o) = (0). Assume that f - o = 0 for some homogeneous element f* €
Qh(R). Wehave f-0(g) =0(fg)=g-0(f)=0forallg e Qh(R). This implies
a(f) = 0 forevery o € HomLO(Qh(R), Lo). Since the algebra R/K[x¢] is free of
rank deg(X) and Q" (R) = Ryy = R®k(xy) Lo, it follows that the algebra O"(R)/Lyis
also free of rank deg(X). Letd = deg(X),let{by, ..., by} be a Ly-basis of Qh (R),and
let {b], ..., b};} be the dual basis of {b1, ..., bs}. We write f = Z?:l gjbj € 0" (R)
withgi,...,84 € Lo. Theng; = b7(2?=1 gibj) = b;f(f) =O0forallj=1,...,d.
Hence we obtain f = 0, and so Ann g gy (o) = (0). O

When the scheme X is smooth, the algebra Qh(R) /Kxo, xy l] has a canonical
trace map.

Corollary 3.4 Let X C P} be a O-dimensional smooth scheme, let Q(R) denote the
full ring of quotients of R, and set Lo := K[xo, xo_l].

(a) The canonical trace map Tr g gy, IS @ homogeneous trace map of degree zero
of Q"(R)/Lo. In particular, Q" (R)/Ly is étale.

(b) The canonical trace map Trg(Ry/k (xo) IS @ trace map of Q(R)/K (xo). In partic-
ular, Q(R)/K (xo) is étale.

Proof For j = 1,...,s, the algebra Ox_ p;/K is a finite separable field extension,
and hence the canonical trace map Tr(r)xqu /k (see Kunz 1986, F.3) is a trace map
of Ox,pj/K. If we choose 0; = Tr@x,p,../K for j = 1,...,s in the construction
of the trace map o in Proposition 3.3(a), then o is exactly the canonical trace map
Tronry/L,- The additional claim of (a) follows by Kunz (1986, F.8).

For (b), it suffices to show that Trp(r),k (xy) 1S a trace map of Q(R)/K (xp). Since
X is reduced, it follows from Kunz (1985, 111, Proposition 4.23) and Bourbaki (1989,
V, §1, Proposition 9) that

O(R) = [ 0(R/p)) = [1 Ox,, T).
J= J=

As above, Ox, pi /K is a finite separable field extension, and so Ox pi and K (xqg) are
linearly disjoint over K (cf. Morandi 1996, V, Section 20). This implies Ox p; Ok
K(x0) = Ox,;K(x0) = Ox,p,;(x0). By letting I' = H‘}zl Ox.p;» we have the
isomorphism Q(R) = K (xo) ®k I'. Notice that Trr/x = (TrOX,p] JK» s TTOXM/K)
is a trace map of I'/K, and Tro(r)/k (x) = idk (xy) ®k Trr/k (cf. Kunz 1986, E.5).
Therefore Tro(r)/k (xy) 1 a trace map of Q(R)/K (xo), as desired. O

Now we are ready to introduce the Dedekind complementary module and the
Dedekind different for a O-dimensional locally Gorenstein scheme as follows.
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Definition 3.5 Let X C P} be a 0O-dimensional locally Gorenstein scheme, let

Lo = K|[xo, xo_l], let o be a fixed trace map of Qh (R)/Ly. Then there is an injective
homomorphism of graded R-modules

@ : wg(l) < Hom; (Q"(R),Lo) = Q"(R) o L 0hR)
p— ¢ ®idy,

The image of @ is ahomogeneous fractional R-ideal €5 of L, itis called the Dedekind
complementary module of X (or of R/K[x(]) with respect to o. Its inverse,

85 =0 "'={feQ"(R) | f- €& C R},

is called the Dedekind different of X (or of R/K[xg]) with respect to o.

In the next remark we collect some basic properties of the Dedekind complementary
module.

Remark 3.6 (a) It follows from the isomorphism €5 = wg (1) and Kreuzer (1994,
Proposition 1.3) that the graded R-module €% is finitely generated and

HF¢ (i) = deg(X) — HFy(—i — 1) foralli € Z.

(b) A system of generators of €5 can be computed as follows. Let < be a degree-

compatible term ordering on the set of terms T” of K[X{, ..., X,],and letd =
deg(X). Then T"\LT, (/&) = {T4,..., Ty} with Tj = X{"'--- X,,”" and o =
(@j1,...,ajy) e N'forj=1,...,d.W.lo.g. weassumethat Ty <; --- < Tp,.
Let t; = T; + Ix € R and set deg(t;) := deg(T;) = n; for j = 1,....,d.
Then we have n; < --- < ng < rx and the set {f1,...,1t7} is a K[xg]-basis
of R (cf. Kreuzer and Robbiano 2005, Theorem 4.3.22). Let {z, ..., ]} be the
dual basis of {71, ...,1;}, and let g; = <I>(t;-‘) forj =1,...,d. We get €, =

<gls s gd)K[xo] - Qh(R)

(c) When X is smooth, we also denote the Dedekind complementary module (respec-
tively, the Dedekind different) with respect to the canonical trace map by Cx
(respectively, §x).

Further properties of the Dedekind different of X are given in our next proposition.

Proposition 3.7 Let X C ]P”}( be a 0-dimensional locally Gorenstein scheme, and
let o be a trace map for Q" (R)/Lo.

(a) The Dedekind different 85 is a homogeneous ideal of R and xérx € 8%.

(b) The Hilbert function of 8% satisfies HFggg @) =0fori <0, HF(;% (i) = deg(X)
fori > 2rx, and
0 < HF5g(0) < --- < HF 3 (2rx) = deg(X).

(¢) The regularity index of 8% satisfies rx < ri(6%) < 2rx.
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Proof By Remark 3.6(a), we have HF@;{ (0) = deg(X) — HFx(—1) = deg(X) =
HF i g)(0). This implies Ry € (€%)o = 0" (R)o, and in particular, 1 € ¢%. Hence
8% is a homogeneous ideal of R.

Now let us write Qgg =(81,---,84)K[xo] C Qh(R) as in Remark 3.6(b). Here g;
is homogeneous of degree deg(g;) = —n; (since ® is homogeneous of degree zero).

We claim that, for j € {1, ..., d}, there is a homogeneous element g} € Ry such

—rx—nj

that g; = x, g € €. Indeed, since g; € QO"(R) = R,,, there exist g’.’ €R

and d; € N such that gj =Xy 4 g Ifdeg(g”) =dj —n; < rx, then we setg

rx—dj+n; // dj_

Xy € Ry Ifdeg(g”) =dj—n; > rx, then we wrlteg j g’ for
some g € Rrx, since R; = x;, RrX foralli > rx. Thus we get g; = x()_rx_njg;., as
claimed. Consequently, wehave € = (x, " "gl, .., 0 X g/ ) R Now itis easy
to see that xo € 8%, since n .5 rx and xorx . ()c0 j) = xo gj € Rorg—n;
forall j =1,...,d. Hence claim (a) follows.

Next we shall prove claim (b). It is clear that HF(;gg (i) =0fori < Oand HF(ggg (i) <
HFsg (i + 1) forall i € Z, since §% is a homogeneous ideal of R by (a). Notice
that HFx (i) = d = deg(X) for all i > rx and HF[;%(i) < HFx(i) for alli € Z.
So, the Hilbert function of 6% satisfies HFgo (i) < dforalli € Z. We write €% =

rx—ny s —rx—nq ./

(xo glr-1 X gd)Rwithgl,...,gdER,X as above, and let { f1, ..., fa4}
be a K -basis of R, . Then f,g € Ryry.Thereis fij € Ry suchthatf,g = xOXf,] for

alli, j € {1,...,d}. Thus (x;* f;)- ()corX " /)—xo f,gj—)c0 f,/ € Rary—n;
for all i, j. It follows that {)coX Floeen, x6X fa} € (6%)2rx S Rary. On the other hand,
we see that

d = HFx(2rx) = dimg (XSX fiy..t, x(;X fayk < HF(S% (2rx) < HFx(2rx) =d

Therefore we obtain the equalities HF(gg{ (i) =d = deg(X) for all i > 2rx.
Finally, claim (c) is an immediate consequence of the claims (a) and (b). O

In the last part of this section we present some relations between the Kihler different
and the Dedekind different of a locally Gorenstein O-dimensional scheme X.

Proposition 3.8 Let X C ]P”}( be a O-dimensional smooth scheme. Then we have
5% C ¥x C éx.

