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1 Introduction

Given a 0-dimensional scheme X in a projective space P
n
K over a field K , it is an

interesting question to characterize algebraically and geometrically when X is the
complete intersection of n hypersurfaces. In general, characterizations of complete
intersection rings using differentials, differents, and complementary modules have
been studied by R. Berger, E. Kunz, H.-J. Nastold, G. Scheja, U. Storch, and others in
the 1960s and 1970s. Many of these results we collected and unified in the book (Kunz
1986)whichweuse as our reference. In this paperwe are specifically interested in zero-
dimensional subschemes of projective spaces, for which the homogeneous coordinate
ring is a 1-dimensional standard graded Cohen Macaulay ring.

In the case n = 2, i.e., for subschemes of the projective plane, Davis and Maroscia
(1984) characterized complete intersections via the Cayley–Bacharach property and
the symmetry of the Hilbert function of X. Later it turned out that these conditions
characterize arithmetically Gorenstein schemes for arbitrary n ≥ 2 (see Davis et al.
1985; Kreuzer 1992). The attempt to refine this characterization by showing that X is
the zero-set of a section of a vector bundle and then forcing the vector bundle to split
into a direct sum of line bundles led to rather complicated and unwieldy conditions
(see Kreuzer 1992 for the case n = 3 and Kreuzer et al. 2000 for the general case).

On the algebraic side, Wiebe (1969) proved for 0-dimensional local rings that they
are complete intersections if and only if the 0-th Fitting ideal of the maximal ideal
is non-zero. If we assume that the 0-dimensional scheme X is contained in the affine
space D+(X0), this characterization can be applied to theArtinian reduction R/〈x0〉 of
the homogeneous coordinate ring R = K [X0, . . . , Xn]/IX of X. Similarly, assuming
char(K ) = 0, Scheja and Storch (1975) characterized 0-dimensional local complete
intersections by the non-vanishing of the Kähler different, i.e., the 0-th Fitting ideal
of the Kähler differential module. Unfortunately, these characterizations do not allow
finer distinctions such as the characterization of arithmetically Gorenstein schemes X.

The main idea in this paper is to combine these two approaches and to use the
Kähler differents of the algebras R/K [x0] and R/K together with some geometric
properties to characterize 0-dimensional complete intersection schemes. For instance,
we prove the following theorem which provides one possible answer to the question
posed by Griffiths and Harris (1978): if X is a Cayley–Bacharach scheme, when is X

a complete intersection?

Theorem 1.1 Let X be a smooth 0-dimensional subscheme of P
n
K . Then X is a com-

plete intersection if and only if X is a Cayley–Bacharach scheme and the Hilbert
function of the Kähler different ϑX of X satisfies HFϑX

(rX) �= 0, where rX is the
regularity index of the Hilbert function of X.

As a consequence, we will see that this condition is also equivalent to the Käh-
ler different being a principal ideal generated by a homogeneous non-zerodivisor of
degree rX. The latter characterization is the graded version of a result given by Lenstra
(1993) in the local case which in turn is a slight sharpening of a result used by Wiles
(1995). Along the way, we prove a number of further characterizations of smooth
0-dimensional complete intersections.
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Let us describe the contents of this paper in more detail. In Sect. 2 we recall the
definition of the Kähler different. In fact, we introduce three Kähler differents which
will be used later on. Assuming that X is contained in D+(X0), as we always do, the
residue class x0 of X0 in the homogeneous coordinate ring R = K [X0, . . . , Xn]/IX
ofX is a non-zerodivisor. Then we define the Kähler different ϑX = F0(�

1
R/K [x0]), the

reduced Kähler different ϑ̄X = F0(�
1
R/K

), where R = R/〈x0〉, and the higher Kähler
different ϑ

(1)
X

= F1(�
1
R/K ). After discussing the basic properties of these differents,

we have a closer look at the Hilbert function of ϑX. Using some examples, we see that
this is a tricky invariant and that even its eventual value, the Hilbert polynomial of ϑX,
is in general difficult to determine.

Section 3 deals with theDedekind different of a 0-dimensional schemeX . To define
it, we need to assume that X is locally Gorenstein. We make the construction in Her-
zog et al. (1971) explicit and embed the canonical module of X in its homogeneous
coordinate ring to get the Dedekind complementary module whose inverse ideal is the
Dedekind different. Notice that this construction depends on the choice of a system
of traces for the local rings of X. However, if X is smooth, we can use the canonical
traces and get a well-defined result. The section ends with some relations between the
Kähler and the Dedekind different of X.

Many characterizations of 0-dimensional complete intersections use the Cayley–
Bacharach property. In Sect. 4we generalize the notion of aCaylay–Bacharach scheme
(CB-scheme) to the case of a not necessarily reduced scheme X defined over an arbi-
trary base field K . Many concepts such as the degree of a point in X require careful
adjustments in this generality. We also characterize CB-schemes via the existence of
particular elements in the first homogeneous component of the Dedekind complemen-
tary module and use this result to generalize the characterization of arithmetically
Gorenstein schemes via the Cayley–Bacharach property and the symmetry of their
Hilbert function (see Kreuzer 1992).

The heart of the paper is contained in Sect. 5 where we characterize 0-dimensional
complete intersections in several ways. The first characterization generalizes the
above-mentioned result by Scheja and Storch (1975) and uses the non-vanishing of
the reduced Kähler different. A second criterion uses a single value of the Hilbert
function of ϑX to distinguish complete intersections from arithmetically Gorenstein
schemes. The third characterization answers the question of P. Griffiths and J. Harris
for smooth 0-dimensional schemes by requiring a CB-scheme to have HFϑX

(rX) �= 0.
If we replace the Kähler different by the Dedekind different, we get a characterization
of 0-dimensional arithmetically Gorenstein schemes, as Proposition 5.8 shows.

In the last section we present some characterizations which use the first Kähler dif-
ferent ϑ

(1)
X

of R/K . After collecting some properties of this different and its Hilbert
function, we show that it can be used to characterize smooth 0-dimensional complete
intersections in the same way as with ϑX by the Cayley–Bacharach property and one
non-zero value of its Hilbert function. Finally, we introduce the module of regular dif-
ferential forms�X and the fundamental class cX : �1

R/K −→ �X ofX. Then smooth

0-dimensional complete intersections are also characterized by cX(�1
R/K ) = ϑ

(1)
X

�X.
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Lastly, smooth arithmetically Gorenstein schemes are characterized by the Cayley–
Bacharach property and the dimension of their Jacobianmodule JX = �X/cX(�1

R/K ).
Unless mentioned explicitly otherwise, we adhere to the definitions and notation

introduced in the books (Kreuzer and Robbiano 2000, 2005). The examples in this
paper were calculated using a package implemented by the second author in the com-
puter algebra system The ApCoCoA Team (2007).

2 Kähler differents of zero-dimensional schemes

In this paper we always work in the following setting. Let K be an arbitrary field,
and let P = K [X0, . . . , Xn] be the polynomial ring in n + 1 indeterminates over K ,
equipped with the standard grading. Then P is the homogeneous coordinate ring of
projective n-space P

n
K .

Our main object of study is a (non-empty) 0-dimensional subscheme X of P
n
K .

Its homogeneous vanishing ideal in P is denoted by IX. Then R = P/IX is the
homogeneous coordinate ring of X. It is a 1-dimensional standard graded Cohen–
Macaulay K -algebra. Its homogeneous maximal ideal will be denoted by m.

Assumption In the following we assume that no point of the support of X is contained
in the hypersurface at infinity Z(X0). Consequently, the residue class x0 of X0 in R
is a non-zerodivisor.

The ring R = R/〈x0〉 is called the Artinian reduction of R. It is a 0-dimensional,
local K -algebra, and hence a finite dimensional K -vector space of dimension d =
deg(X). The maximal ideal of R is denoted by m. It follows that R is a finite free
K [x0]-module of rank d. The modules of Kähler differentials of the three algebras
R/K , R/K , and R/K [x0] are related as follows (cf. Kunz 1986).

Proposition 2.1 The element x0 is a non-zerodivisor for the module �1
R/K [x0], and we

have �1
R/K [x0]/x0 �1

R/K [x0]
∼= �1

R/K
. Furthermore, there exists a canonical homoge-

neous exact sequence

0 −→ Rdx0 −→ �1
R/K −→ �1

R/K [x0] −→ 0

Now the Fitting ideals of these three Kähler differential modules are given the
following names. (For some basic properties of Fitting ideals we refer the reader
to Kunz 1986, Appendix D.)

Definition 2.2 (a) The ideal ϑR/K [x0] = F0(�
1
R/K [x0]) of R is called the Kähler

different of X (or of R/K [x0]). For short, we also write ϑX instead of ϑR/K [x0].
(b) The ideal ϑR/K = F0(�

1
R/K

) of R is called the reduced Kähler different of X.

We also write ϑ̄X instead of ϑR/K for short.

(c) The ideal ϑ
(1)
R/K = F1(�

1
R/K ) is called the higher Kähler different of X (or of

R/K ). This ideal is also denoted by ϑ
(1)
X

for short.

Recall that the scheme X is called a complete intersection if its homogeneous
vanishing ideal can be generated by n homogeneous polynomials, i.e., if there exist
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homogeneous polynomials F1, . . . , Fn ∈ P such that IX = 〈F1, . . . , Fn〉. It is well-
known that the Kähler different is given by ϑX = 〈 ∂(F1,...,Fn)

∂(x1,...,xn)
〉R in this case, i.e., it is

the principal ideal generated by the Jacobian determinant of (F1, . . . , Fn). A similar
description can be given for ϑ̄X.

Given a finitely generated graded module M over a standard graded K -algebra, we
let HFM : Z −→ N be the map defined by HFM (i) = dimK (Mi ). Recall that this
map is called the Hilbert function of M . This is an integer function of polynomial
type, i.e., it agrees with the value of theHilbert polynomial HPM (i) in large degrees
i 	 0. The number ri(M) = min{i ≥ 0 | HFM ( j) = HPM ( j) for all j ≥ i} is called
the regularity index of M . Instead of HFR , we also write HFX and call it the Hilbert
function of X.

Remark 2.3 The Hilbert function of X satisfies HFX(i) = 0 for i < 0 and

1 = HFX(0) < HFX(1) < · · · < HFX(rX) = d = HFX(rX + 1) = · · ·

for some number rX ≥ 0 which is called the regularity index of X.

In the rest of this section we collect some general results and examples illustrating
properties of the Hilbert function of the Kähler different of X. Later we will see that
the reduced Kähler different is much less interesting (it vanishes most of the time) and
that one can prove similar things for the Hilbert function of the higher Kähler different
(see Sect. 6).

Remark 2.4 Since x0 is a non-zerodivisor of R and ϑX is an ideal in R, the Hilbert
function HFϑX

is non-decreasing. Therefore it has an initial degree min{i ∈ Z |
HFϑX

(i) �= 0} and an eventual value HFϑX
( j) for j 	 0 which is also known as the

Hilbert polynomial of ϑX and denoted by HPϑX
.

Recall that the minimal prime divisors of IX are homogeneous prime ideals which
correspond to points in P

n
K = Proj(P). The set of these points is called the support

of X and will be denoted by Supp(X) = {p1, . . . , ps}. To each point pi we have
the associated local ring OX,pi , its homogeneous vanishing ideal Pi in P , and the
associated homogeneous ideal pi in R.

Definition 2.5 (a) A point pi ∈ Supp(X) is called a reduced point of X, if OX,pi is
a reduced ring.

(b) A point pi ∈ Supp(X) is called a smooth point of X, or X is called smooth at pi ,
if OX,pi /K is a finite separable field extension.

(c) We say that X is reduced (resp. smooth) if it is reduced (resp. smooth) at all
points of its support.

Clearly, if pi is a smooth point of X then it is a reduced point of X. The converse
is true if K is a perfect field (cf. Kunz 1986, Propositions 5.18 and 7.12).

If X is a smooth complete intersection, then we know the Hilbert function of ϑX.
More generally, if X is reduced then the Hilbert function of ϑX can be described in
terms of the subset Y of smooth points of X, as the following proposition shows.
Notice that for Y = ∅ we have IY/X = m.
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Proposition 2.6 Let X be a 0-dimensional reduced complete intersection in P
n
K . We

write IX = 〈F1, . . . , Fn〉, where Fj ∈ P is a homogeneous polynomial of degree d j

for j = 1, . . . , n. (Recall that we have rX = ∑n
i=1 di − n in this case.) Let Y be the

subscheme of X consisting of all smooth points in Supp(X). Then we have

HFϑX
(i) =

{
HFY(i − rX) if Y �= ∅
0 if Y = ∅

for all i ∈ Z.

Proof Let IY/X be the ideal of Y in R and put � := ∂(F1,...,Fn)
∂(x1,...,xn)

. Then we have
ϑX = 〈�〉R . In the case Y = ∅, we have � ∈ p1 ∩ · · · ∩ ps = 〈0〉 by Kunz (1986,
Theorem 10.12). This implies ϑX = 〈0〉.