Proof Notice that the algebra R/ K [xo] is free of rank deg(X), so it is flat. By Corol-
lary 3.4, we know that the algebra Qh (R)/K[xo, xo_l] is étale. Then Kunz (1986,
G.11) yields §x = 8§y, where 8y is the Noether different of R/K[xg] (as defined
in Kunz 1986, G.1). Thus the desired chain of inclusions follows from Kunz (1986,
Proposition 10.18). O

Let us point out that, if X is a smooth complete intersection, then Proposition 5.2
below and Kunz (1986, Proposition 10.17) show that ¥ = §x. Moreover, the above
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inclusions can be false if the scheme X is not a smooth scheme. The following example
implies that, in general, the Kéhler and Dedekind differents do not agree even when
X'is a complete intersection.

Example 3.9 Let X be the O-dimensional complete intersection given in Example 2.9.
We know already that X is not smooth at ps and p; and that the Kéhler different is
a principal ideal generated by a non-zero homogeneous element of degree rx. In this
case the canonical trace map Trox.p/_ sk = idg isatrace map of Ox, pi/ K forj #5,7.

Moreover, we observe that OX»PS = K[Xq, X21/(X1 — 2, X%) = K & x»K, and so
{1, x2} is a K-basis of Ox . In particular, o5 : Ox ,; — K given by o5(x2) = 1
and o5(1) = 0 is a trace map of Ox ,,/K. The trace map o7 : Ox ,, — K of
Ox p;/K can be found in the same way. Using these trace maps, we get a trace system
o Qh (R) — K|xo, xo_l] of the algebra Qh (R)/K[xo, xo_l]. Now we compute the
Dedekind different and get

3% = (xi1 — 4x0x%x2 — 32x§x§ + fox% — 4x0x§’ + 12x§).

Note that the homogeneous element x? — 4x0x12x2 — 32x8x§ + 2x12x§ — 4xox; + 12x§
is a non-zerodivisor of R. So, we have HPy, =7 <9 = HPss = HP(s)». Hence we

get (83)" € vx and vx & 8%.

The last inclusion in the proposition can be a strict inclusion for 0-dimensional
arithmetically Gorenstein schemes, as our next example demonstrates.

Example 3.10 Let X = {p1,..., ps} < IP)%7 be the set of five distinct K-rational
points given in Example 2.12. We know that X is arithmetically Gorenstein, but not
a complete intersection. We also have dx = (xg — 2xpx3 — 3x1x3 — 2x§) and 9x =
(xzxg — 3x§, xlx_%, x0x§ — 3x§’, xé’). Thus we get ¥x C dx.

Finally, we relate the Hilbert functions of the Kéhler different and the Dedekind
different of a smooth scheme X as follows.

Corollary 3.11 Ler X C P’Il( be a O-dimensional smooth scheme. Then we have
HPyy = HPsy = deg(X) and rx < ri(¥x) < (n + Drx.

Proof The equalities of Hilbert polynomials follow from Propositions 3.7 and 3.8.
Also, it is clear that ry < ri(Jx). Since X is smooth, we can argue similarly as in
the proof of Proposition 2.15 to get a homogeneous element /i € (), \ U;=1 M j)m
for some m > 0, where p; is the homogeneous prime ideal of R corresponding to
pj € Supp(X). So, h is a non-zerodivisor of R. According to Geramita and Maroscia
(1984, Proposition 1.1), we can find a minimal system {F7, ..., F;} of generators
of Ix such that deg(F;) < rx + 1forall j = 1,...,r. Hence ¥x is generated in
degree < nrx. If m > nrx and (9x)urg)r S Uj=y pjs then (Ox)nrg)r S p; for
some j € {l,...,s}, and hence the element & cannot exist. Thus % can be chosen
such that deg(h) = m < nrx. Moreover, if {f1, ..., fgeg(x)} is @ K-basis of R, then
{hf1, ..., hfdegx)) 18 @ K-basis of (¥x)ryq+m. Therefore we have ri(d9x) < (n+ Drx.

O
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4 Cayley-Bacharach Schemes

In many previous characterizations of 0-dimensional complete intersections, a partic-
ular geometric condition has played a leading role: the Cayley—Bacharach property.
In this section we define and study the notion of a Cayley—Bacharach scheme in a sub-
stantially more general context than has been done hitherto. We work with an arbitrary
0-dimensional subscheme X of a projective space [P’y over an arbitrary base field K.
As in the previous sections, let the support of X be given by Supp(X) = {p1, ..., ps}.
We denote the residue field of X at p; by K(p;) = OX,p,- /mx,pj, and set x; =
dim K K ( P j).

Definition 4.1 A subscheme Y C X is called a p;-subscheme if the following con-
ditions are satisfied:

(@ Oy, p, = Ox, p, fork # j.
(b) The map Ox ,; — Oy ), is an epimorphism.

A pj-subscheme Y C X is called maximal if deg(Y) = deg(X) — x;.

Notice that a maximal p ;-subscheme of a 0-dimensional scheme X in P}, which
has K -rational support, i.e., for which all closed points of X are K -rational, is nothing
but a subscheme Y C X of degree deg(Y) = deg(X) — 1 with Oy, pi F Ox. i

Proposition 4.2 Let T = H;: 1 Ox p;» and let (Ox ;) = Annox_pj (mx_p;) be the
socle of Oy, p;- There is a I-1 correspondence

maximal p; — subschemes ideals {0, ...,0,5;,0,...,0))r €T
of the schemeX with s; € (Ox ,)\{0}

Proof Let Y C X be a maximal p;-subscheme, let Iy x denote the saturated ideal
of Y in R, and let ay,;x = min{i € N | (Iy/x); # (0)}. Furthermore, we let
leji, ... ejx} © OX,p_,- be such that their residue classes form a K-basis of K (p;),

and let fy € (Iy/x)ayx \{0}. Since R; = xy~"* Ry fori > rx, we get from Kreuzer
(1994, Lemma 1.2) that ery/x < rx. Using the map 7 given by (%), we write 7( fy) =
,...,0, sz;W/X, 0,...,0) € R. Clearly, we have s; # 0.

We claim that 5; € &(Ox, Pj)' Indeed, if otherwise, then there is an element a €
mx, p; such that as; # 0. Suppose there are cy, ..., Cxj+1 € K such that

crejisj + ot Cujeju;Sj+ Cxpprasj = (creji + -+ €y + Cxjy1a)s; = 0.

Ifcieji+-- -+ch2ij #0in K (pj),thencieji+-- eyl is a unit element, so
iscieji +---+ Cxj€jx; + Cxjr10 (asa € mx,pj). It follows from the above equality
that s; = 0, it is impossible. So, we must have cie;; + --- + c},jEj,{j = 0. This
implies ¢ = --- = Cxj = 0, since {e;1, . "’EJ'”./} is a K-basis of K(p;). From
this we deduce Cxj+1aSj = 0, hence Cxj+1 = 0 (as as; # 0). Therefore the set
{ejisj, ..., ejx;sj, as;}is K-linearly independent. Let

fa=T’1((0,...,O,aTer,O,...,O)) and  fu, =7*1((0,...,o,asz;X,o,...,O)).
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Then fu. fus; € Ry and xg fas; = fafy. and so Kreuzer (1994, Lemma 1.2)
yields fqs; € ( fy)%ﬁ C Iy x. Similarly, we have

Fikg =T 10, ..., 0, )55, T, 0,...,0) € (Ty/x)ry

fork; =1,..., ;. Thus we get
dlmK(IY/X)rX Z dlmK (fj17 R fj){_,'a fas_,-)K = }fj +1

and hence deg(Y) < deg(X) — x;, a contradiction.

Next we consider f € (Iy,x);\{0} with i > ay/x. The previous claim also tells
us that f),, € @(Ox’pj)\{O}. If fp, € 6(OX,pj)\<sj>(9x,p, , then it is not difficult to
check that { fpj., €j18j, s €jx;Sj }is K -linearly independént. This implies deg(Y) <
deg(X) — x;, and it is impossible. Hence we have f),; € (sj)oy i

it

Let g € R;\{0} withi > ay/x be such that7(g) = (0, ...,0, 8p; T;, 0,...,0)and

8p; € (sj)oy - We are able to write g, = as; for some a € Ox , \mx p,. Using a
B

similar argument as the previous part we get g € ( fy)?t C Iy/x. Therefore the image

of Iy xinT' = H‘}Zl Ox,pj is ((0,...,0,5;,0,...,0))r with 5; € 6((9X’pj)\{0},

as was to be shown.

Conversely, let (0,...,0,s;,0,...,0) € I' withs; € Q5(C)X’pj)\{0}, and let f =
1o,...,0, siTi*,0,...,0)) € Ry Weset Y := Z(f) € X. Then we have
Iyx =(f )3@“. Obviously, the scheme Y is a p j-subscheme of X. It suffices to prove
deg(Y) = deg(X) — x;. Let fijx; =771(0,...,0, ejkjszer, 0,...,0)) € Ry and
gjk; =1 1(0,....0, ejij;X, 0,...,0) € Ry, fork; = 1,...,x;. We see that
x(r)xfjkj = gjkjf for every k; € {1,...,x;}, and so Kreuzer (1994, Lemma 1.2)
implies fjr; € (Iy/x)ry. Thus we get the inequality

dimg (Iy/x)rg = dimg (fj1, ..., fix )k = %j.

Moreover, for & € (Iy/x)ry \{0}, there is a number m € N such that xj'h € (f)g.
This clearly forces hp, = as; for some a € Ox p,\mx p, and by, = 0 for k # j.

Let us write as; = Z;:j’:l Cjk;€jk;Sj for some c;1, ooy Cjxj € K. Then 7(h) =
T(ZZ‘[ZI cjk; fjk;)- Since the map 7 is injective, we have h = ZIJ:,/=1 cjkj fik; €
(fits ..., fjﬂj)K. This implies dimg (Iy/x)rx < %;, and therefore this inequality
becomes an equality. Hence we obtain dimg (Iy/x)i+rx = %; fori > 0 or deg(Y) =
deg(X) — %, as desired. O

Corollary 4.3 A 0-dimensional scheme X C P} contains a subscheme of degree
deg(X) — 1 if and only if it has a K -rational point.

Proof Due to Proposition 4.2, it suffices to show that if Y C X is a subscheme of
degree deg(X) — 1 with Oy, s Ox. p;» then p; is a K-rational point. Suppose
that p; is not K-rational, i.e., dimg K(p;) = »; > 2. We may write K(p;) =
K®Kvi®- & Kvy—1, where {1, v1, ..., v}fj_l} is a K-basis of K(p;).Let f €
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(Iv/x)r« \{0}. Then 7(f) = (0,...,0,s;7"*,0,...,0) for some s; € (’)X’pj\{O}.
It is not difficult to check that s;, vis; are K-linear independent. By setting g :=
T_l((O, ...,0, U]SjTrX, 0,...,0)) € Ry, we have g € Iy /x and dimg (f, g)x = 2.
Hence we get 2 = dimg (f, g)x < dimg (Iy/x)rx = 1, a contradiction. O

Let Y be a maximal p;-subscheme of X, and let s; € Qﬁ(OX’pj)\{O} be a socle
element corresponding to a non-zero element of (Iy/x)ay x- We also say that s; is a
socle element of Ox_ i corresponding to Y. Let {ej1, ..., €jx;} S Ox. i be elements
whose residue classes form a K-basis of K(p;). Fora € Ox, pj» We set

u(a) == min{i €N|(O,...,O,aT;,O,...,0) €1(R)}
and

wy x = max{pu(ejk;s;) 1 kj=1,...,%;}.

Lemma 4.4 The number pwy x depends neither on the choice of the socle element s
nor on the specific choice of {ej1, ..., ej,,j}.

Proof First we show that w(a + b) < max{u(a), u(b)} for all a,b € OX,p,-- It
suffices to consider the case u(a) < u(b). Let

fF=7"0,...,0, aT;““), 0,...,00)and g =710, ...,0, ij““’), 0,...,0)).
Then we have f, g € R and
TP+ g) = 0.....0.(a+n)TI 0, 0).

It follows that w(a + b) < u(b).

Now let s} € 6(0x,p,)\{0} such that s} = as; for some unit a € Ox ;.
Note that s; = a_ls}. We set dj := max{u(ej;sj) | kj = 1,...,%;} and
dj = max{u(ejk;s7) | kj =1,...,5;}. We want to prove the equality d; = d’.
By symmetry, we need only show that d;. < dj. Forl € {1,...,x;}, we write

l l

. — l . “ e l .
ejla = a;eji + +ajxje];,j mod mx p; for ajy,....a € K, not all equal

Jxj

e — e — b e l g
to zero. We deduce ejis; =ejiasj =a;e;j1s; + ~|—ajxje];,_/.sj. Thus we have

l 1 1
mlejisy) = plazejisj + -« +aj, €jx;S;)

< max{ p(@ly ejn;s) L kj=1,..., %)
= max{,u(ejkjsj) | kj =1,..., xj } = dj.
Therefore we obtain d;. = max{,u(ejkjs}) lkj=1,...,%;} <d;.
Finally, let {e;.l, e, e;.%j} C Ox, pj be another set whose residue classes form a

K -basis of K(p;), and let d}’ := max{ /L(e}kjsj) | kj = 1,...,%;}. We can argue
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similarly as above to get ,u(e;kjsj) <djfork; e {l,...,x;}. This implies d}’ <dj,

and hence d}’ =d;. O

Using this lemma, we can now generalize the definition of the degree of a point
in X as follows.

Definition 4.5 Let X C P} be a 0-dimensional scheme. For p; € Supp(X), the
degree of p; in X is defined as

degx (p;) := min{ wy;x | Y is a maximal p;—subscheme of X}.

Let us check that this definition agrees with the usual one in the case of a scheme X
with K -rational support, and thus for instance in the case of an algebraically closed
base field K.

Remark 4.6 Let X C IF”I’( be a 0-dimensional scheme with Supp(X) = {p1, ..., ps}.

(a) If X has K-rational support then »| = --- = x%; = 1. In this case we have
degx (pj) = min{ay/X | Y is a maximal p;—subscheme of X}.
If, in addition, X is reduced, then

degy (pj) = ax\(p;;x = min{i € N[ (Ix\(p;)/x)i # (0)}

forall j =1,...,s.In other words, the degree degx (p;) agrees with the degree
of a point in the sense of Geramita et al. (1993, Definition 2.1).

(b) We have 0 < degx(p;) <rxforall j =1,...,s.Inparticular, if X is a reduced
scheme which has K -rational support, then there always exists a point p; € X
with maximal degree degx (p;) = rx (cf. Geramita et al. 1993, Proposition 1.14).

In case all points of Supp(X) have the maximum possible degree rx, we have the
following notion.

Definition 4.7 A 0O-dimensional scheme X C P’ is called a Cayley-Bacharach
scheme (in short, CB-scheme) if every point p; € Supp(X) has the maximum possible
degree degx (p;) =rx.

First of all, we give an example which shows that a O-dimensional scheme X C ]P”I’(
which does not have K -rational support can be a CB-scheme.

Example 4.8 Let K = Q, and let X be the 0-dimensional subscheme of IP’%< of
degree 14 with support Supp(X) = {p1,..., p12}, where py = (1 : 0 : 0),
pp=0:1:0,p3=0A:1:1),pa=0:0:1),ps=1:—-1:1),
pe=0A:1:-1),pp=00A:0:—-1),ps=0:2:0),p=({1:2:1),
pio = (1:2:—1), p11 corresponds to P = (ZX% +X%, X»), and p1o corresponds
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to P = (X7, X(z) + 7X§). Clearly, X does not have QQ-rational support, since two
points pi1 and pp> are not K -rational. A calculation gives us

HFx : 1361014 14---
HFx\(p,y: 136101313--- (j=1,...,10)
HFx\(p,,; : 136101212
HFs0\ () 0 136 91212--- .

We have ax\(p,1/x = rx\(p;} = rx =4for j =1,..., 11. This implies degx (p;) =
dforj=1,...,11. We also see that aX\{p]z X = 3 < r\(ppp) = r'x = 4 and
HF,X\{M}/XG) =1 < x;p = dimg Ox. pp = 2. Let {e121, e122} be the K-basis

X, pia given by ej2.1 = 1 and ej2 2 = x. Here we use the isomorphism Ox P12 =
K[Xl, X21/(X1, 1+7X3) = K ®x2K. Then we find u(er2,1) = 3 and p(ern2) = 4.
This implies degx (p12) = 4. Hence X is a CB-scheme.

Our next remark points out an important difference between the more general def-
inition of a CB-scheme given here and the classical definition based on hypersurfaces
passing through all points of X but one.

Remark 4.9 Given a 0-dimensional scheme X C ]P”;(, we consider the following two
statements:

(a) The scheme X is a CB-scheme.
(b) Every hypersurface of degree rx — 1 which contains all but one point of X auto-
matically contains X.

Clearly, if X has K -rational support, then the statements (a) and (b) are equivalent. In
general, we observe that (b) implies (a), but (a) does not imply (b). For example, the
reduced 0-dimensional scheme X C P2 given in Example 4.8 is a CB-scheme. But
AX\(po}/X = 3 < IX\(pp) = 'x = 4, so statement (b) is not satisfied.

The following proposition gives a simple criterion for detecting whether a given
0-dimensional scheme X C P} is a CB-scheme.