In the case Y �= ∅, we use Kunz (1986, Theorem 10.12) again to conclude that the
element �+ IY/X is a non-zerodivisor of RY = R/IY/X and that we have � ∈ p j for
all j ∈ {1, . . . , s} such that p j /∈ Supp(Y). Now we fix the degree i ≥ 0 and suppose
HFY(i) = t . Let {g1 + IY/X, . . . , gt + IY/X} be a K -basis of the vector space (RY)i .
Then the set {� ·g1+ IY/X, . . . ,� ·gt + IY/X} ⊆ (RY)i+rX is K -linearly independent.
It follows that the vector space (� · R)i+rX has K -dimension greater than or equal to
t , in other words, we have HFϑX

(i + rX) ≥ HFY(i).
On the other hand, we observe that � · h = 0 in R for every homogeneous element

h ∈ IY/X\{0}, sinceX is reduced. For every f ∈ Ri , wewrite f = a1g1+· · ·+at gt +h
for some a1, . . . , at ∈ K and h ∈ (IY/X)i . Then� · f = � ·(a1g1+· · ·+at gt +h) =
a1� · g1+· · ·+at� · gt ∈ 〈� · g1, . . . ,� · gt 〉K (as� ·h = 0 in R). Thus (ϑX)i+rX =
(�·R)i+rX ⊆ 〈�·g1, . . . , �·gt 〉K , and henceHFϑX

(i +rX) ≤ t = HFY(i). Therefore
the conclusion follows. ��

In particular, if X is smooth, this proposition simplifies as follows.

Corollary 2.7 Let X be a smooth 0-dimensional complete intersection in P
n
K .

(a) The Kähler different of X is given by ϑX = 〈
∂(F1,...,Fn)
∂(x1,...,xn)

〉
R, where ∂(F1,...,Fn)

∂(x1,...,xn)
is a

homogeneous non-zerodivisor of R of degree rX = ∑n
i=1 di − n.

(b) The Hilbert function of ϑX satisfies HFϑX
(i) = HFX(i − rX) for all i ∈ Z.

Remark 2.8 In the setting of the proposition, the regularity index of the Kähler dif-
ferent is rX + rY. If we remove the condition that X is reduced, then we have
HFϑX

(i) ≥ HFY(i − rX) for all i ∈ Z. This follows from the first part of the proof of
the proposition.

The following example shows that, even ifX is a complete intersection, the eventual
value of the Hilbert function of ϑX may not be equal to deg(X).

Example 2.9 Let K be a field with char(K ) /∈ {2, 3}, and let X ⊆ P
2
K be the 0-

dimensional complete intersection defined by the ideal IX = 〈F, G〉, where we have
F = X1(X1−2X0)(X1+2X0) andG = (X2−X0)(X2

1+X2
2−4X2

0). Thendeg(X) = 9
and Supp(X) = {p1, . . . , p7}, where p1 = (1 : 0 : 1), p2 = (1 : 0 : 2), p3 = (1 : 0 :
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−2), p4 = (1 : 2 : 1), p5 = (1 : 2 : 0), p6 = (1 : −2 : 1), and p7 = (1 : −2 : 0).
ByP j we denote the associated homogeneous prime ideal in P of p j for j = 1, . . . , 7.
The homogeneous primary decomposition of the ideal IX is IX = I1 ∩ · · ·∩ I7, where
I j = P j for j �= 5, 7, I5 = 〈X1 − 2X0, X2

2〉, and I7 = 〈X1 + 2X0, X2
2〉. This means

that X is not reduced at p5 and p7, and so X is not smooth at those points. In this
case we have ϑX = 〈

∂(F,G)
∂(x1,x2)

〉 = 〈 4x0x21 x2 − 16x20 x22 − 3x21 x22 − 2x0x32 + 6x42 〉. In
particular, the Jacobian determinant ∂(F,G)

∂(x1,x2)
is a zerodivisor of R. This shows that the

smoothness of X in the above corollary is a necessary hypothesis. Furthermore, we
have

HFX : 1 3 6 8 9 9 · · ·
HFϑX

: 0 0 0 0 1 3 6 7 7 · · ·

Hence the Hilbert function of ϑX can stabilize at a value �= deg(X).

The next example shows that, in general, the initial degree of the Hilbert function
of ϑX can be less than rX.

Example 2.10 Let X ⊆ P
2
Q

be the set of five Q-rational points: p1 = (1 : 1 : 0),
p2 = (1 : 1 : 1), p3 = (1 : −1 : 1), p4 = (1 : 2 : 1), and p5 = (1 : −2 : 1). We have
HFX : 1 3 4 5 5 · · · and rX = 3. Moreover, we have HFϑX

: 0 0 1 1 3 4 5 5 · · · and
ϑX = 〈x0x1 − x1x2, x21 x22 − 8

5 x42 , x31 x2 − 5
2 x1x32 〉. Thus, in this case, the initial degree

of the Hilbert function of ϑX is less than rX = 3.

The following condition will play an important role in this paper.

Definition 2.11 A 0-dimensional scheme X ⊆ P
n
K is called arithmetically Goren-

stein if R is a Gorenstein ring.

Note that if X is a complete intersection then it is arithmetically Gorenstein, but
the converse is not true in general, as the next example shows. Moreover, for an
arithmetically Gorenstein scheme X, later results will show that the initial degree of
the Hilbert function of ϑX is at least rX. The next example also illustrates that this
initial degree can be strictly higher.

Example 2.12 Let X ⊆ P
3
F7

be the following set of five distinct F7-rational points
on the twisted cubic curve: p1 = (1 : 0 : 0 : 0), p2 = (1 : 1 : 1 : 1), p3 =
(1 : −1 : 1 : −1), p4 = (1 : 2 : 4 : 8), and p5 = (8 : 4 : 2 : 1). We have
HFX : 1 4 5 5 · · · and rX = 2. An application of Theorem 7 in Geramita and
Orecchia (1981) shows that X is arithmetically Gorenstein. Moreover, a calculation
gives us ϑX = 〈x2x23 − 3x33 , x1x23 , x0x23 − 3x33 , x30 〉 and HFϑX

: 0 0 0 4 5 5 · · · .
Hence X is not a complete intersection and the initial degree of HFϑX

is 3 > rX.

As mentioned above, the Kähler different of a complete intersectionX is a principal
ideal. The following example shows that theKähler different canbeprincipalwithoutX
being a complete intersection.
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Example 2.13 Let X ⊆ P
2
Q
be the set consisting of six Q-rational points: p1 = (1 :

0 : 0), p2 = (1 : 0 : 1), p3 = (1 : 1 : 0), p4 = (1 : 1 : 1), p5 = (1 : 2 : 0),
and p6 = (1 : 2 : 1), and let Y be the fat point scheme defined by the saturated
homogeneous ideal

IY = P1 ∩ · · · ∩ P4 ∩ P2
5 ∩ P2

6.

Then Y is an almost complete intersection, i.e., IY is minimally generated by three
homogeneous polynomials in P . In particular, Y is not a complete intersection. But
in this case ϑY is the principal ideal generated by the homogeneous polynomial

x50 − 15
4 x20 x31 + 55

16 x0x41 − 13
16 x51 + 3

4 x31 x22 − 7
2 x21 x32 + 5x1x42 − 2x52 .

Moreover, the Hilbert function of ϑY is HFϑY
: 0 0 0 0 0 1 3 4 4 · · · and its regularity

index satisfies ri(ϑY) = 7 < 8 = 2rY.

In the last part of this section we collect some results about the eventual value
of HFϑX

, i.e., the Hilbert polynomial of ϑX.

Remark 2.14 If X is a fat point scheme in P
n
K , then the Hilbert polynomial of the

Kähler different ϑX is exactly the number of reduced points of the scheme X, and we
have ri(ϑX) ≤ n rX (see Kreuzer et al. 2015, Theorem 2.5).

Apart from some other special cases, to exactly determine the Hilbert polynomial
of the Kähler different for an arbitrary 0-dimensional subscheme X of P

n
K is not an

easy task. Hence we try at least to find (possibly sharp) bounds for it.

Proposition 2.15 Let X ⊆ P
n
K be a 0-dimensional scheme, and let Xsm be the set of

smooth points in its support Supp(X) = {p1, . . . , ps}. Then we have

∑

p j ∈Xsm

dimK (OX,p j ) ≤ HPϑX
≤ deg(X) − (s − #Xsm).

Proof Let P j ⊆ P be the associated prime ideal of p j for j = 1, . . . , s, and set

I := ⋂

p j ∈Supp(X)\Xsm

P j .

It follows from Kunz (1986, Theorem 10.12) that ϑX ⊆ p j = P j/IX for every point
p j ∈ Supp(X)\Xsm. Hence we get ϑX ⊆ I/IX, and consequently

HFϑX
(i) ≤ HFI/IX(i) = HFX(i) − HFP/I (i) ≤ deg(X) − deg(Y)

for all i ∈ N, where Y is the 0-dimensional subscheme of P
n
K defined by I . Observe

that the scheme Y has degree deg(Y) ≥ s − #Xsm. Thus we obtain

HPϑX
≤ deg(X) − deg(Y) ≤ deg(X) − (s − #Xsm).
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Next we prove the first inequality of HPϑX
. If Xsm = ∅, then there is nothing to prove,

since we always have HPϑX
≥ 0. Now let us consider the case #Xsm ≥ 1. W.l.o.g.

we may assume that Xsm = {p1, . . . , p�} where � := #Xsm. Then Kunz (1986,
Theorem 10.12) implies ϑX � p j for all j = 1, . . . , �. It follows from Homogeneous
Prime Avoidance (see for instance Kreuzer and Robbiano 2005, Proposition 5.6.22)
that there exists a homogeneous element h ∈ (ϑX)m\{0} for some m ≥ 0 such
that h /∈ ⋃�

j=1(p j )m . This implies that h p j �= 0 in OX,p j for j = 1, . . . , �. Let
j ∈ {1, . . . , �}, let � j = dimK (OX,p j ), and let {e j1, . . . , e j� j } be a K -basis ofOX,p j .
For any non-zero element a ∈ OX,p j , it is not difficult to verify that {ae j1, . . . , ae j� j }
is a K -basis of OX,p j , then so is {h p j e jke j1, . . . , h p j e jke j� j }, where 1 ≤ k ≤ � j .

Now we consider the isomorphism of K -vector spaces ı : RrX → ∏s
j=1OX,p j

given by ı( f ) = ( f p1 , . . . , f ps ), where f p j ∈ OX,p j is the germ of f at p j for
j = 1, . . . , s (cf. Kreuzer 1994, Lemma 1.1). For all j = 1, . . . , � and for all k j =
1, . . . , � j , we let f jk j = ı−1((0, . . . , 0, e jk j , 0, . . . , 0)) ∈ RrX . Then we get

〈h f11, . . . , h f1�1 , . . . , h f�1, . . . , h f��� 〉K ⊆ (ϑX)rX+m ⊆ RrX+m .

We show that { h f11, . . . , h f1�1, . . . , h f�1, . . . , h f��� } is K -linearly independent.
Remark that for j1, j2 ∈ {1, . . . , �} and for ki ∈ {1, . . . , � ji }, where i = 1, 2, we have
f j1k1 · f j2k2 �= 0 if j1 = j2 and f j1k1 · f j2k2 = 0 if j1 �= j2, and h f 2j1k1

�= 0 in R2rX+m .
Suppose for contradiction that there are c11, . . . , c1�1 , . . . , c�1, . . . , c��� ∈ K , not all

equal to zero, such that
∑�

j=1

∑� j
k j =1 c jk j h f jk j = 0.W.l.o.g. wemay assume c11 �= 0.

We then have

h f 211 = 1
c11

(
�1∑

k1=2
c1k1h f1k1 f11 +

�∑

j=2

� j∑

k j =1
c jk j h f jk j f11

)

= 1
c11

�1∑

k1=2
c1k1h f11 f1k1 .

Thus, in OX,p1 , we get the equality h p1e211 = 1
c11

∑�1
k1=2 c1k1h p1e11e1k1 , in contra-

diction to the fact that {h p1e211, h p1e11e12, . . . , h p1e11e1�1} is a K -basis of OX,p1 .
Therefore we obtain

HPϑX
≥ dimK 〈h f11, . . . , h f1�1 , . . . , h f�1, . . . , h f��� 〉K

=
�∑

j=1
� j = ∑

p j ∈Xsm

dimK (OX,p j )

and the proposition is completely proved. ��
Clearly, the lower bound for HPϑX

is attained for a smooth scheme X. Our next
example shows that the upper bound for HPϑX

is also sharp.

Example 2.16 Let us go back to Example 2.9. The schemeX is a complete intersection
with deg(X) = 9, and it is not smooth at two points p5 and p7. In this case we have
� = 5 and

HPϑX
= deg(X) − (s − �) = 7 > 5 = � = ∑

p j ∈Xsm

dimK (OX,p j )

and ri(ϑX) = 7 < 8 = 2rX.
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3 Dedekind differents of zero-dimensional schemes

In this section we continue to use the notation introduced above. Recall that the graded
R-module ωR = HomK [x0](R, K [x0])(−1) is called the canonical module of R. It
is a finitely generated graded R-module with Hilbert function HFωR (i) = deg(X) −
HFX(−i) for all i ∈ Z. (For further details about this module, we refer to Kreuzer
1994.)