Proposition 4.10 A 0-dimensional scheme X C P is a CB-scheme if and only if, for
all p; € Supp(X), every maximal p j-subscheme Y C X satisfies

dimg (Iy /x)rg—1 < %;j.
Proof We always have dimK(IYj/X),- < xj fori > 0. Also, dimg (Zy/x)rg—1 = %;
if and only if wy,x < rx — 1. This is equivalent to degx(p;) < rx — 1. Hence the
conclusion follows. O
Let us see an example for the applicability of this proposition.
Example 4.11 Let X C }P’%Q be the 0-dimensional scheme of degree 8 with support

Supp(X) = {p1,....,p7},where py =(1:0:0), pp=(1:1:0), p3=(1:1:1),
pa=0:0:1,ps=0:—-1:1),ps=({:2:3),and p;7 corresponds to
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P7 = (2X3 + X}, X2). We have ; = -+ = x5 = 1 and %; = 2. The Hilbert
functions of X and its subschemes are computed as follows

HFx: 13688...
HFx\(p,) 1 13677+ (j=1,....6)
HFX\{p7}213666....

From this we deduce (Ix\ip s —1 = (Ix\(p;1x)2 = (0) forall j =1,...,7. By
Proposition 4.10, X is a CB-scheme.

Next let us consider the subscheme Y = X\{pg} of X. The support of Y is
Supp(Y) = {p1, ..., ps, p7}. The Hilbert functions of Y and its subschemes are

HFy: 13677...
HFy\(p,) 1 13566... (j=1,3,5)
HFy\(:13666... (j=2.4)
HFY\{p7}:13555-~'-

We see that dimk (Iy\(p,)/v)ry—1 = dimg (Iy\(p,)/v)2 = 1 = dimg Oy, for j =
1, 3, 5. Thus the subscheme Y is not a CB-scheme by Proposition 4.10.

A key result for characterizing 0-dimensional schemes which are CB-schemes
is Kreuzer (1994, Theorem 2.4) which shows that this property is equivalent to the
existence of special elements in the initial homogeneous component of the canonical
module. In our more general setting, this result can be generalized as follows.

Proposition 4.12 Let X C IP”I‘( be a 0-dimensional locally Gorenstein scheme with

support Supp(X) = {p1. ..., ps}, and let o be a trace map of Q"(R)/K [xo, xo_l].
Then X is a CB-scheme if and only if for every j € {1,...,s} there exists a non-
zero element g;f € (€%)—ry such that g;‘ =X, zrxg}f with §;‘ € Ry and (§;) pj €

Ox.p; \Mx, p;-

Proof Since X is locally Gorenstein, there is for each point p; a uniquely determined
maximal p;-subscheme Y; C X corresponding to a socle element s; € &(Ox, p;)
of Ox, i Let {ej1,...,¢ j%j} C Ox. P be such that whose residue classes form a
K-basis of K(pj;). Fork; € {1, ..., x;}, we set

miejk;s;j)

1

f;kj = ((0,...,0,€jkijTj ,0,...,0)).
Since X is a CB-scheme, there is for each j € {1,...,s} anindex k; € {1, ..., x;}
such that f;‘kj € Ry \xoR—1. W.lo.g. we assume that f]?"l € Ry \xoR—1 for
j =1,...,s. Let us fix an index j € {1,...,s}. Then we can define a K-linear

map ¢; : Ry — K such that @;(xoRy—1) = 0 and 9;(f}}) # 0. By Kreuzer
(1994, Lemma 1.5), we may lift @jto obtain a K[xo]-linear map ¢; : R — K/[xo] of
degree —rx, 1.e., ¢; is an element of Homy(, (R, K[xo]) -,y such that ¢; |Rrx =9,
especially, ¢; (f ;‘1) #0.
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Given ahomogeneous element f € (Iy,/x)ry \{0}, we proceed to show that f-¢; 7%
0. Obviously, we have Iy, /x = (f)* = (f}})**. This implies that xb fii € (f) for
some k > 0, so we may write xg f ]?“] = fh for some h € R;\{0}. Consequently,
(f - o)) = @;(hf) = @j(xh D = xho;( ) # 0. From this we conclude
frej #0forall f € (Iy,/x)r \{0}.

Since Homg(, (R, K[xo]) = €% = ®(wg(1)), where ® is the monomorphism
of graded R-modules in Definition 3.5, we find g;k = P(p;) € (C") _ry such that

f- g # Oforall f € (Iy;/x)r \{O}. By Propos1t10n 3.7, we have xO € 8%, s0 we
may wrlte g = X g gt e (€%) —ry with g% € R-\{0}. Then, for k; = 1,..., x;,
we get g] #0, and SO €jk;Sj - (g]),,J 7é 0in Oxp Since s; € Qj(OXp ) we
must have (g J) p; & MX p;- Therefore, for every j € {1, ..., s}, we have constructed

a non-zero element g}“ € (€%)—ry such that g}* = x, 2rx *

(gj)p] € Ox, p]\mX pj
Conversely, we assume for contradiction that the scheme X is not a CB-scheme,

with g% € Ry and

ie., degx(p;) < rx for some j € {1,...,s}. For such an j, we let g* € (Q"X) rx

such thatgj =X, “xg ot W1th gj € R,X and (gj)p] ¢ mx ., andletp; = 1(g])
—deg(

Clearly, f - ¢; # O forall f € (Iy,;3)r, \{0). We set fj1 = x, e f*l

(Iy. /X)rx\{O} Leti > 0, and let & € R; be a non-zero homogeneous element. If

hfjl = 0, then (fj1 - ¢)(h) = 0. Suppose that hf;; # 0. In this case we write

rxti—deg(f ) .
hfj1 = Zk —1 c]k X ity for some cji, ..., cjx; € K. By assumption,

we have deg( ) < rx, and so (p( ) =0forallk; =1,...,x;. Thus

ri-+i—deg(f, )
(fin ~<ﬂ)(h)=<ﬂ(hfj1)=<ﬂ(zcjk X0 - f;kj)

rx+i— deg(fjk )

= ZC]k X (f;‘kj)zo.
Hence we obtain f;1 - ¢ = 0, a contradiction. O

This characterization is related to Kreuzer (1994, Theorem 2.4) as follows.

Remark 4.13 In the setting of Proposition 4.12, if there is a homogeneous element
g € ((’: )—r such that Anng(g) = (0) then X is a CB-scheme. The converse holds
true if the field K is infinite.

Our next example shows that the converse of the preceding remark may fail if the
base field is finite.

Example 4.14 Let X C IP’” be the set consisting of three points p; = (1 : 1 : 0),
p2=(1:0:1),and p3 = (1 :1).Wehave HFx : 133...andrx = 1. It is not
difficult to check that X is a CB- scheme. A calculation gives us (QZX)_l = (g1, 82)F,»

where g1 = x0_2x1 and g, = XO_ZXQ. If g € (€x)_1, then g is one of three forms:
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g1, &2, and g1 + g». We see that xo + x; € Anng(g1), xo + x» € Anng(g2), and
xo + x1 + x2 € Anng (g1 + g2). Thus (€x)_1 cannot contain an element g such that

Anng(g) = (0).

The most widely known class of 0-dimensional schemes which are CB-schemes are
arithmetically Gorenstein schemes. The following characterization of arithmetically
Gorenstein schemes is a generalization of Kreuzer (1992, Theorem 1.1) where the
base field K was assumed to be algebraically closed.

Theorem 4.15 A 0-dimensional subscheme X of P is arithmetically Gorenstein if
and only ifitis alocally Gorenstein Cayley—Bacharach scheme and its Hilbert function
is symmetric, i.e., we have HFx (i) + HFx(rx —i — 1) = deg(X) for all i € Z.

Proof 1f X is arithmetically Gorenstein, then it is also locally Gorenstein. By Goto and
Watanabe (1978, Proposition 2.1.3), R is a Gorenstein ring if and only if wg = R(d)
for some d € Z. Since €% = wg(1) and HF@;g(i) = deg(X) — HFx(—i — 1) for
all i € Z, this is equivalent to €5 = R(rx). Consequently, the Hilbert function HFx
is symmetric. Moreover, there is an element g € (¢§),,X such that €% = (g)r and
Anng(g) = (0). Hence X is a CB-scheme by Proposition 4.12.

Conversely, suppose that X is a locally Gorenstein CB-scheme and its Hilbert
function is symmetric. We have HF@gg (—rx) = deg(X) —HFx(rx —1) = 1. It follows

that the K-vector space (€%)—, is generated by one element g = x;, 2rx g, where
g € R \{0}. Since X is a CB-scheme, Proposition 4.12 implies that the element Ep,-
isaunitof Ox_ P forevery j € {1,..., s}. Thus gisanon-zerodivisor of R (cf. Kreuzer
1994, Lemma 1.1]), and hence Anng(g) = (0). Because HFyx is symmetric, we must
have €& = (g)g = R(rx). Therefore Goto and Watanabe (1978, Proposition 2.1.3)
yields that X is arithmetically Gorenstein, as wanted. O

5 Characterizations of zero-dimensional complete intersections

In this section we discuss some characterizations of O-dimensional complete intersec-
tion schemes X in [P% using their Kihler and Dedekind differents. Before we begin,
let us examine the relations between several versions of the definition of a complete
intersection.

Recall that a local ring (S, m) is called a complete intersection if it is Noetherian
and its m-adic completion Sisa quotient of a regular local ring A by an ideal generated
by an A-regular sequence. Itis well known (cf. Bruns and Herzog 1993, Theorem 2.3.3)
that if S is a Noetherian local ring and S = A/I with a regular local ring A, then S
is a complete intersection if and only if I is generated by an A-regular sequence. For
more properties of complete intersection rings, we refer to Bruns and Herzog (1993,
Section 2.3).

Definition 5.1 Given a ring S and an algebra 7'/S, we say that 7/S is locally a
complete intersection if for all 3 € Spec(T) the algebra Typ/Sp with p =P N S is
flat and the local ring T3 /pTsp is a complete intersection.

At this point we can describe 0-dimensional complete intersection schemes in the
following ways.
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Proposition 5.2 Let X C P} be a O-dimensional scheme. Then the following state-
ments are equivalent.

(a) The scheme X is a complete intersection.
(b) The algebra R /_ K[xo] is locally a complete intersection.
(¢) The local ring R = R/(xo) is a complete intersection.

Proof Let{F1, ..., F.}be aminimal homogeneous system of generators of Iy, where
r > n. If X is a complete intersection, then r = n and {Fi, ..., F,,} is a P-regular
sequence. Thus the algebra R/ K [x(] is locally a complete intersection by Kunz (1986,
C.7) and we have “(a)=(b)”. “(b)=(c)” follows from the observation that (xp)  [x,] =
m N K[xo] and Rm/(x0)Rm = (R/{(x0))m = Rm = R, where m = m/(xq) is the
maximal ideal of R.

It remains to prove “(c)=(a)”. Let 2t denote the homogeneous maximal ideal
(X0, ..., Xn)p of P. Observe that if {F1, ..., F;, Xo} is a minimal homogeneous
system of generators of Iy + (X¢) then we have

R=Rm= (P/Ix+ (Xo)m = Po/((F1, ..., Fr, Xo))on.

Since Risa complete intersection, the set { F, ..., Fy, Xo} is a Pop-regular sequence
(see Bruns and Herzog 1993, Theorem 2.1.2). Now Kunz (1986, Lemma C.28) implies
that {F1, ..., Fr, Xo} is a P-regular sequence, and hence » = n or X is a complete
intersection. Therefore it suffices to show that {Fy, ..., F,, Xo} is a minimal homo-
geneous system of generators of Iy + (X¢). Clearly, we have X( ¢ Ix. If there is an
indexi € {1,...,r}suchthat F; € (Fy,..., Fi_1, Fit1, ..., Fr, Xo), then we get a
representation F; = >°;; G F;j+GXo where G; € P isahomogeneous polynomial
of degree deg(F;) — deg(F;) for j #i and G € P is a homogeneous polynomial of
degree deg(F;) — 1 (cf. Kreuzer and Robbiano 2000, Corollary 1.7.11). This implies
GXg=F — zj# G;Fj € Ix,andso G € Ix (as xq is anon-zerodivisor of R). Thus
there are homogeneous polynomials H, ..., H, € P suchthat G = Z;:l H;F; and
deg(H;) = deg(G) — deg(F;). Note that H; = 0 (as deg(G) < deg(F;)). Hence we
have F; = zj#i(Gj + H;Xo)F},in contradiction to the minimality of {1, ..., F;}.

O

The following characterization of 0-dimensional complete intersections in Propo-
sition 5.4 generalizes a result of G. Scheja and U. Storch (see Scheja and Storch 1975,
p. 187) where the characteristic of the base field was assumed to be zero, but higher
dimension was allowed. Our proof follows essentially the argument given in Scheja
and Storch (1975), but offers some simplifications and clarifications. The following
lemma makes some arguments in Zariski and Samuel (1958, Ch. 4, Thm. 34) explicit.

Lemma 5.3 Let X C P} be a O-dimensional scheme, let {F, ..., F,,} be a P-regular
sequence in I, and let I = (Xo, ..., Xp,). Then the colon ideal (Xg, Fi, ..., Fy) :
M is the smallest ideal in P that properly contains (Xo, F1, ..., Fy).

Proof By localizing at 9t and applying Kunz (1986, C.27), it suffices to prove that
the ideal q : Pgy is the smallest ideal in Pyy that properly contains g, where
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q = (Xo, F1, ..., Fy) py, - Since Poy is a regular local ring and {Xo, F1, ..., I}
is a regular sequence, the residue class ring Pgy/q is a complete intersection, and so
it is a Gorenstein ring. In particular, we have dimg ((q : Mgn)/q) = 1.

Now let J be an ideal properly containing q. Then we have J N (q : Mey) € q.
Suppose that k is the smallest exponent such that J - zmgn C . Clearly, k > 1 and
J-‘Jflgil C (q: Mop)NJ and J-?Jﬁ]gi] ¢ q.Because dimg ((q : Mop)/q) = 1, there
are no ideals between q and q : DMgy. Moreover, the intersection of J with q : Mgy is
different from ¢, and therefore J contains q : Mgy. O

Now we are ready to characterize 0-dimensional complete intersections using the
non-vanishing of the reduced Kéhler different.

Proposition 5.4 Ler X C IP”}( be a 0-dimensional scheme, let {Fy, ..., F,} be a
minimal homogeneous system of generators of the vanishing ideal Iz, and suppose
char(K) > max{deg(X), deg(Fy), ..., deg(F;)}. Then X is a complete intersection if
and only if Ox is non-zero.

Proof 1f X is a complete intersection then ¥ = dx is a principal ideal generated by

the Jacobian determinant 7 = det( pr i ). According to Kunz (1986, F.20), there is a
trace map o : R — K|[xp] ass001ated with the presentation R = P/(Fy, ..., F,).
By Kunz (1986, F.23), the canonical trace map Trg/g[x, : R — K][xo] satisfies
Trr/k[xg) = h - 0. Letd = deg(X), let {1, ..., 15} be the K[xo]-basis of R as in
Remark 3.6(b), and let {¢{, . .., £} be the dual K [xo]-basis of R to {r1, ..., 15} w.rt.o
(see Kunz 1986, F.11). Fork =1, ..., d, we see that

d
(( 2 Trr/Kixo] (1)1 ) )(lk) =0 ( > TrR/K[x) (1)1 tk)= Z TrR/K o) (6))0 (111)
j=1 j=1 =

Z TrR /K 1xo]1 )8 jk =TrR /K [x01 (tk)-

j_
This implies & - 0 = Trg/kxg] = (27:1 TrR/K[xO](tj)t}) - 0. Hence we get the
equality h = 27:1 TrR/K[xO](tj)t}. We may assume #; = 1. Then Trg/g[xy)(f1) =
d # char(K), and so h = dt] + Z?:z TrR/K[xO](tj)t}. Consequently, we have 9x =

(hYr € (x0)g- In particular, ¥x is non-zero.
Conversely, suppose that X is not a complete intersection, i.e., that » > n. For every

subset {F;,, ..., F;, } of {Fy, ..., F.} consisting of n elements, we want to show that
%(5;11—“ (Xo) + Ix =: J. It suffices to do this for {Fy, ..., F,}.
W.lo.g.,let Fq, ..., F; bea P-regular sequence of maximal lengthin (Fy, ..., F,).

In the case t = n, Euler’s rule yields

"o
deg(Fj)F; = ZWX’
i=0
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for j =1,...,n. Then Lemma 5.3 implies

00 P l) — DUFLBo) e (X, Fy, ..., Fy) : M C J.

Now we consider the case r < n. It is well-known that all associated prime ideals of
(Xo, F1, ..., Fy) have the same height # 4 1. So, we may assume that X, | is not con-
tained in any associated prime ideal of (X¢, Fi, ..., F;). Let G;11 be a homogeneous
polynomial in the intersection of the associated prime ideals of (X, F1, ..., F;) which
does not contain F;;1. For k > 1, the elements Xg, F1, ..., Fy, Fr4+1 + Gi‘Hij:]]
form a P-regular sequence. Repeating this process, we can construct a P-regular
sequence Xo, Fi, ..., Fy, Fip1 + G’t‘HX;‘Ll’ oL Fi+ Gﬁxﬁﬂ eventually.