It is known that, for a locally Gorenstein scheme X, one can embed the canonical
module of R as a fractional ideal into its homogeneous ring of quotients (see Herzog
et al. 1971). Subsequently, we need tomake this construction explicit. The presentation
follows the construction given in Kreuzer (2000), generalizing it to the case at hand.

In a first step, we want to describe the homogeneous ring of quotients Qh(R) of R.
It is defined as the localization of R with respect to the set of all homogeneous non-
zerodivisors of R. In view of Kreuzer (1994, Lemma 1.1), there is a homogeneous
injection of degree zero

ı̃ : R → R̃ :=
s∏

j=1
OX,p j [Tj ] ↪→

s∏

j=1
OX,p j [Tj , T −1

j ] (∗)

given by ı̃( f ) = ( f p1T i
1 , . . . , f ps T i

s ), where f ∈ Ri for i ≥ 0, and where T1, . . . , Ts

are indeterminates with deg(T1) = · · · = deg(Ts) = 1. In particular, we have ı̃(x0) =
(T1, . . . , Ts). Now we can describe Qh(R) as follows.

Proposition 3.1 The map ı̃ extends to an isomorphism of graded R-modules


 : Qh(R)
∼−→

s∏

j=1
OX,p j [Tj , T −1

j ],

where for every element f/g ∈ Qh(R) with f ∈ Rk and a non-zerodivisor g ∈ Rl we
have


(
f

g
) = ı̃( f )

ı̃(g)
=

(
f p1

gp1
T k−l
1 , . . . ,

f ps

gps

T k−l
s

)

.

In particular, we have Qh(R) ∼= Rx0 .

Proof For a non-zerodivisor g ∈ Ri , the element gp j ∈ OX,p j is a unit element

for all j = 1, . . . , s (see Kreuzer 1998, Lemma 1.5). Let f/g ∈ Qh(R) with f ∈
Rk and a non-zerodivisor g ∈ Rl . Then ı̃( f ) = ( f p1T k

1 , . . . , f ps T k
s ) and ı̃(g) =

(gp1T l
1 , . . . , gps T l

s ), so we get




(
f

g

)

= ı̃( f )

ı̃(g)
=

(
f p1

gp1
T k−l
1 , . . . ,

f ps

gps

T k−l
s

)

∈
s∏

j=1
OX,p j [Tj , T −1

j ].

Thus the map 
 : Qh(R) → ∏s
j=1OX,p j [Tj , T −1

j ] is well defined. It is clearly true

that 
 is R-linear, homogeneous of degree zero. If 
(
f
g ) = 0, then

f p j
gp j

= 0 ∈ OX,p j
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for all j = 1, . . . , s. This implies f p j = 0 for all j = 1, . . . , s, and so f = 0, since
themap ı̃ is injective. Hence themap
 is an injection. Nowwe show that themap
 is
surjective. Let (g1, . . . , gs) ∈ ∏s

j=1OX,p j [Tj , T −1
j ]. For i 	 0we have dimK (Ri ) =

deg(X) = dimK (
∏s

j=1OX,p j [Tj , T −1
j ])i . Thus, for i 	 0, (T i

1 g1, . . . , T i
s gs) is of

the form 
( f ) for some f ∈ R. Therefore the element (g1, . . . , gs) is the image
of f/xi

0, and the claim follows. ��
Recall that a trace map of a finite algebra T/S is a T -basis of the module

HomS(T, S). The second task we want to tackle is the construction of a trace map for
the algebra Qh(R)/K [x0, x−1

0 ]. For this we need to restrict our attention to a special
class of 0-dimensional schemes.

Definition 3.2 A 0-dimensional scheme X ⊆ P
n
K is called locally Gorenstein if at

each point p j ∈ Supp(X) the local ring OX,p j is a Gorenstein ring.

The next proposition says that in the locally Gorenstein case the desired trace map
exists.

Proposition 3.3 Let X ⊆ P
n
K be a 0-dimensional locally Gorenstein scheme with

Supp(X) = {p1, . . . , ps}, and let L0 = K [x0, x−1
0 ]. Then the following statements

hold true.

(a) The algebra Qh(R)/L0 has a homogeneous trace map σ of degree zero.
(b) The map � : Qh(R) → HomL0

(Qh(R), L0) given by �(1) = σ is an isomor-
phism of graded Qh(R)-modules.

(c) A homogeneous element σ ′ ∈ HomL0
(Qh(R), L0) is a trace map of the algebra

Qh(R)/L0 if and only if there exists a unit u ∈ Qh(R) such that σ ′ = u · σ .

Proof According toProposition3.1,wemay identify Qh(R)=∏s
j=1OX,p j [Tj , T −1

j ].
Then we have

HomL0
(Qh(R), L0) = HomL0

(
s∏

j=1
OX,p j [Tj , T −1

j ], L0

)

∼=
s∏

j=1
HomL0

(OX,p j [Tj , T −1
j ], L0)

∼=
s∏

j=1
HomL0

(L0 ⊗K OX,p j , L0)

∼=
s∏

j=1
L0 ⊗K HomK (OX,p j , K ).

Since X is locally Gorenstein, the algebra OX,p j /K is a finite Gorenstein algebra for
every j ∈ {1, . . . , s}. It then follows from Kunz (1986, E.16) that there is a trace map
σ j ∈ HomK (OX,p j , K ) such that HomK (OX,p j , K ) = OX,p j · σ j for j = 1, . . . , s.

By Kunz (1986, F.16), the map σ j = σ j ⊗ idL0 : OX,p j [Tj , T −1
j ] → K [Tj , T −1

j ] ∼=
L0 is a homogeneous trace map of degree zero of the algebra OX,p j [Tj , T −1

j ]/L0.
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Hence the trace system σ = (σ1, . . . , σs) satisfies HomL0
(Qh(R), L0) = Qh(R) ·σ ,

and claim (a) follows.
Since (c) follows from (b), it remains to prove claim (b). To this end, we show that

AnnQh(R)(σ ) = 〈0〉. Assume that f · σ = 0 for some homogeneous element f ∈
Qh(R). We have f · σ(g) = σ( f g) = g · σ( f ) = 0 for all g ∈ Qh(R). This implies
α( f ) = 0 for every α ∈ HomL0

(Qh(R), L0). Since the algebra R/K [x0] is free of
rank deg(X) and Qh(R) ∼= Rx0

∼= R⊗K [x0] L0, it follows that the algebra Qh(R)/L0 is
also free of rank deg(X). Let d = deg(X), let {b1, . . . , bd} be a L0-basis of Qh(R), and
let {b∗

1, . . . , b∗
d} be the dual basis of {b1, . . . , bd}. We write f = ∑d

j=1 g j b j ∈ Qh(R)

with g1, . . . , gd ∈ L0. Then g j = b∗
j (

∑d
j=1 g j b j ) = b∗

j ( f ) = 0 for all j = 1, . . . , d.
Hence we obtain f = 0, and so AnnQh(R)(σ ) = 〈0〉. ��

When the scheme X is smooth, the algebra Qh(R)/K [x0, x−1
0 ] has a canonical

trace map.

Corollary 3.4 Let X ⊆ P
n
K be a 0-dimensional smooth scheme, let Q(R) denote the

full ring of quotients of R, and set L0 := K [x0, x−1
0 ].

(a) The canonical trace map TrQh(R)/L0
is a homogeneous trace map of degree zero

of Qh(R)/L0. In particular, Qh(R)/L0 is étale.
(b) The canonical trace map TrQ(R)/K (x0) is a trace map of Q(R)/K (x0). In partic-

ular, Q(R)/K (x0) is étale.

Proof For j = 1, . . . , s, the algebra OX,p j /K is a finite separable field extension,
and hence the canonical trace map TrOX,p j /K (see Kunz 1986, F.3) is a trace map

of OX,p j /K . If we choose σ j = TrOX,p j /K for j = 1, . . . , s in the construction
of the trace map σ in Proposition 3.3(a), then σ is exactly the canonical trace map
TrQh(R)/L0

. The additional claim of (a) follows by Kunz (1986, F.8).
For (b), it suffices to show that TrQ(R)/K (x0) is a trace map of Q(R)/K (x0). Since

X is reduced, it follows from Kunz (1985, III, Proposition 4.23) and Bourbaki (1989,
V, §1, Proposition 9) that

Q(R) ∼=
s∏

j=1
Q(R/p j ) ∼=

s∏

j=1
OX,p j (Tj ).

As above, OX,p j /K is a finite separable field extension, and so OX,p j and K (x0) are
linearly disjoint over K (cf. Morandi 1996, V, Section 20). This implies OX,p j ⊗K

K (x0) ∼= OX,p j K (x0) = OX,p j (x0). By letting � = ∏s
j=1OX,p j , we have the

isomorphism Q(R) ∼= K (x0)⊗K �. Notice that Tr�/K = (TrOX,p1/K , . . . ,TrOX,ps /K )

is a trace map of �/K , and TrQ(R)/K (x0) = idK (x0) ⊗K Tr�/K (cf. Kunz 1986, F.5).
Therefore TrQ(R)/K (x0) is a trace map of Q(R)/K (x0), as desired. ��

Now we are ready to introduce the Dedekind complementary module and the
Dedekind different for a 0-dimensional locally Gorenstein scheme as follows.
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Definition 3.5 Let X ⊆ P
n
K be a 0-dimensional locally Gorenstein scheme, let

L0 = K [x0, x−1
0 ], let σ be a fixed trace map of Qh(R)/L0. Then there is an injective

homomorphism of graded R-modules

� : ωR(1) ↪→ HomL0
(Qh(R), L0) = Qh(R) · σ

�−1−−→ Qh(R)

ϕ �−→ ϕ ⊗ idL0

The image of� is a homogeneous fractional R-idealCσ
X
of L , it is called theDedekind

complementary module of X (or of R/K [x0]) with respect to σ . Its inverse,

δσ
X

= (Cσ
X
)−1 = { f ∈ Qh(R) | f · Cσ

X
⊆ R },

is called the Dedekind different of X (or of R/K [x0]) with respect to σ .

In the next remarkwe collect some basic properties of theDedekind complementary
module.

Remark 3.6 (a) It follows from the isomorphism Cσ
X

∼= ωR(1) and Kreuzer (1994,
Proposition 1.3) that the graded R-module Cσ

X
is finitely generated and

HFCσ
X
(i) = deg(X) − HFX(−i − 1) for all i ∈ Z.

(b) A system of generators of Cσ
X
can be computed as follows. Let <τ be a degree-

compatible term ordering on the set of terms T
n of K [X1, . . . , Xn], and let d =

deg(X). Then T
n\LTτ (I deh

X
) = { T1, . . . , Td } with Tj = X

α j1
1 · · · X

α jn
n and α j =

(α j1, . . . , α jn) ∈ N
n for j = 1, . . . , d.W.l.o.g.we assume that T1 <τ · · · <τ Tm .

Let t j = Tj + IX ∈ R and set deg(t j ) := deg(Tj ) = n j for j = 1, . . . , d.
Then we have n1 ≤ · · · ≤ nd ≤ rX and the set { t1, . . . , td } is a K [x0]-basis
of R (cf. Kreuzer and Robbiano 2005, Theorem 4.3.22). Let {t∗1 , . . . , t∗d } be the
dual basis of {t1, . . . , td}, and let g j = �(t∗j ) for j = 1, . . . , d. We get Cσ

X
=

〈g1, . . . , gd〉K [x0] ⊆ Qh(R).
(c) WhenX is smooth, we also denote the Dedekind complementary module (respec-

tively, the Dedekind different) with respect to the canonical trace map by CX
(respectively, δX).

Further properties of the Dedekind different of X are given in our next proposition.

Proposition 3.7 Let X ⊆ P
n
K be a 0-dimensional locally Gorenstein scheme, and

let σ be a trace map for Qh(R)/L0.

(a) The Dedekind different δσ
X

is a homogeneous ideal of R and x2rX
0 ∈ δσ

X
.

(b) The Hilbert function of δσ
X

satisfies HFδσ
X
(i) = 0 for i < 0, HFδσ

X
(i) = deg(X)

for i ≥ 2rX, and

0 ≤ HFδσ
X
(0) ≤ · · · ≤ HFδσ

X
(2rX) = deg(X).

(c) The regularity index of δσ
X

satisfies rX ≤ ri(δσ
X
) ≤ 2rX.