We set Ji = (Xo, Fi,.... Fy, Fyr + GX XEH L L Fy 4+ GEXEF) T GEXE e
Ji, then

Gy Xy = XoHo+ FiHi + -+ (Fy + Gy X\ T H,

for some Hy, ..., H, € P. Since {Xo, Fi, ..., F;, F,,} is not a P-regular sequence,
there exist H, Hj), ..., H/ € P suchthat H ¢ (X, Fi, ..., F;) and

HF, = XoHy+ FiH| +--- FH,.

Hence we get

H(Fy + Gy X3t = (X, HoH + Hp)Xo + (X, HiH + H)Fy + - --

+(X,HH + H))F; + HX, Hyy1 (Fr1 + Ger]ijfll) 4.
+ X, Hy H (Fy + GE XA,

This contradicts the fact that X, F F,, F, Gk, x*fl F, + Gk xk+1

0> 1y ooy I'gy t+]+ 104100 n+ nn
form a P-regular sequence. Thus we have GX XX ¢ Jj.

Consequently, we get J; : 9 € J; + (GﬁX’,ﬁ) by Lemma 5.3. Let d; = deg(F;)
for j =1,...,nandlet

an . b B4 . 9 Fy
X X0 di+10X0 d,0Xo
0 dF] F; dF; 41 F,
00X X di+10X d,0X1
M=10 om . oR 0w gk oxk L 0
X111 0Xr+1 dry19Xr41 117 1+1 dnd X141
aF] JF; AF+1 0Fy k yk
O Xy, X, dl‘JrlaXn dnd Xy + Gan

We shall show that det(M) € J; : 91, and hence det(M) € J; + (G’,‘,X,’;). Let M;
denote the i-th row of the matrix M fori = 1,...,n + 1, and let

V = (X(), d]Fl, e ,tht, Ft+1+Gf+1ij__11, R Fn + GﬁXl]i—i_l)
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We use Euler’s rule and calculate

n n n
dF JdF; k+1
EOX./ M= (Xo’ Zoa—x}xjs e XX e Y X+ G X

= (Xo.d1F1,....d/Fy, F+Gy X(H L R+ GEXATh.

Thus we obtain V = Z'}ZOX j - M 11. Therefore we have

My My
My My
—1-det(tM) =det | X;_1 - M; | = det % e Ji

M M

M, M,
fori = 1,...,n+ 1, and hence we get det(M) € Jy : M C Jp + (G’,‘,Xﬁ). Fur-
thermore, we have det(M) — d+11~dn . ggi%)) (Gﬁ‘Jrl PIRTR Gka) and
S0 g € o+ (G XE L GEXEY © T+ (GE xE L GEXE) for

all k > 1. Therefore, by the Krull Intersection Theorem (cf. Eisenbud 1995, Corol-

lary 5.4), we obtain % € J, as desired. O

The characterization given in the preceding proposition is nice in the sense that it
only uses the reduced Kihler different. But we are also looking for a refined version
which lets us distinguish between complete intersections and arithmetically Gorenstein
schemes. If we know already that X is arithmetically Gorenstein, then we can use the
following characterization.

Proposition 5.5 Let X C IP”I; be a O-dimensional smooth scheme which is arithmeti-
cally Gorenstein. Then the following conditions are equivalent.

(a) The scheme X is a complete intersection.
(b) The Hilbert function of ¥ satisfies HF g (rx) # O.
(c) We have vx = 6x.

Proof (a)=(b): This follows from Corollary 2.7.

(b)=(c): Since X is arithmetically Gorenstein, as in the proof of Theorem 4.15
we find an element g € (Cx)_ such that €x = (g)g and Anng(g) = (0). Note
that g is a unit of Q"(R) and h = g=! € (8x),4. For f € (8x); withi < rx, we
see that f - g € R;_,, = (0), and hence f = 0. If f € (6x); withi > rx, then
fi =[-8 € Ri_,. Thisimplies (f — fih) - g = 0, and consequently f = f1h. So,
we get 6x = (h)g.
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Furthermore, we have

(0) # Ik € Bx)rx = (M)k,

and so i € ¥x. Therefore we obtain ¥y = dx.

(c)=(a): Suppose that ¥ = §x. Since X is arithmetically Gorenstein, we argue
as above to get x = (h)g for some non-zerodivisor & € R,. In particular, ¥x
is an invertible ideal. Moreover, if we have QIQ(R) /Kxol = (0), where Q(R) is
the full ring of quotients of R, then it follows from Kunz (1986, Theorem 10.14)
that the algebra R/K[x¢] is locally a complete intersection, and hence X is a com-
plete intersection by Proposition 5.2. So, it suffices to prove that ng( RY/Klxo] = (0).
According to Corollary 3.4, the algebra Q(R)/K (xq) is étale, free of rank deg(X).
Thus Kunz (1986, Proposition 6.8) yields QIQ( R/K (xo) = (0). Additionally, it is not

difficult to see that Ker(K (xo0) ®k[x,] K (x0) L Kxo)=(f®1-1&f]|f¢c
K (X0)) K vy x5 K (v0) = (005 50 Qi1 1y) = (0)- On the other hand, we have
O(R) = K (x0) ®k [[}—) Ox p; (as X is smooth). This implies

Q(R) = K (x0) ®K [xo] (K[XO] ®x [] Ox,pj) = K (x0) ®K[xo] R
j=1

where R = Hj=1 (’)X’pj[Tj] and Tp, ..., Ty are indeterminates. By Kunz (1986,

Formulas 4.4), we obtain QIQ(R)/K(XO) = K (x0) ®K[xo) 2 and

1
R/K[xo]

1 ~ 1 ~ 1
QQ(R)/K[XO] = K(XO) ®K[x0] Qﬁ/K[xo] ® R ®K[x0] QK(X())/K[X()]
~ 1 -~ 1
= Qo@R)/K(x0) @ R OKIxol Lk (xg)/K 101 = (0)-

This completes the proof. O

Now we present our main result of this section. It answers a question posed in Grif-
fiths and Harris (1978) and Davis and Maroscia (1984): CB-scheme + (?) = Complete
intersection? in the case of smooth 0-dimensional subscheme X of P%. In other
words, we replace the assumption that X is arithmetically Gorenstein by the weaker
assumption that X is a CB-scheme and show again that the non-vanishing of a single
homogeneous component of the Kihler different characterizes 0-dimensional com-
plete intersections.

Theorem 5.6 Let X C P} be a smooth O-dimensional scheme. Then X is a complete
intersection if and only if it is a CB-scheme and HF gy (rx) # 0.

Proof Suppose that the scheme X is a complete intersection. Then X is arithmetically
Gorenstein. It follows from Goto and Watanabe (1978, Proposition 2.1.3) that €x =
R(rx), and so there exists a homogeneous element g € (Cx)_, such that Cx = (g)r
and Anng(g) = (0). By Proposition 4.12, the scheme X is a CB-scheme. Moreover,
it follows from Corollary 2.7 that HFy,, (rx) # 0.
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Now we prove the converse. Since x < &x and HFy, (rx) # 0, we have
HFs, (rx) # 0. We let h be a non-zero element in (8x),. Then there is a point
pj € Supp(X) such that h,; # 0 in Ox p,. Because X is a CB-scheme, Proposi-
tion 4.12 implies that there is an element gj € (Tx)—r \{0} such that g;‘ = xo_zrxgjf
witllgf';f € Ry, and (§;‘)pj # 0.In Ox p,, we have h, - (g;f)p/. # 0. This implies
h - gj # 0, and then £ - gj # 0 (as x¢ is a non-zerodivisor of R). Thus there is an
elementc € K\{0} suchthatc = h- g;f € Ro = K.Inparticular, / is a non-zerodivisor
of R and Anng (g;‘) = (0). W.Lo.g. we may assume that ¢ = 1.

Next we prove that €x = (g;‘f)R. Leti > O and let g € (€x)i—r. Then we
have g -h € R;.Set f = g-h € Ri. Wehave g -h = f = fh-g;‘f,andso
(xg™ - g —xy* f - g5)h = 0. Since x3* € 6x and Anng(h) = (0), we have x;'* -

g - xgrx &= xérx - (g — fg}) = 0. The fact that xg is a non-zerodivisor on Cx

implies g = fgjf. Thus we get €x = (g;f)R, as claimed.

Consequently, we have €x = R(rx), since Anng (g;f) = (0). Hence the scheme X is
arithmetically Gorenstein by Goto and Watanabe (1978, Proposition 2.1.3). Therefore
an application of Proposition 5.5 yields that X is a complete intersection, as we wanted
to show. O

The following corollary is an immediate consequence of Theorem 5.6. This corol-
lary can be deduced from Kunz (1986, Theorem 9.5), and its corresponding local
version is given in Lenstra (1993, Proposition 1).

Corollary 5.7 Let X C P} be a 0-dimensional smooth scheme. Then X is a com-
plete intersection if and only if Ux is a principal ideal of R generated by a non-zero
homogeneous element of degree rx.

Proof Suppose that ¥x = (h)g for some element 1 € R, \{0}. Since HPy, =
deg(X) by Corollary 3.11, the element & must be a non-zerodivisor of R. Clearly,
HF g, (—rx) = HFx(rx) — HFx(rx — 1) > 1, and so there exists a non-zero element
g € (€x)—rx. We can write g = xo_zrxg for some g € R,. Since xp and & are
non-zerodivisors of R, we have

05 h-g=xy""hg € (9% (€x)—ry < Ro.

It follows that 2 - g € K\{0}, and hence Anng(g) = (0). Thus Proposition 4.12 yields
that X is a CB-scheme, and therefore X is a complete intersection by Theorem 5.6.
The other implication follows from Corollary 2.7. O

We conclude this section with the following criterion for O-dimensional arithmeti-
cally Gorenstein schemes.

Proposition 5.8 Let X C P be a 0-dimensional locally Gorenstein scheme. Then
the following conditions are equivalent.

(a) The scheme X is arithmetically Gorenstein.
(b) There exists an element h € R, \{0} such that §x = (h)g.
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(c) There exists an element h € (8x), with Anng(h) = (0).
(d) The scheme X is a CB-scheme and HF sy (rx) # 0.

If these conditions are satisfied, then the Hilbert function of the Dedekind different
satisfies HF 5, (i) = HFx (i — rx) foralli € Z, and ri(8x) = 2rx.

Proof (a)=>(b): This follows from the proof of “(b)=>(c)” of Proposition 5.5.
(b)=>(c): Assume that §x = (h)g with & € R, \{0}. According to Proposition 3.7,
there is an element f € R, suchthat fh = xgrx € §x, and therefore Anng (h) = (0).
(c)=(d): Suppose that there is & € (5x), With Anng(h) = (0). Obviously, we
have HF, (rx) # 0. Since HF g, (—rx) > 1, thereis anon-zero homogeneous element
g € (€x)_rg. Note that 5x€x < R. So, we can argue similarly as in the proof of
Corollary 5.7 to get Anng(g) = (0). Hence X is a CB-scheme by Proposition 4.12.
(d)=>(a): This follows easily from the proof of Theorem 5.6.
The additional claim follows from the fact that §x = R(—rx). O

6 Characterizations using higher Kihler differents

Previously, we mainly considered the Kihler different 9 = F()(SZ}Q /K xo]) of the
algebra R/ K [x¢] to study complete intersections, arithmetically Gorenstein schemes,
etc. But what about the algebra R/ K ? Since R is 1-dimensional, it is natural to consider
the higher Kahler different 9 = F!(Q} ) in this case. After exhibiting relations
between this higher Kihler different and the differents studied earlier and collecting
some results about its Hilbert function, we shall show that it, too, can be used to
characterize O-dimensional complete intersections in a nice way.

As in the previous sections, we let X be a O-dimensional subscheme of IP”}{ such that
Supp(X) N Z(Xp) = . Recall that the first Kéhler different 293%) of the algebra R/K
is the first Fitting ideal of 2 }e /K and that we called it the higher Kéhler different

of X. Using Kunz (1986, Proposition 4.19), we can compute 193(; ) as follows.
Proposition 6.1 Let {Fi, ..., F.} be a homogeneous set of generators of Ix. For
every subset S = {i1,...,iy} of {1,...,r} and every j € {0,...,n}, we define

C0(Fy e Fy)
AS’/ T 9(x0ees )Afj ----- Xn)

. Then we have
9% = (As;|SCHl,....r}, #S=n, j €{0,...,n}).

The following lemma provides useful relations between the Kihler differents
of R/K[xp] and of R/K.

Lemma 6.2 Let X C IP”,’( be a O-dimensional scheme. Then we have
xo0y) = oxm C Ox C 0.
Proof Analogous to Kreuzer et al. (2015, Lemma 2.2). O
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By applying the lemma, we can give bounds for the Hilbert polynomial and the
regularity index of the Kihler different z?s(gl ), as the following proposition shows.

Proposition 6.3 Let X C P be a 0-dimensional scheme, and let Xgy, be the set of
smooth points of X in Supp(X) = {p1, ..., ps}. Then we have

2> dimg(Ox ) < HP%(gn = HPyy < deg(X) — (s — #Xsm)
PjEXsm

and ri(dx) — 1 < ri@@{") < ri(x).

Proof By Lemma 6.2, we have xoﬁg ) C vx < 193(5 ). This implies the equalities
HPxo g = HP g = HPy,, since x( is anon-zerodivisor of R. Hence Proposition 2.15
X

yields the bounds for HP ;1) . Now we prove the claimed inequalities between regularity
X

indices. Obviously, we have ri(ﬁg) ) < ri(¥x). It follows from the inclusion xq 195(5 ) -
¥ that HFﬁ(l) (i) < HFy4 (i + 1) forevery i € Z. Consequently, we getri(dx) —1 <
X

i) < ri@y). O

IfX C }P’}( is a O-dimensional smooth scheme, then the Kéhler different 193(5) satisfies

HP () = deg(X), and we have ri(9y) < ri(9x) < rx(n + 1) by Corollary 3.11 and
X

the preceding proposition. Furthermore, we have the following particular values of the

Hilbert function of 19§(§1 )

Corollary 6.4 Let X C P be a reduced 0-dimensional complete intersection.

(a) Assume that X contains no smooth point in its support. Then we have HF N0 @H=0
X

foralli € 7.

(b) Assume that X contains at least one smooth point in its support. Let Y C X be
the subscheme defined by Iy = ) smooth Bj- Then, for alli € Z, we
have

pj€SuppX): p;

. ifi <rx,
HFﬁ(l)(l) = . f =
X HFy(i+1—rx) ifi >rx.

In particular, we have ri(ﬂg)) =ri(Vx) — | = rx + ry — 1 in this case.

Proof Since (a) follows immediately from the proposition, we prove (b). Let Ix =

(F1,..., Fy)andset Ag = H Then ¥x = (Ag)r. It follows from Lemma 6.2
that Xoﬁ;(gl ) = Aom. Since xq is a non-zerodivisor of R, the Hilbert function of ﬁs(gl )

satisfies HFﬂ(l)(i) = HFpqm(i + 1) foralli € Z. If i < rx, then0 < HFﬁ(l) (i) <
X X

HF (i + 1 —rgx) = 0, and so HFﬂm(i) = 0. For i > rx, we see that HFﬁu)(i) =
X X

HFAym (@ + 1) = HFy (i 4 1). Furthermore, Proposition 2.6 yields that HFy, (i) =
HFy (i —rx) forall i € Z. This implies HF j) (i) = HFy (i + 1 —rx) forall i > rx.
X

Hence the claim follows. O
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Corollary 6.5 Let X C P be a O-dimensional smooth scheme which is a complete
intersection. Then we have

0 —
HE, 0= AR
X HFx(i+1—-rx) ifi>rx.

In particular, we have ri(z?s(g)) =ri(¥x) —1=2rg— 1.

Now we present a criterion for a smooth 0-dimensional scheme X to be a complete
intersection which uses one value of the Hilbert function of the Kéhler different 193(&1 ),

Theorem 6.6 Let X C P} be a O-dimensional smooth scheme. Then the following
conditions are equivalent.

(a) The scheme X is a complete intersection.
(b) The scheme X is a CB-scheme and HF 5 (rx) # 0.
X

(c) We have xoﬁg) -Cx =m.

Proof (a)<(b): According to Lemma 6.2, we know that HF N0 (rx) # 0 if and only
X

if HFy, (rx) # 0. Hence the claim follows from Theorem 5.6.
(a)=(c): If X is a complete intersection and { F1, . .., F},} is ahomogeneous regular
sequence generating Iz, then we let Ag := H By Corollary 2.7, we get ¥ =

,,,,,

(Ag)r, Cx = (ASI)R, and Ay is a non-zerodivisor of R. We also have xoﬂg) = Agm
by Lemma 6.2. Then, multiplying by €x, we obtain xoz?;g ). Cx =m.

(c)=(a): Suppose that xoﬂ;g ). ¢x = m. It follows from the equality xg 193(5 ) = Pxm
that ¥xCxm = m. Furthermore, since ¥x is a subideal of éx, this implies

Ux€x C ox€x C R.

If ¥9xCx C R, then 9 Cx is a homogeneous ideal of R contained in m and

(0) € m = ¥xCxm C (0) + m.