123



106 Beitr Algebra Geom (2017) 58:93–129

Proof By Remark 3.6(a), we have HFCσ
X
(0) = deg(X) − HFX(−1) = deg(X) =

HFQh(R)(0). This implies R0 ⊆ (Cσ
X
)0 = Qh(R)0, and in particular, 1 ∈ Cσ

X
. Hence

δσ
X
is a homogeneous ideal of R.
Now let us write Cσ

X
= 〈g1, . . . , gd〉K [x0] ⊆ Qh(R) as in Remark 3.6(b). Here g j

is homogeneous of degree deg(g j ) = −n j (since � is homogeneous of degree zero).
We claim that, for j ∈ {1, . . . , d}, there is a homogeneous element g′

j ∈ RrX such

that g j = x
−rX−n j
0 g′

j ∈ Cσ
X
. Indeed, since g j ∈ Qh(R) ∼= Rx0 , there exist g′′

j ∈ R

and d j ∈ N such that g j = x
−d j
0 g′′

j . If deg(g
′′
j ) = d j − n j ≤ rX, then we set g′

j =
x

rX−d j +n j
0 g′′

j ∈ RrX . If deg(g
′′
j ) = d j −n j > rX, then we write g′′

j = x
d j −n j −rX
0 g′

j for

some g′
j ∈ RrX , since Ri = xi−rX

0 RrX for all i ≥ rX. Thus we get g j = x
−rX−n j
0 g′

j , as

claimed. Consequently, we haveCσ
X

= 〈x−rX−n1
0 g′

1, . . . , x−rX−nm
0 g′

m〉R . Now it is easy

to see that x2rX
0 ∈ δσ

X
, since n j ≤ rX and x2rX

0 · (x
−rX−n j
0 g′

j ) = x
rX−n j
0 g′

j ∈ R2rX−n j

for all j = 1, . . . , d. Hence claim (a) follows.
Next we shall prove claim (b). It is clear that HFδσ

X
(i) = 0 for i < 0 and HFδσ

X
(i) ≤

HFδσ
X
(i + 1) for all i ∈ Z, since δσ

X
is a homogeneous ideal of R by (a). Notice

that HFX(i) = d = deg(X) for all i ≥ rX and HFδσ
X
(i) ≤ HFX(i) for all i ∈ Z.

So, the Hilbert function of δσ
X
satisfies HFδσ

X
(i) ≤ d for all i ∈ Z. We write Cσ

X
=

〈x−rX−n1
0 g′

1, . . . , x−rX−nd
0 g′

d〉R with g′
1, . . . , g′

d ∈ RrX as above, and let { f1, . . . , fd}
be a K -basis of RrX . Then fi g′

j ∈ R2rX . There is f̃i j ∈ RrX such that fi g′
j = xrX

0 f̃i j for

all i, j ∈ {1, . . . , d}. Thus (xrX
0 fi )·(x

−rX−n j
0 g′

j ) = x
−n j
0 fi g′

j = x
rX−n j
0 f̃i j ∈ R2rX−n j

for all i, j . It follows that {xrX
0 f1, . . . , xrX

0 fd} ⊆ (δσ
X
)2rX ⊆ R2rX . On the other hand,

we see that

d = HFX(2rX) = dimK 〈xrX
0 f1, . . . , xrX

0 fd〉K ≤ HFδσ
X
(2rX) ≤ HFX(2rX) = d.

Therefore we obtain the equalities HFδσ
X
(i) = d = deg(X) for all i ≥ 2rX.

Finally, claim (c) is an immediate consequence of the claims (a) and (b). ��
In the last part of this sectionwe present some relations between theKähler different

and the Dedekind different of a locally Gorenstein 0-dimensional scheme X.

Proposition 3.8 Let X ⊆ P
n
K be a 0-dimensional smooth scheme. Then we have

δn
X

⊆ ϑX ⊆ δX.

Proof Notice that the algebra R/K [x0] is free of rank deg(X), so it is flat. By Corol-
lary 3.4, we know that the algebra Qh(R)/K [x0, x−1

0 ] is étale. Then Kunz (1986,
G.11) yields δX = δN , where δN is the Noether different of R/K [x0] (as defined
in Kunz 1986, G.1). Thus the desired chain of inclusions follows from Kunz (1986,
Proposition 10.18). ��

Let us point out that, if X is a smooth complete intersection, then Proposition 5.2
below and Kunz (1986, Proposition 10.17) show that ϑX = δX. Moreover, the above
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inclusions can be false if the schemeX is not a smooth scheme. The following example
implies that, in general, the Kähler and Dedekind differents do not agree even when
X is a complete intersection.

Example 3.9 Let X be the 0-dimensional complete intersection given in Example 2.9.
We know already that X is not smooth at p5 and p7 and that the Kähler different is
a principal ideal generated by a non-zero homogeneous element of degree rX. In this
case the canonical tracemap TrOX,p j /K = idK is a tracemap ofOX,p j /K for j �= 5, 7.

Moreover, we observe that OX,p5
∼= K [X1, X2]/〈X1 − 2, X2

2〉 = K ⊕ x2K , and so
{1, x2} is a K -basis of OX,p5 . In particular, σ 5 : OX,p5 → K given by σ 5(x2) = 1
and σ 5(1) = 0 is a trace map of OX,p5/K . The trace map σ 7 : OX,p7 → K of
OX,p7/K can be found in the same way. Using these trace maps, we get a trace system
σ : Qh(R) → K [x0, x−1

0 ] of the algebra Qh(R)/K [x0, x−1
0 ]. Now we compute the

Dedekind different and get

δσ
X

= 〈x41 − 4x0x21 x2 − 32x20 x22 + 2x21 x22 − 4x0x32 + 12x42 〉.

Note that the homogeneous element x41 −4x0x21 x2 −32x20 x22 +2x21 x22 −4x0x32 +12x42
is a non-zerodivisor of R. So, we have HPϑX

= 7 < 9 = HPδσ
X

= HP(δσ
X
)n . Hence we

get (δσ
X
)n

� ϑX and ϑX � δσ
X
.

The last inclusion in the proposition can be a strict inclusion for 0-dimensional
arithmetically Gorenstein schemes, as our next example demonstrates.

Example 3.10 Let X = {p1, . . . , p5} ⊆ P
3
F7

be the set of five distinct K -rational
points given in Example 2.12. We know that X is arithmetically Gorenstein, but not
a complete intersection. We also have δX = 〈x20 − 2x0x3 − 3x1x3 − 2x23 〉 and ϑX =
〈x2x23 − 3x33 , x1x23 , x0x23 − 3x33 , x30 〉. Thus we get ϑX � δX.

Finally, we relate the Hilbert functions of the Kähler different and the Dedekind
different of a smooth scheme X as follows.

Corollary 3.11 Let X ⊆ P
n
K be a 0-dimensional smooth scheme. Then we have

HPϑX
= HPδX = deg(X) and rX ≤ ri(ϑX) ≤ (n + 1)rX.

Proof The equalities of Hilbert polynomials follow from Propositions 3.7 and 3.8.
Also, it is clear that rX ≤ ri(ϑX). Since X is smooth, we can argue similarly as in
the proof of Proposition 2.15 to get a homogeneous element h ∈ (ϑX)m\⋃s

j=1(p j )m

for some m ≥ 0, where p j is the homogeneous prime ideal of R corresponding to
p j ∈ Supp(X). So, h is a non-zerodivisor of R. According to Geramita and Maroscia
(1984, Proposition 1.1), we can find a minimal system {F1, . . . , Fr } of generators
of IX such that deg(Fj ) ≤ rX + 1 for all j = 1, . . . , r . Hence ϑX is generated in
degree ≤ nrX. If m > nrX and 〈(ϑX)nrX〉R ⊆ ⋃s

j=1 p j , then 〈(ϑX)nrX〉R ⊆ p j for
some j ∈ {1, . . . , s}, and hence the element h cannot exist. Thus h can be chosen
such that deg(h) = m ≤ nrX. Moreover, if { f1, . . . , fdeg(X)} is a K -basis of RrX , then{h f1, . . . , h fdeg(X)} is a K -basis of (ϑX)rX+m . Therefore we have ri(ϑX) ≤ (n +1)rX.

��

123



108 Beitr Algebra Geom (2017) 58:93–129

4 Cayley–Bacharach Schemes

In many previous characterizations of 0-dimensional complete intersections, a partic-
ular geometric condition has played a leading role: the Cayley–Bacharach property.
In this section we define and study the notion of a Cayley–Bacharach scheme in a sub-
stantially more general context than has been done hitherto. We work with an arbitrary
0-dimensional subscheme X of a projective space P

n
K over an arbitrary base field K .

As in the previous sections, let the support of X be given by Supp(X) = {p1, . . . , ps}.
We denote the residue field of X at p j by K (p j ) = OX,p j /mX,p j , and set � j =
dimK K (p j ).

Definition 4.1 A subscheme Y ⊆ X is called a p j -subscheme if the following con-
ditions are satisfied:

(a) OY,pk = OX,pk for k �= j .
(b) The map OX,p j � OY,p j is an epimorphism.

A p j -subscheme Y ⊆ X is called maximal if deg(Y) = deg(X) − � j .

Notice that a maximal p j -subscheme of a 0-dimensional scheme X in P
n
K which

has K -rational support, i.e., for which all closed points of X are K -rational, is nothing
but a subscheme Y ⊆ X of degree deg(Y) = deg(X) − 1 with OY,p j �= OX,p j .

Proposition 4.2 Let � = ∏s
j=1OX,p j , and let G(OX,p j ) = AnnOX,p j

(mX,p j ) be the

socle of OX,p j . There is a 1-1 correspondence

{
maximal p j − subschemes
of the schemeX

}

←→
{

ideals 〈(0, . . . , 0, s j , 0, . . . , 0)〉� ⊆ �

with s j ∈ G(OX,p j )\{0}
}

Proof Let Y ⊆ X be a maximal p j -subscheme, let IY/X denote the saturated ideal
of Y in R, and let αY/X = min{i ∈ N | (IY/X)i �= 〈0〉}. Furthermore, we let
{e j1, . . . , e j� j } ⊆ OX,p j be such that their residue classes form a K -basis of K (p j ),

and let fY ∈ (IY/X)αY/X
\{0}. Since Ri = xi−rX

0 RrX for i ≥ rX, we get from Kreuzer
(1994, Lemma 1.2) that αY/X ≤ rX. Using the map ı̃ given by (∗), we write ı̃( fY) =
(0, . . . , 0, s j T

αY/X

j , 0, . . . , 0) ∈ R̃. Clearly, we have s j �= 0.
We claim that s j ∈ G(OX,p j ). Indeed, if otherwise, then there is an element a ∈

mX,p j such that as j �= 0. Suppose there are c1, . . . , c� j +1 ∈ K such that

c1e j1s j + · · · + c� j e j� j s j + c� j +1as j = (c1e j1 + · · · + c� j e j� j + c� j +1a)s j = 0.

If c1e j1 +· · ·+ c� j e j� j �= 0 in K (p j ), then c1e j1 +· · ·+ c� j e j� j is a unit element, so
is c1e j1 + · · · + c� j e j� j + c� j +1a (as a ∈ mX,p j ). It follows from the above equality
that s j = 0, it is impossible. So, we must have c1e j1 + · · · + c� j e j� j = 0. This
implies c1 = · · · = c� j = 0, since {e j1, . . . , e j� j } is a K -basis of K (p j ). From
this we deduce c� j +1as j = 0, hence c� j +1 = 0 (as as j �= 0). Therefore the set
{e j1s j , . . . , e j� j s j , as j } is K -linearly independent. Let

fa = ı̃−1((0, . . . , 0, aT rX
j , 0, . . . , 0)) and fas j = ı̃−1((0, . . . , 0, as j T rX

j , 0, . . . , 0)).
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Then fa, fas j ∈ RrX and x
αY/X

0 fas j = fa fY, and so Kreuzer (1994, Lemma 1.2)
yields fas j ∈ 〈 fY〉satR ⊆ IY/X. Similarly, we have

f jk j = ı̃−1((0, . . . , 0, e jk j s j T
rX
j , 0, . . . , 0)) ∈ (IY/X)rX

for k j = 1, . . . , � j . Thus we get

dimK (IY/X)rX ≥ dimK
〈
f j1, . . . , f j� j , fas j

〉
K = � j + 1

and hence deg(Y) < deg(X) − � j , a contradiction.
Next we consider f ∈ (IY/X)i\{0} with i ≥ αY/X. The previous claim also tells

us that f p j ∈ G(OX,p j )\{0}. If f p j ∈ G(OX,p j )\〈s j 〉OX,p j
, then it is not difficult to

check that { f p j , e j1s j , . . . , e j� j s j } is K -linearly independent. This implies deg(Y) <

deg(X) − � j , and it is impossible. Hence we have f p j ∈ 〈s j 〉OX,p j
.

Let g ∈ Ri\{0} with i ≥ αY/X be such that ı̃(g) = (0, . . . , 0, gp j T
i
j , 0, . . . , 0) and

gp j ∈ 〈s j 〉OX,p j
. We are able to write gp j = as j for some a ∈ OX,p j \mX,p j . Using a

similar argument as the previous part we get g ∈ 〈 fY〉satR ⊆ IY/X. Therefore the image
of IY/X in � = ∏s

j=1OX,p j is 〈(0, . . . , 0, s j , 0, . . . , 0)〉� with s j ∈ G(OX,p j )\{0},
as was to be shown.

Conversely, let (0, . . . , 0, s j , 0, . . . , 0) ∈ � with s j ∈ G(OX,p j )\{0}, and let f =
ı̃−1((0, . . . , 0, s j T

rX
j , 0, . . . , 0)) ∈ RrX . We set Y := Z( f ) ⊆ X. Then we have

IY/X = 〈 f 〉satR . Obviously, the scheme Y is a p j -subscheme of X. It suffices to prove
deg(Y) = deg(X) − � j . Let f jk j = ı̃−1((0, . . . , 0, e jk j s j T

rX
j , 0, . . . , 0)) ∈ RrX and

g jk j = ı̃−1((0, . . . , 0, e jk j T
rX
j , 0, . . . , 0)) ∈ RrX for k j = 1, . . . , � j . We see that

xrX
0 f jk j = g jk j f for every k j ∈ {1, . . . , � j }, and so Kreuzer (1994, Lemma 1.2)
implies f jk j ∈ (IY/X)rX . Thus we get the inequality

dimK (IY/X)rX ≥ dimK 〈 f j1, . . . , f j� j 〉K = � j .