By Nakayama’s lemma (cf. Kreuzer and Robbiano 2000, Proposition 1.7.15), we have
m = (0), which is impossible. Thus we must have 9xCx = R. Consequently, Cx is
invertible and 9x = §x. So, the scheme X is arithmetically Gorenstein and 9 = §x.
Therefore Proposition 5.5 yields that X is a complete intersection. O

In the last part of this section we characterize 0-dimensional complete intersec-

tions using the image of the canonical map W : Q}e K T QIQ,, (RY/K" Given a
0-dimensional scheme X C IP”I’( with Supp(X) = {p1, ..., ps}, we have the isomor-
phism 0"(R) = Hj‘:l Ox,pj[Tj, Tj_l] (see Proposition 3.1). Our next lemma gives
us a smoothness criterion for X in terms of the module of Kihler differentials Q'

O"(R)/K
of the K -algebra 0"(R).
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Lemma 6.7 Let X C P} be a 0-dimensional scheme with Supp(X) = {p1, ..., ps}.

Then X is smooth if and only ifQ]Qh(R)/K = [[=1 Ox.p, 75, Tj_l]de.

Proof On account of Kunz (1986, Corollary 4.8), we have

Q! =~

O"R)/K T «

1

\z“

1
O p 113,17 1/K

Also, Kunz (1986, Formula 4.4(b)) implies

1 _ Ql
Oxp; 17,7 1/K Ox.p;®kKIT;. T '1/K

= OX,pj Rk Ql

R 1
K[T]-,Tj_l]/K ® KT, Tj 1®k QOx,pj/K

-1 —1 1
= OX,,D]' [T;, Tj ]de @ K|[Tj, Tj 1 ®k QOX,pj/K’

1 _ ool 3 if QL
It follows that QOX_,,]. K Ox,p,; [T}, T; " 1dT} if and only if QOx_p,/K

This is equivalent to the condition that p; is a smooth point of X (see Kunz 1986,

Theorem 7.14). Therefore QlQh(R)/K = H;:l OX,pj (75, Tj_l]de if and only if the

scheme X is smooth. O

=0.

For the remainder of this section, we assume that the scheme X is smooth.
Using the lemma and the isomorphism Qh (R) = szl Ox. i [T}, Tj_l], we see that
Qbh(RW( = Q"(R)dxq is a free Q" (R)-module of rank one and that dx; = dx
for all i = 0, ..., n. Furthermore, letting Lo = K[xo, xy 1], the canonical trace
Tr = Trongyr, : Q"(R) —> Lo is a Q" (R)-basis of Hom; (Q"(R), Lo) and
induces a homogeneous Lg-linear map of degree zero

Q. 1 1
T Qi — ok

such that Tr%( f dxo) = Tr(f) dxo for f € Q"(R).
Definition 6.8 In the setting defined above, the set

1 Q 1
Qx = {0 € Ly g | TR ®) S Qi)

is clearly a graded R-module. It is called the module of regular differential forms
of R/K (or of X).

This module was introduced by Kunz (1975, 1978) and later generalized and
extended by Kunz and Waldi (1988). In our setting, it has the following properties.

Proposition 6.9 Let X be a smooth 0-dimensional subscheme of P .

(a) The module of regular differential forms of X satisfies Qx = Cx dxp.
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(b) The image of the canonical map W : Q. RIK — Q! is contained in Q2x.

0"(R)/K
Thus it induces an R-linear map cx : QR/K —> Qx which is called the funda-
mental class of X.

Proof Let f € Q" (R) be anon-zero homogeneous element. We see that w = fdxq €
Qx if and only if TrQ(gfdxo) = Tr(gf)dxo € Kl[xgldxg for all g € R. This is
equivalent to (f - Tr)(g) € K[xo] forall g € R, ie.,to f - Tr € wgr(l). Under the
injection ® given in Definition 3.5, this is also equivalent to f € Cx, and consequently
claim (a) follows.

Next we prove claim (b). In Q! we have dx; = ;C—édxo fori =0,...,n

oM(R)/K’
Since QR/K = Rdxg + --- + Rdx,, we have \IJ(Q}?/K) = %dxo. Moreover, we
see that HF g, (0) = deg(X) — HFx(—1) = deg(X), and so we have xo(€x)o =
xo(Qh (R))o = (Q"(R))1. Thus we get m C xoCx. Therefore, by part (a), we obtain
w(QL /K) dxo C €xdxg = 2%, as we wanted to show. O

In the preceding proof we showed that Cx(Q}Q / k) = )‘:—;dxo. The kernel of the
fundamental class can be described as follows.

Proposition 6.10 We have Ker(cx) = { >/_, gidx; € Q}?/K | > gixi =0}

Proof For an element w = Y !_ gidx; € Q}Q/K, cx(w) = (xlo > &ixi)dxg. So,
cx(w) = 01if and only 1f Z" o0 &ixi = 0. Since xy is a non-zerodivisor for 0"(R),
this is equivalent to leo gixi = 0. Hence the conclusion follows. O

Next we use the image of the fundamental class to characterize 0-dimensional
complete intersections.

Theorem 6.11 Let X C P be a 0-dimensional smooth scheme. Then X is a complete
intersection if and only if cx (2! /K) = ﬂ(l)QX

Proof Assume that X is a complete intersection. Let {Fy, ..., F,,} bea homogeneous
regular sequence generating Ix. We set A 3 (jo(f 1ij for j =0,...,n.In
Q}e /K> there are relations

oF; oF; JF;

ldxg+ —tdxi 4+ —tdx, =0 fori=1,....n

dxg x| 0xy
By Cramer’s Rule, we have Agdx; = (—1)”+1_jAjdx0 for j = 1,...,n. Thus we

deduce from Q}Q/K = Rdxy+ -+ + Rdx, and €x = (Aal)R that

Ay Ay A
CX(QR/K) < »—,---,—n>
0 R

Conversely, suppose CX(Q}Q/K) = ﬁ§)QX. We know that CX(Q}e/K) = )?—;dxo. Thus
we get the equality mdxg = xoﬁég)dexo. Since Anng(dxg) = (0), we obtain m =

X0 z?s(gl )Qﬁx. Therefore the conclusion follows from Theorem 6.6. O
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From the proof of this theorem we also get a characterization of arithmetically
Gorenstein schemes which is based on the following observations.

Remark 6.12 Let X C ]P’,'( be a O-dimensional smooth scheme.

(a) There is an exact sequence of graded R-modules
0 — Ker(cx) — Qp/x — Qx —> Qx/cx(Q/x) — 0.

The R-module Jx = Qx/ \I’(Q}e / &) is also known as the Jacobian module of X.

(b) Notice that CX(Q}e / k) E mand Qx = €x(1). Thus the Hilbert function of Jx is
given by

HF j (i) = deg(X) — HFx (—i) — HF (i)
for all i € Z. Hence Jx is a finite dimensional K-vector space with

re—1
dimg (Jx) = (x — Ddeg(X) + 1+ 5 (deg(X) — HFx(7)
i=0

—HFx(rx —i = 1)).

Finally, we characterize arithmetically Gorenstein schemes using the dimension of
their Jacobian module as follows.

Corollary 6.13 Let K be an infinite field, and let X C P, be a 0-dimensional smooth
scheme. Then the following conditions are equivalent.

(a) The scheme X is arithmetically Gorenstein.
(b) The scheme X is a CB-scheme and dimg (Jx) = (rx — 1)deg(X) + 1.

Proof If X is an arithmetically Gorenstein scheme, Theorem 4.15 implies HFx (i) +
HFx(rx —i — 1) =deg(X) fori =0, ..., rx — 1. Hence Remark 6.12(b) yields the
equality dimg (Jx) = (rx — 1)deg(X) + 1. Moreover, Proposition 5.8 shows that X
is a CB-scheme.

Conversely, assume that X is a CB-scheme and dimg (Jx) = (rx — 1)deg(X) + 1.
Since K is infinite, Remark 4.13 tells us that there is an element g € (€x)_ such
that Anng(g) = (0). Thus R(—rx) = R - g € Cx. This implies

HFx (i) < HFg, (i —rx) =deg(X) —HFx(rx —i = 1)

foralli € Z. Since dimg (Jx) = (rx — 1)deg(X) + 1, we deduce Z?ial(deg(X) —
HFx (i) —HFx(rx —i —1)) = 0. Hence we must have HFx (i) = deg(X) —HFx(rg —
i — 1) forall i € Z. Observe that deg(X) — HFx(rx — 1) = HFx(0) = 1 and
HFg, (i — rx) = deg(X) — HFx(rx — i — 1) = HFx(i) = HF(g), (i — rx). Thus we
get Cx = (g) g, and therefore X is arithmetically Gorenstein. O
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