Moreover, for h ∈ (IY/X)rX\{0}, there is a number m ∈ N such that xm
0 h ∈ 〈 f 〉R .

This clearly forces h p j = as j for some a ∈ OX,p j \mX,p j and h pk = 0 for k �= j .

Let us write as j = ∑� j
k j =1 c jk j e jk j s j for some c j1, . . . , c j� j ∈ K . Then ı̃(h) =

ı̃(
∑� j

k j =1 c jk j f jk j ). Since the map ı̃ is injective, we have h = ∑� j
k j =1 c jk j f jk j ∈

〈 f j1, . . . , f j� j 〉K . This implies dimK (IY/X)rX ≤ � j , and therefore this inequality
becomes an equality. Hence we obtain dimK (IY/X)i+rX = � j for i ≥ 0 or deg(Y) =
deg(X) − � j , as desired. ��
Corollary 4.3 A 0-dimensional scheme X ⊆ P

n
K contains a subscheme of degree

deg(X) − 1 if and only if it has a K -rational point.

Proof Due to Proposition 4.2, it suffices to show that if Y ⊆ X is a subscheme of
degree deg(X) − 1 with OY,p j �= OX,p j , then p j is a K -rational point. Suppose
that p j is not K -rational, i.e., dimK K (p j ) = � j ≥ 2. We may write K (p j ) =
K ⊕ Kv1 ⊕ · · · ⊕ Kv� j −1, where {1, v1, . . . , v� j −1} is a K -basis of K (p j ). Let f ∈
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(IY/X)rX\{0}. Then ı̃( f ) = (0, . . . , 0, s j T rX , 0, . . . , 0) for some s j ∈ OX,p j \{0}.
It is not difficult to check that s j , v1s j are K -linear independent. By setting g :=
ı̃−1((0, . . . , 0, v1s j T rX , 0, . . . , 0)) ∈ RrX , we have g ∈ IY/X and dimK 〈 f, g〉K = 2.
Hence we get 2 = dimK 〈 f, g〉K ≤ dimK (IY/X)rX = 1, a contradiction. ��

Let Y be a maximal p j -subscheme of X, and let s j ∈ G(OX,p j )\{0} be a socle
element corresponding to a non-zero element of (IY/X)αY/X

. We also say that s j is a
socle element ofOX,p j corresponding to Y. Let {e j1, . . . , e j� j } ⊆ OX,p j be elements
whose residue classes form a K -basis of K (p j ). For a ∈ OX,p j , we set

μ(a) := min{ i ∈ N | (0, . . . , 0, aT i
j , 0, . . . , 0) ∈ ı̃(R) }

and

μY/X := max{ μ(e jk j s j ) | k j = 1, . . . , � j }.

Lemma 4.4 The number μY/X depends neither on the choice of the socle element s j

nor on the specific choice of {e j1, . . . , e j� j }.
Proof First we show that μ(a + b) ≤ max{ μ(a), μ(b) } for all a, b ∈ OX,p j . It
suffices to consider the case μ(a) ≤ μ(b). Let

f = ı̃−1((0, . . . , 0, aT μ(a)
j , 0, . . . , 0)) and g = ı̃−1((0, . . . , 0, bT μ(b)

j , 0, . . . , 0)).

Then we have f, g ∈ R and

ı̃(xμ(b)−μ(a)
0 f + g) = (0, . . . , 0, (a + b)T μ(b)

j , 0, . . . , 0).

It follows that μ(a + b) ≤ μ(b).
Now let s′

j ∈ G(OX,p j )\{0} such that s′
j = as j for some unit a ∈ OX,p j .

Note that s j = a−1s′
j . We set d j := max{ μ(e jk j s j ) | k j = 1, . . . , � j } and

d ′
j := max{ μ(e jk j s

′
j ) | k j = 1, . . . , � j }. We want to prove the equality d j = d ′

j .
By symmetry, we need only show that d ′

j ≤ d j . For l ∈ {1, . . . , � j }, we write

e jla = al
j1e j1 + · · · + al

j� j
e j� j mod mX,p j for al

j1, . . . , al
j� j

∈ K , not all equal

to zero. We deduce e jl s′
j = e jlas j = al

j1e j1s j + · · · + al
j� j

e j� j s j . Thus we have

μ(e jl s
′
j ) = μ(al

j1e j1s j + · · · + al
j� j

e j� j s j )

≤ max{ μ(al
jk j

e jk j s j ) | k j = 1, . . . , � j }
= max{ μ(e jk j s j ) | k j = 1, . . . , � j } = d j .

Therefore we obtain d ′
j = max{ μ(e jk j s

′
j ) | k j = 1, . . . , � j } ≤ d j .

Finally, let {e′
j1, . . . , e′

j� j
} ⊆ OX,p j be another set whose residue classes form a

K -basis of K (p j ), and let d ′′
j := max{ μ(e′

jk j
s j ) | k j = 1, . . . , � j }. We can argue

123



Beitr Algebra Geom (2017) 58:93–129 111

similarly as above to get μ(e′
jk j

s j ) ≤ d j for k j ∈ {1, . . . , � j }. This implies d ′′
j ≤ d j ,

and hence d ′′
j = d j . ��

Using this lemma, we can now generalize the definition of the degree of a point
in X as follows.

Definition 4.5 Let X ⊆ P
n
K be a 0-dimensional scheme. For p j ∈ Supp(X), the

degree of p j in X is defined as

degX(p j ) := min{ μY/X

∣
∣ Y is a maximal p j−subscheme of X }.

Let us check that this definition agrees with the usual one in the case of a scheme X

with K -rational support, and thus for instance in the case of an algebraically closed
base field K .

Remark 4.6 Let X ⊆ P
n
K be a 0-dimensional scheme with Supp(X) = {p1, . . . , ps}.

(a) If X has K -rational support then �1 = · · · = �s = 1. In this case we have

degX(p j ) = min{ αY/X | Y is a maximal p j−subscheme of X }.

If, in addition, X is reduced, then

degX(p j ) = αX\{p j }/X = min{i ∈ N | (IX\{p j }/X)i �= 〈0〉}

for all j = 1, . . . , s. In other words, the degree degX(p j ) agrees with the degree
of a point in the sense of Geramita et al. (1993, Definition 2.1).

(b) We have 0 ≤ degX(p j ) ≤ rX for all j = 1, . . . , s. In particular, if X is a reduced
scheme which has K -rational support, then there always exists a point p j ∈ X

withmaximal degree degX(p j ) = rX (cf. Geramita et al. 1993, Proposition 1.14).

In case all points of Supp(X) have the maximum possible degree rX, we have the
following notion.

Definition 4.7 A 0-dimensional scheme X ⊆ P
n
K is called a Cayley–Bacharach

scheme (in short,CB-scheme) if every point p j ∈ Supp(X) has themaximumpossible
degree degX(p j ) = rX.

First of all, we give an example which shows that a 0-dimensional scheme X ⊆ P
n
K

which does not have K -rational support can be a CB-scheme.

Example 4.8 Let K = Q, and let X be the 0-dimensional subscheme of P
2
K of

degree 14 with support Supp(X) = {p1, . . . , p12}, where p1 = (1 : 0 : 0),
p2 = (1 : 1 : 0), p3 = (1 : 1 : 1), p4 = (1 : 0 : 1), p5 = (1 : −1 : 1),
p6 = (1 : 1 : −1), p7 = (1 : 0 : −1), p8 = (1 : 2 : 0), p9 = (1 : 2 : 1),
p10 = (1 : 2 : −1), p11 corresponds toP11 = 〈2X2

0 + X2
1, X2〉, and p12 corresponds
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to P12 = 〈X1, X2
0 + 7X2

2〉. Clearly, X does not have Q-rational support, since two
points p11 and p12 are not K -rational. A calculation gives us

HFX : 1 3 6 10 14 14 · · ·
HFX\{p j } : 1 3 6 10 13 13 · · · ( j = 1, . . . , 10)
HFX\{p11} : 1 3 6 10 12 12 · · ·
HFX\{p12} : 1 3 6 9 12 12 · · · .

We have αX\{p j }/X = rX\{p j } = rX = 4 for j = 1, . . . , 11. This implies degX(p j ) =
4 for j = 1, . . . , 11. We also see that αX\{p12}/X = 3 < rX\{p12} = rX = 4 and
HFIX\{p12}/X(3) = 1 < �12 = dimQOX,p12 = 2. Let {e12 1, e12 2} be the K -basis
ofOX,p12 given by e12,1 = 1 and e12,2 = x2. Here we use the isomorphismOX,p12

∼=
K [X1, X2]/〈X1, 1+7X2

2〉 = K ⊕ x2K . Then we findμ(e12,1) = 3 andμ(e12,2) = 4.
This implies degX(p12) = 4. Hence X is a CB-scheme.

Our next remark points out an important difference between the more general def-
inition of a CB-scheme given here and the classical definition based on hypersurfaces
passing through all points of X but one.

Remark 4.9 Given a 0-dimensional scheme X ⊆ P
n
K , we consider the following two

statements:

(a) The scheme X is a CB-scheme.
(b) Every hypersurface of degree rX − 1 which contains all but one point of X auto-

matically contains X.

Clearly, if X has K -rational support, then the statements (a) and (b) are equivalent. In
general, we observe that (b) implies (a), but (a) does not imply (b). For example, the
reduced 0-dimensional scheme X ⊆ P

2
Q
given in Example 4.8 is a CB-scheme. But

αX\{p12}/X = 3 < rX\{p12} = rX = 4, so statement (b) is not satisfied.

The following proposition gives a simple criterion for detecting whether a given
0-dimensional scheme X ⊆ P

n
K is a CB-scheme.

Proposition 4.10 A 0-dimensional scheme X ⊆ P
n
K is a CB-scheme if and only if, for

all p j ∈ Supp(X), every maximal p j -subscheme Y ⊆ X satisfies

dimK (IY/X)rX−1 < � j .

Proof We always have dimK (IY j /X)i ≤ � j for i ≥ 0. Also, dimK (IY/X)rX−1 = � j

if and only if μY/X ≤ rX − 1. This is equivalent to degX(p j ) ≤ rX − 1. Hence the
conclusion follows. ��

Let us see an example for the applicability of this proposition.

Example 4.11 Let X ⊆ P
2
Q
be the 0-dimensional scheme of degree 8 with support

Supp(X) = {p1, . . . , p7}, where p1 = (1 : 0 : 0), p2 = (1 : 1 : 0), p3 = (1 : 1 : 1),
p4 = (1 : 0 : 1), p5 = (1 : −1 : 1), p6 = (1 : 2 : 3), and p7 corresponds to
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P7 = 〈2X2
0 + X2

1, X2〉. We have �1 = · · · = �6 = 1 and �7 = 2. The Hilbert
functions of X and its subschemes are computed as follows

HFX : 1 3 6 8 8 . . .

HFX\{p j } : 1 3 6 7 7 · · · ( j = 1, . . . , 6)
HFX\{p7} : 1 3 6 6 6 . . . .

From this we deduce (IX\{p j }/X)rX−1 = (IX\{p j }/X)2 = 〈0〉 for all j = 1, . . . , 7. By
Proposition 4.10, X is a CB-scheme.

Next let us consider the subscheme Y = X\{p6} of X. The support of Y is
Supp(Y) = {p1, . . . , p5, p7}. The Hilbert functions of Y and its subschemes are

HFY : 1 3 6 7 7 . . .

HFY\{p j } : 1 3 5 6 6 . . . ( j = 1, 3, 5)
HFY\{p j } : 1 3 6 6 6 . . . ( j = 2, 4)
HFY\{p7} : 1 3 5 5 5 . . . .

We see that dimK (IY\{p j }/Y)rY−1 = dimK (IY\{p j }/Y)2 = 1 = dimK OY,p j for j =
1, 3, 5. Thus the subscheme Y is not a CB-scheme by Proposition 4.10.

A key result for characterizing 0-dimensional schemes which are CB-schemes
is Kreuzer (1994, Theorem 2.4) which shows that this property is equivalent to the
existence of special elements in the initial homogeneous component of the canonical
module. In our more general setting, this result can be generalized as follows.

Proposition 4.12 Let X ⊆ P
n
K be a 0-dimensional locally Gorenstein scheme with

support Supp(X) = {p1, . . . , ps}, and let σ be a trace map of Qh(R)/K [x0, x−1
0 ].

Then X is a CB-scheme if and only if for every j ∈ {1, . . . , s} there exists a non-
zero element g∗

j ∈ (Cσ
X
)−rX such that g∗

j = x−2rX
0 g̃∗

j with g̃∗
j ∈ RrX and (g̃∗

j )p j ∈
OX,p j \mX,p j .

Proof Since X is locally Gorenstein, there is for each point p j a uniquely determined
maximal p j -subscheme Y j ⊆ X corresponding to a socle element s j ∈ G(OX,p j )

of OX,p j . Let {e j1, . . . , e j� j } ⊆ OX,p j be such that whose residue classes form a
K -basis of K (p j ). For k j ∈ {1, . . . , � j }, we set

f ∗
jk j

:= ı̃−1((0, . . . , 0, e jk j s j T
μ(e jk j s j )

j , 0, . . . , 0)).

Since X is a CB-scheme, there is for each j ∈ {1, . . . , s} an index k j ∈ {1, . . . , � j }
such that f ∗

jk j
∈ RrX\x0RrX−1. W.l.o.g. we assume that f ∗

j1 ∈ RrX\x0RrX−1 for
j = 1, . . . , s. Let us fix an index j ∈ {1, . . . , s}. Then we can define a K -linear
map ϕ j : RrX → K such that ϕ j (x0RrX−1) = 0 and ϕ j ( f ∗

j1) �= 0. By Kreuzer
(1994, Lemma 1.5), we may lift ϕ j to obtain a K [x0]-linear map ϕ j : R → K [x0] of
degree −rX, i.e., ϕ j is an element of HomK [x0](R, K [x0])−rX such that ϕ j |RrX

= ϕ j ,
especially, ϕ j ( f ∗

j1) �= 0.
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Given a homogeneous element f ∈ (IY j /X)rX\{0}, we proceed to show that f ·ϕ j �=
0. Obviously, we have IY j /X = 〈 f 〉sat = 〈 f ∗

j1〉sat. This implies that xk
0 f ∗

j1 ∈ 〈 f 〉 for
some k ≥ 0, so we may write xk

0 f ∗
j1 = f h for some h ∈ Rk\{0}. Consequently,

( f · ϕ j )(h) = ϕ j (h f ) = ϕ j (xk
0 f ∗

j1) = xk
0ϕ j ( f ∗

j1) �= 0. From this we conclude
f · ϕ j �= 0 for all f ∈ (IY j /X)rX\{0}.
Since HomK [x0](R, K [x0]) ∼= Cσ

X
= �(ωR(1)), where � is the monomorphism

of graded R-modules in Definition 3.5, we find g∗
j = �(ϕ j ) ∈ (Cσ

X
)−rX such that

f · g∗
j �= 0 for all f ∈ (IY j /X)rX\{0}. By Proposition 3.7, we have x2rX

0 ∈ δσ
X
, so we

may write g∗
j = x−2rX

0 g̃∗
j ∈ (Cσ

X
)−rX with g̃∗

j ∈ RrX\{0}. Then, for k j = 1, . . . , � j ,
we get f ∗

jk j
· g̃∗

j �= 0, and so e jk j s j · (g̃∗
j )p j �= 0 in OX,p j . Since s j ∈ G(OX,p j ), we

must have (g̃∗
j )p j /∈ mX,p j . Therefore, for every j ∈ {1, . . . , s}, we have constructed

a non-zero element g∗
j ∈ (Cσ

X
)−rX such that g∗

j = x−2rX
0 g̃∗

j with g̃∗
j ∈ RrX and

(g̃∗
j )p j ∈ OX,p j \mX,p j .
Conversely, we assume for contradiction that the scheme X is not a CB-scheme,

i.e., degX(p j ) < rX for some j ∈ {1, . . . , s}. For such an j , we let g∗
j ∈ (Cσ

X
)−rX

such that g∗
j = x−2rX

0 g̃∗
j with g̃∗

j ∈ RrX and (g̃∗
j )p j /∈ mX,p j , and let ϕ j = �−1(g∗

j ).

Clearly, f · ϕ j �= 0 for all f ∈ (IY j /X)rX\{0}. We set f j1 := x
rX−deg( f ∗

j1)

0 f ∗
j1 ∈

(IY j /X)rX\{0}. Let i ≥ 0, and let h ∈ Ri be a non-zero homogeneous element. If
h f j1 = 0, then ( f j1 · ϕ)(h) = 0. Suppose that h f j1 �= 0. In this case we write

h f j1 = ∑� j
k j =1 c jk j x

rX+i−deg( f ∗
jk j

)

0 f ∗
jk j

for some c j1, . . . , c j� j ∈ K . By assumption,
we have deg( f ∗

jk j
) < rX, and so ϕ( f ∗

jk j
) = 0 for all k j = 1, . . . , � j . Thus

( f j1 · ϕ)(h) = ϕ(h f j1) = ϕ

(
� j∑

k j =1
c jk j x

rX+i−deg( f ∗
jk j

)

0 f ∗
jk j

)

=
� j∑

k j =1
c jk j x

rX+i−deg( f ∗
jk j

)

0 ϕ( f ∗
jk j

) = 0.

Hence we obtain f j1 · ϕ = 0, a contradiction. ��
This characterization is related to Kreuzer (1994, Theorem 2.4) as follows.

Remark 4.13 In the setting of Proposition 4.12, if there is a homogeneous element
g ∈ (Cσ

X
)−rX such that AnnR(g) = 〈0〉 then X is a CB-scheme. The converse holds

true if the field K is infinite.

Our next example shows that the converse of the preceding remark may fail if the
base field is finite.

Example 4.14 Let X ⊆ P
n
F2

be the set consisting of three points p1 = (1 : 1 : 0),
p2 = (1 : 0 : 1), and p3 = (1 : 1 : 1). We have HFX : 1 3 3 . . . and rX = 1. It is not
difficult to check that X is a CB-scheme. A calculation gives us (CX)−1 = 〈g1, g2〉F2 ,
where g1 = x−2

0 x1 and g2 = x−2
0 x2. If g ∈ (CX)−1, then g is one of three forms:
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g1, g2, and g1 + g2. We see that x0 + x1 ∈ AnnR(g1), x0 + x2 ∈ AnnR(g2), and
x0 + x1 + x2 ∈ AnnR(g1 + g2). Thus (CX)−1 cannot contain an element g such that
AnnR(g) = 〈0〉.

Themost widely known class of 0-dimensional schemes which are CB-schemes are
arithmetically Gorenstein schemes. The following characterization of arithmetically
Gorenstein schemes is a generalization of Kreuzer (1992, Theorem 1.1) where the
base field K was assumed to be algebraically closed.

Theorem 4.15 A 0-dimensional subscheme X of P
n
K is arithmetically Gorenstein if

and only if it is a locally Gorenstein Cayley–Bacharach scheme and its Hilbert function
is symmetric, i.e., we have HFX(i) + HFX(rX − i − 1) = deg(X) for all i ∈ Z.

Proof IfX is arithmetically Gorenstein, then it is also locally Gorenstein. ByGoto and
Watanabe (1978, Proposition 2.1.3), R is a Gorenstein ring if and only if ωR ∼= R(d)

for some d ∈ Z. Since Cσ
X

∼= ωR(1) and HFCσ
X
(i) = deg(X) − HFX(−i − 1) for

all i ∈ Z, this is equivalent to Cσ
X

∼= R(rX). Consequently, the Hilbert function HFX
is symmetric. Moreover, there is an element g ∈ (Cσ

X
)−rX such that Cσ

X
= 〈g〉R and

AnnR(g) = 〈0〉. Hence X is a CB-scheme by Proposition 4.12.
Conversely, suppose that X is a locally Gorenstein CB-scheme and its Hilbert

function is symmetric. We have HFCσ
X
(−rX) = deg(X)−HFX(rX−1) = 1. It follows

that the K -vector space (Cσ
X
)−rX is generated by one element g = x−2rX

0 g̃, where
g̃ ∈ RrX\{0}. Since X is a CB-scheme, Proposition 4.12 implies that the element g̃p j

is a unit ofOX,p j for every j ∈ {1, . . . , s}. Thus g̃ is a non-zerodivisor of R (cf.Kreuzer
1994, Lemma 1.1]), and hence AnnR(g) = 〈0〉. Because HFX is symmetric, we must
have Cσ

X
= 〈g〉R ∼= R(rX). Therefore Goto and Watanabe (1978, Proposition 2.1.3)

yields that X is arithmetically Gorenstein, as wanted. ��

5 Characterizations of zero-dimensional complete intersections

In this section we discuss some characterizations of 0-dimensional complete intersec-
tion schemes X in P

n
K using their Kähler and Dedekind differents. Before we begin,

let us examine the relations between several versions of the definition of a complete
intersection.

Recall that a local ring (S,m) is called a complete intersection if it is Noetherian
and itsm-adic completion Ŝ is a quotient of a regular local ring A by an ideal generated
by an A-regular sequence. It iswell known (cf. Bruns andHerzog 1993, Theorem2.3.3)
that if S is a Noetherian local ring and S = A/I with a regular local ring A, then S
is a complete intersection if and only if I is generated by an A-regular sequence. For
more properties of complete intersection rings, we refer to Bruns and Herzog (1993,
Section 2.3).

Definition 5.1 Given a ring S and an algebra T/S, we say that T/S is locally a
complete intersection if for all P ∈ Spec(T ) the algebra TP/Sp with p = P ∩ S is
flat and the local ring TP/pTP is a complete intersection.

At this point we can describe 0-dimensional complete intersection schemes in the
following ways.

123



116 Beitr Algebra Geom (2017) 58:93–129

Proposition 5.2 Let X ⊆ P
n
K be a 0-dimensional scheme. Then the following state-

ments are equivalent.

(a) The scheme X is a complete intersection.
(b) The algebra R/K [x0] is locally a complete intersection.
(c) The local ring R = R/〈x0〉 is a complete intersection.

Proof Let {F1, . . . , Fr } be aminimal homogeneous system of generators of IX, where
r ≥ n. If X is a complete intersection, then r = n and {F1, . . . , Fn} is a P-regular
sequence. Thus the algebra R/K [x0] is locally a complete intersection by Kunz (1986,
C.7) and we have “(a)⇒(b)”. “(b)⇒(c)” follows from the observation that 〈x0〉K [x0] =
m ∩ K [x0] and Rm/〈x0〉Rm = (R/〈x0〉)m = Rm = R, where m = m/〈x0〉 is the
maximal ideal of R.

It remains to prove “(c)⇒(a)”. Let M denote the homogeneous maximal ideal
〈X0, . . . , Xn〉P of P . Observe that if {F1, . . . , Fr , X0} is a minimal homogeneous
system of generators of IX + 〈X0〉 then we have

R = Rm
∼= (P/IX + 〈X0〉)m ∼= PM/(〈F1, . . . , Fr , X0〉)M.

Since R is a complete intersection, the set {F1, . . . , Fr , X0} is a PM-regular sequence
(see Bruns andHerzog 1993, Theorem 2.1.2). NowKunz (1986, LemmaC.28) implies
that {F1, . . . , Fr , X0} is a P-regular sequence, and hence r = n or X is a complete
intersection. Therefore it suffices to show that {F1, . . . , Fr , X0} is a minimal homo-
geneous system of generators of IX + 〈X0〉. Clearly, we have X0 /∈ IX. If there is an
index i ∈ {1, . . . , r} such that Fi ∈ 〈F1, . . . , Fi−1, Fi+1, . . . , Fr , X0〉, then we get a
representation Fi = ∑

j �=i G j Fj +G X0 where G j ∈ P is a homogeneous polynomial
of degree deg(Fi ) − deg(Fj ) for j �= i and G ∈ P is a homogeneous polynomial of
degree deg(Fi ) − 1 (cf. Kreuzer and Robbiano 2000, Corollary 1.7.11). This implies
G X0 = Fi −∑

j �=i G j Fj ∈ IX, and so G ∈ IX (as x0 is a non-zerodivisor of R). Thus
there are homogeneous polynomials H1, . . . , Hr ∈ P such that G = ∑r

j=1 Hj Fj and
deg(Hj ) = deg(G) − deg(Fj ). Note that Hi = 0 (as deg(G) < deg(Fi )). Hence we
have Fi = ∑

j �=i (G j + Hj X0)Fj , in contradiction to the minimality of {F1, . . . , Fr }.
��

The following characterization of 0-dimensional complete intersections in Propo-
sition 5.4 generalizes a result of G. Scheja and U. Storch (see Scheja and Storch 1975,
p. 187) where the characteristic of the base field was assumed to be zero, but higher
dimension was allowed. Our proof follows essentially the argument given in Scheja
and Storch (1975), but offers some simplifications and clarifications. The following
lemma makes some arguments in Zariski and Samuel (1958, Ch. 4, Thm. 34) explicit.

Lemma 5.3 Let X ⊆ P
n
K be a 0-dimensional scheme, let {F1, . . . , Fn} be a P-regular

sequence in IX, and let M = 〈X0, . . . , Xn〉. Then the colon ideal 〈X0, F1, . . . , Fn〉 :
M is the smallest ideal in P that properly contains 〈X0, F1, . . . , Fn〉.
Proof By localizing at M and applying Kunz (1986, C.27), it suffices to prove that
the ideal q : MM is the smallest ideal in PM that properly contains q, where
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q = 〈X0, F1, . . . , Fn〉PM . Since PM is a regular local ring and {X0, F1, . . . , Fn}
is a regular sequence, the residue class ring PM/q is a complete intersection, and so
it is a Gorenstein ring. In particular, we have dimK ((q : MM)/q) = 1.

Now let J be an ideal properly containing q. Then we have J ∩ (q : MM) � q.
Suppose that k is the smallest exponent such that J · Mk

M ⊆ q. Clearly, k ≥ 1 and

J ·Mk−1
M ⊆ (q : MM)∩ J and J ·Mk−1

M � q. Because dimK ((q : MM)/q) = 1, there
are no ideals between q and q : MM. Moreover, the intersection of J with q : MM is
different from q, and therefore J contains q : MM. ��

Now we are ready to characterize 0-dimensional complete intersections using the
non-vanishing of the reduced Kähler different.

Proposition 5.4 Let X ⊆ P
n
K be a 0-dimensional scheme, let {F1, . . . , Fr } be a

minimal homogeneous system of generators of the vanishing ideal IX, and suppose
char(K ) > max{deg(X), deg(F1), . . . , deg(Fr )}. Then X is a complete intersection if
and only if ϑX is non-zero.

Proof If X is a complete intersection, then ϑX = δX is a principal ideal generated by
the Jacobian determinant h = det(

∂ Fj
∂xi

). According to Kunz (1986, F.20), there is a
trace map σ : R → K [x0] associated with the presentation R = P/〈F1, . . . , Fn〉.
By Kunz (1986, F.23), the canonical trace map TrR/K [x0] : R → K [x0] satisfies
TrR/K [x0] = h · σ . Let d = deg(X), let {t1, . . . , td} be the K [x0]-basis of R as in
Remark 3.6(b), and let {t ′1, . . . , t ′d} be the dual K [x0]-basis of R to {t1, . . . , td}w.r.t. σ
(see Kunz 1986, F.11). For k = 1, . . . , d, we see that

((
d∑

j=1
TrR/K [x0](t j )t

′
j

)

· σ

)

(tk) = σ

(
d∑

j=1
TrR/K [x0](t j )t

′
j tk

)

=
d∑

j=1
TrR/K [x0](t j )σ (t ′j tk)

=
d∑

j=1
TrR/K [x0](t j )δ jk =TrR/K [x0](tk).

This implies h · σ = TrR/K [x0] = (
∑d

j=1 TrR/K [x0](t j )t ′j ) · σ . Hence we get the

equality h = ∑d
j=1 TrR/K [x0](t j )t ′j . We may assume t1 = 1. Then TrR/K [x0](t1) =

d �= char(K ), and so h = dt ′1 + ∑d
j=2 TrR/K [x0](t j )t ′j . Consequently, we have ϑX =

〈h〉R � 〈x0〉R . In particular, ϑX is non-zero.
Conversely, suppose thatX is not a complete intersection, i.e., that r > n. For every

subset {Fi1, . . . , Fin } of {F1, . . . , Fr } consisting of n elements, we want to show that
∂(Fi1 ,...,Fin )

∂(X1,...,Xn)
∈ 〈X0〉 + IX =: J . It suffices to do this for {F1, . . . , Fn}.

W.l.o.g., let F1, . . . , Ft be a P-regular sequence ofmaximal length in 〈F1, . . . , Fn〉.
In the case t = n, Euler’s rule yields

deg(Fj )Fj =
n∑

i=0

∂ Fj
∂ Xi

Xi
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for j = 1, . . . , n. Then Lemma 5.3 implies

∂(X0,F1,...,Fn)
∂(X0,...,Xn)

= ∂(F1,...,Fn)
∂(X1,...,Xn)

∈ 〈X0, F1, . . . , Fn〉 : M ⊆ J.

Now we consider the case t < n. It is well-known that all associated prime ideals of
〈X0, F1, . . . , Ft 〉 have the same height t +1. So, we may assume that Xt+1 is not con-
tained in any associated prime ideal of 〈X0, F1, . . . , Ft 〉. Let Gt+1 be a homogeneous
polynomial in the intersection of the associated prime ideals of 〈X0, F1, . . . , Ft 〉which
does not contain Ft+1. For k > 1, the elements X0, F1, . . . , Ft , Ft+1 + Gk

t+1Xk+1
t+1

form a P-regular sequence. Repeating this process, we can construct a P-regular
sequence X0, F1, . . . , Ft , Ft+1 + Gk

t+1Xk+1
t+1 , . . . , Fn + Gk

n Xk+1
n eventually.

We set Jk = 〈X0, F1, . . . , Ft , Ft+1 + Gk
t+1Xk+1

t+1 , . . . , Fn + Gk
n Xk+1

n 〉. If Gk
n Xk

n ∈
Jk , then

Gk
n Xk

n = X0H0 + F1H1 + · · · + (Fn + Gk
n Xk+1

n )Hn

for some H0, . . . , Hn ∈ P . Since {X0, F1, . . . , Ft , Fn} is not a P-regular sequence,
there exist H, H ′

0, . . . , H ′
t ∈ P such that H /∈ 〈X0, F1, . . . , Ft 〉 and

H Fn = X0H ′
0 + F1H ′

1 + · · · Ft H ′
t .

Hence we get

H(Fn + Gk
n Xk+1

n ) = (Xn H0H + H ′
0)X0 + (Xn H1H + H ′

1)F1 + · · ·
+(Xn Ht H + H ′

t )Ft + H Xn Ht+1(Ft+1 + Gk
t+1Xk+1

t+1 ) + · · ·
+Xn Hn H(Fn + Gk

n Xk+1
n ).

This contradicts the fact that X0, F1, . . . , Ft , Ft+1 + Gk
t+1Xk+1

t+1 , . . . , Fn + Gk
n Xk+1

n

form a P-regular sequence. Thus we have Gk
n Xk

n /∈ Jk .
Consequently, we get Jk : M ⊆ Jk + 〈Gk

n Xk
n〉 by Lemma 5.3. Let d j = deg(Fj )

for j = 1, . . . , n and let

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 ∂ F1
∂ X0

· · · ∂ Ft
∂ X0

∂ Ft+1
dt+1∂ X0

· · · ∂ Fn
dn∂ X0

0 ∂ F1
∂ X1

· · · ∂ Ft
∂ X1

∂ Ft+1
dt+1∂ X1

· · · ∂ Fn
dn∂ X1

...
... · · · ...

... · · · ...

0 ∂ F1
∂ Xt+1

· · · ∂ Ft
∂ Xt+1

∂ Ft+1
dt+1∂ Xt+1

+ Gk
t+1Xk

t+1 · · · ∂ Fn
dn∂ Xt+1

...
... · · · ...

... · · · ...

0 ∂ F1
∂ Xn

· · · ∂ Ft
∂ Xn

∂ Ft+1
dt+1∂ Xn

· · · ∂ Fn
dn∂ Xn

+ Gk
n Xk

n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We shall show that det(M) ∈ Jk : M, and hence det(M) ∈ Jk + 〈Gk
n Xk

n〉. Let Mi

denote the i-th row of the matrix M for i = 1, . . . , n + 1, and let

V := (X0, d1F1, . . . , dt Ft , Ft+1+Gk
t+1Xk+1

t+1 , . . . , Fn + Gk
n Xk+1

n ).

123



Beitr Algebra Geom (2017) 58:93–129 119

We use Euler’s rule and calculate

n∑

j=0
X j · M j+1 =

(

X0,
n∑

j=0

∂ F1
∂ X j

X j , . . . ,
n∑

j=0

∂ Ft
∂ X j

X j ,
1

dt+1

n∑

j=0

∂ Ft+1
∂ X j

X j + Gk
t+1Xk+1

t+1 ,

. . . , 1
dn

n∑

j=0

∂ Fn
∂ X j

X j + Gk
n Xk+1

n

)

= (X0, d1F1, . . . , dt Ft , Ft+1+Gk
t+1Xk+1

t+1 , . . . , Fn +Gk
n Xk+1

n ).

Thus we obtain V = ∑n
j=0X j · M j+1. Therefore we have

Xi−1 · det(M) = det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M1
...

Mi−1
Xi−1 · Mi

Mi+1
...

Mn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M1
...

Mi−1
V

Mi+1
...

Mn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Jk

for i = 1, . . . , n + 1, and hence we get det(M) ∈ Jk : M ⊆ Jk + 〈Gk
n Xk

n〉. Fur-
thermore, we have det(M) − 1

dt+1···dn
· ∂(F1,...,Fn)

∂(X1,...,Xn)
∈ 〈Gk

t+1Xk
t+1, . . . , Gk

n Xk
n〉, and

so ∂(F1,...,Fn)
∂(X1,...,Xn)

∈ Jk + 〈Gk
t+1Xk

t+1, . . . , Gk
n Xk

n〉 ⊆ J + 〈Gk
t+1Xk

t+1, . . . , Gk
n Xk

n〉 for
all k > 1. Therefore, by the Krull Intersection Theorem (cf. Eisenbud 1995, Corol-
lary 5.4), we obtain ∂(F1,...,Fn)

∂(X1,...,Xn)
∈ J , as desired. ��

The characterization given in the preceding proposition is nice in the sense that it
only uses the reduced Kähler different. But we are also looking for a refined version
which lets us distinguish between complete intersections and arithmeticallyGorenstein
schemes. If we know already that X is arithmetically Gorenstein, then we can use the
following characterization.

Proposition 5.5 Let X ⊆ P
n
K be a 0-dimensional smooth scheme which is arithmeti-

cally Gorenstein. Then the following conditions are equivalent.

(a) The scheme X is a complete intersection.
(b) The Hilbert function of ϑX satisfies HFϑX

(rX) �= 0.
(c) We have ϑX = δX.

Proof (a)⇒(b): This follows from Corollary 2.7.
(b)⇒(c): Since X is arithmetically Gorenstein, as in the proof of Theorem 4.15

we find an element g ∈ (CX)−rX such that CX = 〈g〉R and AnnR(g) = 〈0〉. Note
that g is a unit of Qh(R) and h = g−1 ∈ (δX)rX . For f ∈ (δX)i with i < rX, we
see that f · g ∈ Ri−rX = 〈0〉, and hence f = 0. If f ∈ (δX)i with i ≥ rX, then
f1 = f · g ∈ Ri−rX . This implies ( f − f1h) · g = 0, and consequently f = f1h. So,
we get δX = 〈h〉R .
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Furthermore, we have

〈0〉 �= (ϑX)rX ⊆ (δX)rX = 〈h〉K ,

and so h ∈ ϑX. Therefore we obtain ϑX = δX.
(c)⇒(a): Suppose that ϑX = δX. Since X is arithmetically Gorenstein, we argue

as above to get ϑX = 〈h〉R for some non-zerodivisor h ∈ RrX . In particular, ϑX

is an invertible ideal. Moreover, if we have �1
Q(R)/K [x0] = 〈0〉, where Q(R) is

the full ring of quotients of R, then it follows from Kunz (1986, Theorem 10.14)
that the algebra R/K [x0] is locally a complete intersection, and hence X is a com-
plete intersection by Proposition 5.2. So, it suffices to prove that �1

Q(R)/K [x0] = 〈0〉.
According to Corollary 3.4, the algebra Q(R)/K (x0) is étale, free of rank deg(X).
Thus Kunz (1986, Proposition 6.8) yields �1

Q(R)/K (x0)
= 〈0〉. Additionally, it is not

difficult to see that Ker(K (x0) ⊗K [x0] K (x0)
μ→ K (x0)) = 〈 f ⊗ 1 − 1 ⊗ f | f ∈

K (x0)〉K (x0)⊗K [x0]K (x0) = 〈0〉, so �1
K (x0)/K [x0] = 〈0〉. On the other hand, we have

Q(R) ∼= K (x0) ⊗K
∏s

j=1OX,p j (as X is smooth). This implies

Q(R) ∼= K (x0) ⊗K [x0]

(

K [x0] ⊗K

s∏

j=1
OX,p j

)

∼= K (x0) ⊗K [x0] R̃

where R̃ = ∏s
j=1OX,p j [Tj ] and T1, . . . , Ts are indeterminates. By Kunz (1986,

Formulas 4.4), we obtain �1
Q(R)/K (x0)

∼= K (x0) ⊗K [x0] �1
R̃/K [x0] and

�1
Q(R)/K [x0] ∼= K (x0) ⊗K [x0] �1

R̃/K [x0] ⊕ R̃ ⊗K [x0] �1
K (x0)/K [x0]

∼= �1
Q(R)/K (x0) ⊕ R̃ ⊗K [x0] �1

K (x0)/K [x0] = 〈0〉.

This completes the proof. ��
Nowwe present our main result of this section. It answers a question posed in Grif-

fiths andHarris (1978) andDavis andMaroscia (1984):CB-scheme+ (?)=Complete
intersection? in the case of smooth 0-dimensional subscheme X of P

n
K . In other

words, we replace the assumption that X is arithmetically Gorenstein by the weaker
assumption that X is a CB-scheme and show again that the non-vanishing of a single
homogeneous component of the Kähler different characterizes 0-dimensional com-
plete intersections.

Theorem 5.6 Let X ⊆ P
n
K be a smooth 0-dimensional scheme. Then X is a complete

intersection if and only if it is a CB-scheme and HFϑX
(rX) �= 0.

Proof Suppose that the scheme X is a complete intersection. Then X is arithmetically
Gorenstein. It follows from Goto and Watanabe (1978, Proposition 2.1.3) that CX ∼=
R(rX), and so there exists a homogeneous element g ∈ (CX)−rX such that CX = 〈g〉R

and AnnR(g) = 〈0〉. By Proposition 4.12, the scheme X is a CB-scheme. Moreover,
it follows from Corollary 2.7 that HFϑX

(rX) �= 0.
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Now we prove the converse. Since ϑX ⊆ δX and HFϑX
(rX) �= 0, we have

HFδX(rX) �= 0. We let h be a non-zero element in (δX)rX . Then there is a point
p j ∈ Supp(X) such that h p j �= 0 in OX,p j . Because X is a CB-scheme, Proposi-

tion 4.12 implies that there is an element g∗
j ∈ (CX)−rX\{0} such that g∗

j = x−2rX
0 g̃∗

j
with g̃∗

j ∈ RrX and (g̃∗
j )p j �= 0. In OX,p j , we have h p j · (g̃∗

j )p j �= 0. This implies
h · g̃∗

j �= 0, and then h · g∗
j �= 0 (as x0 is a non-zerodivisor of R). Thus there is an

element c ∈ K\{0} such that c = h ·g∗
j ∈ R0 = K . In particular, h is a non-zerodivisor

of R and AnnR(g∗
j ) = 〈0〉. W.l.o.g. we may assume that c = 1.

Next we prove that CX = 〈g∗
j 〉R . Let i ≥ 0 and let g ∈ (CX)i−rX . Then we

have g · h ∈ Ri . Set f = g · h ∈ Ri . We have g · h = f = f h · g∗
j , and so

(x2rX
0 · g − x2rX

0 f · g∗
j )h = 0. Since x2rX

0 ∈ δX and AnnR(h) = 〈0〉, we have x2rX
0 ·

g − x2rX
0 f · g∗

j = x2rX
0 · (g − f g∗

j ) = 0. The fact that x0 is a non-zerodivisor on CX
implies g = f g∗

j . Thus we get CX = 〈g∗
j 〉R , as claimed.

Consequently,we haveCX ∼= R(rX), sinceAnnR(g∗
j ) = 〈0〉. Hence the schemeX is

arithmetically Gorenstein by Goto andWatanabe (1978, Proposition 2.1.3). Therefore
an application of Proposition 5.5 yields thatX is a complete intersection, as we wanted
to show. ��

The following corollary is an immediate consequence of Theorem 5.6. This corol-
lary can be deduced from Kunz (1986, Theorem 9.5), and its corresponding local
version is given in Lenstra (1993, Proposition 1).

Corollary 5.7 Let X ⊆ P
n
K be a 0-dimensional smooth scheme. Then X is a com-

plete intersection if and only if ϑX is a principal ideal of R generated by a non-zero
homogeneous element of degree rX.

Proof Suppose that ϑX = 〈h〉R for some element h ∈ RrX\{0}. Since HPϑX
=

deg(X) by Corollary 3.11, the element h must be a non-zerodivisor of R. Clearly,
HFCX

(−rX) = HFX(rX) −HFX(rX − 1) ≥ 1, and so there exists a non-zero element

g ∈ (CX)−rX . We can write g = x−2rX
0 g̃ for some g̃ ∈ RrX . Since x0 and h are

non-zerodivisors of R, we have

0 �= h · g = x−2rX
0 hg̃ ∈ (ϑX)rX(CX)−rX ⊆ R0.

It follows that h · g ∈ K\{0}, and hence AnnR(g) = 〈0〉. Thus Proposition 4.12 yields
that X is a CB-scheme, and therefore X is a complete intersection by Theorem 5.6.
The other implication follows from Corollary 2.7. ��

We conclude this section with the following criterion for 0-dimensional arithmeti-
cally Gorenstein schemes.

Proposition 5.8 Let X ⊆ P
n
K be a 0-dimensional locally Gorenstein scheme. Then

the following conditions are equivalent.

(a) The scheme X is arithmetically Gorenstein.
(b) There exists an element h ∈ RrX\{0} such that δX = 〈h〉R.
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(c) There exists an element h ∈ (δX)rX with AnnR(h) = 〈0〉.
(d) The scheme X is a CB-scheme and HFδX(rX) �= 0.

If these conditions are satisfied, then the Hilbert function of the Dedekind different
satisfies HFδX(i) = HFX(i − rX) for all i ∈ Z, and ri(δX) = 2rX.

Proof (a)⇒(b): This follows from the proof of “(b)⇒(c)” of Proposition 5.5.
(b)⇒(c): Assume that δX = 〈h〉R with h ∈ RrX\{0}. According to Proposition 3.7,

there is an element f ∈ RrX such that f h = x2rX
0 ∈ δX, and therefore AnnR(h) = 〈0〉.

(c)⇒(d): Suppose that there is h ∈ (δX)rX with AnnR(h) = 〈0〉. Obviously, we
haveHFδX(rX) �= 0. SinceHFCX

(−rX) ≥ 1, there is a non-zero homogeneous element
g ∈ (CX)−rX . Note that δXCX ⊆ R. So, we can argue similarly as in the proof of
Corollary 5.7 to get AnnR(g) = 〈0〉. Hence X is a CB-scheme by Proposition 4.12.

(d)⇒(a): This follows easily from the proof of Theorem 5.6.
The additional claim follows from the fact that δX ∼= R(−rX). ��

6 Characterizations using higher Kähler differents

Previously, we mainly considered the Kähler different ϑX = F0(�
1
R/K [x0]) of the

algebra R/K [x0] to study complete intersections, arithmetically Gorenstein schemes,
etc. Butwhat about the algebra R/K ? Since R is 1-dimensional, it is natural to consider
the higher Kähler different ϑ

(1)
X

= F1(�1
R/K ) in this case. After exhibiting relations

between this higher Kähler different and the differents studied earlier and collecting
some results about its Hilbert function, we shall show that it, too, can be used to
characterize 0-dimensional complete intersections in a nice way.

As in the previous sections, we letX be a 0-dimensional subscheme of P
n
K such that

Supp(X) ∩Z(X0) = ∅. Recall that the first Kähler different ϑ(1)
X

of the algebra R/K
is the first Fitting ideal of �1

R/K and that we called it the higher Kähler different

of X. Using Kunz (1986, Proposition 4.19), we can compute ϑ
(1)
X

as follows.

Proposition 6.1 Let {F1, . . . , Fr } be a homogeneous set of generators of IX. For
every subset S = {i1, . . . , in} of {1, . . . , r} and every j ∈ {0, . . . , n}, we define

�S, j := ∂(Fi1 ,...,Fin )

∂(x0,...,x̂ j ,...,xn)
. Then we have

ϑ
(1)
X

= 〈 �S, j | S ⊆ {1, . . . , r}, #S = n, j ∈ {0, . . . , n} 〉.

The following lemma provides useful relations between the Kähler differents
of R/K [x0] and of R/K .

Lemma 6.2 Let X ⊆ P
n
K be a 0-dimensional scheme. Then we have

x0ϑ
(1)
X

= ϑXm ⊆ ϑX ⊆ ϑ
(1)
X

.

Proof Analogous to Kreuzer et al. (2015, Lemma 2.2). ��
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By applying the lemma, we can give bounds for the Hilbert polynomial and the
regularity index of the Kähler different ϑ(1)

X
, as the following proposition shows.

Proposition 6.3 Let X ⊆ P
n
K be a 0-dimensional scheme, and let Xsm be the set of

smooth points of X in Supp(X) = {p1, . . . , ps}. Then we have

∑

p j ∈Xsm

dimK (OX,p j ) ≤ HP
ϑ

(1)
X

= HPϑX
≤ deg(X) − (s − #Xsm)

and ri(ϑX) − 1 ≤ ri(ϑ(1)
X

) ≤ ri(ϑX).

Proof By Lemma 6.2, we have x0ϑ
(1)
X

⊆ ϑX ⊆ ϑ
(1)
X

. This implies the equalities
HP

x0ϑ
(1)
X

= HP
ϑ

(1)
X

= HPϑX
, since x0 is a non-zerodivisor of R. HenceProposition 2.15

yields the bounds forHP
ϑ

(1)
X

. Nowweprove the claimed inequalities between regularity

indices. Obviously, we have ri(ϑ(1)
X

) ≤ ri(ϑX). It follows from the inclusion x0ϑ
(1)
X

⊆
ϑX that HF

ϑ
(1)
X

(i) ≤ HFϑX
(i + 1) for every i ∈ Z. Consequently, we get ri(ϑX)− 1 ≤

ri(ϑ(1)
X

) ≤ ri(ϑX). ��
IfX ⊆ P

n
K is a 0-dimensional smooth scheme, then theKähler differentϑ(1)

X
satisfies

HP
ϑ

(1)
X

= deg(X), and we have ri(ϑ(1)
X

) ≤ ri(ϑX) ≤ rX(n + 1) by Corollary 3.11 and

the preceding proposition. Furthermore, we have the following particular values of the
Hilbert function of ϑ

(1)
X

.

Corollary 6.4 Let X ⊆ P
n
K be a reduced 0-dimensional complete intersection.

(a) Assume that X contains no smooth point in its support. Then we have HF
ϑ

(1)
X

(i) = 0

for all i ∈ Z.
(b) Assume that X contains at least one smooth point in its support. Let Y ⊆ X be

the subscheme defined by IY = ⋂
p j ∈Supp(X): p j smooth P j . Then, for all i ∈ Z, we

have

HF
ϑ

(1)
X

(i) =
{
0 if i < rX,

HFY(i + 1 − rX) if i ≥ rX.

In particular, we have ri(ϑ(1)
X

) = ri(ϑX) − 1 = rX + rY − 1 in this case.

Proof Since (a) follows immediately from the proposition, we prove (b). Let IX =
〈F1, . . . , Fn〉 and set�0 = ∂(F1,...,Fn)

∂(x1,...,xn)
. Then ϑX = 〈�0〉R . It follows from Lemma 6.2

that x0ϑ
(1)
X

= �0m. Since x0 is a non-zerodivisor of R, the Hilbert function of ϑ
(1)
X

satisfies HF
ϑ

(1)
X

(i) = HF�0m(i + 1) for all i ∈ Z. If i < rX, then 0 ≤ HF
ϑ

(1)
X

(i) ≤
HFm(i + 1 − rX) = 0, and so HF

ϑ
(1)
X

(i) = 0. For i ≥ rX, we see that HFϑ
(1)
X

(i) =
HF�0m(i + 1) = HFϑX

(i + 1). Furthermore, Proposition 2.6 yields that HFϑX
(i) =

HFY(i − rX) for all i ∈ Z. This implies HF
ϑ

(1)
X

(i) = HFY(i + 1− rX) for all i ≥ rX.

Hence the claim follows. ��
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Corollary 6.5 Let X ⊆ P
n
K be a 0-dimensional smooth scheme which is a complete

intersection. Then we have

HF
ϑ

(1)
X

(i) =
{
0 if i < rX,

HFX(i + 1 − rX) if i ≥ rX.

In particular, we have ri(ϑ(1)
X

) = ri(ϑX) − 1 = 2rX − 1.

Now we present a criterion for a smooth 0-dimensional scheme X to be a complete
intersection which uses one value of the Hilbert function of the Kähler different ϑ(1)

X
.

Theorem 6.6 Let X ⊆ P
n
K be a 0-dimensional smooth scheme. Then the following

conditions are equivalent.

(a) The scheme X is a complete intersection.
(b) The scheme X is a CB-scheme and HF

ϑ
(1)
X

(rX) �= 0.

(c) We have x0ϑ
(1)
X

· CX = m.

Proof (a)⇔(b): According to Lemma 6.2, we know that HF
ϑ

(1)
X

(rX) �= 0 if and only

if HFϑX
(rX) �= 0. Hence the claim follows from Theorem 5.6.

(a)⇒(c): IfX is a complete intersection and {F1, . . . , Fn} is a homogeneous regular
sequence generating IX, then we let �0 := ∂(F1,...,Fn)

∂(x1,...,xn)
. By Corollary 2.7, we get ϑX =

〈�0〉R , CX = 〈�−1
0 〉R , and�0 is a non-zerodivisor of R. We also have x0ϑ

(1)
X

= �0m

by Lemma 6.2. Then, multiplying by CX, we obtain x0ϑ
(1)
X

· CX = m.

(c)⇒(a): Suppose that x0ϑ
(1)
X

·CX = m. It follows from the equality x0ϑ
(1)
X

= ϑXm
that ϑXCXm = m. Furthermore, since ϑX is a subideal of δX, this implies

ϑXCX ⊆ δXCX ⊆ R.

If ϑXCX � R, then ϑXCX is a homogeneous ideal of R contained in m and

〈0〉 ⊆ m = ϑXCXm ⊆ 〈0〉 + m2.

ByNakayama’s lemma (cf. Kreuzer and Robbiano 2000, Proposition 1.7.15), we have
m = 〈0〉, which is impossible. Thus we must have ϑXCX = R. Consequently, CX is
invertible and ϑX = δX. So, the scheme X is arithmetically Gorenstein and ϑX = δX.
Therefore Proposition 5.5 yields that X is a complete intersection. ��

In the last part of this section we characterize 0-dimensional complete intersec-
tions using the image of the canonical map 
 : �1

R/K −→ �1
Qh(R)/K

. Given a

0-dimensional scheme X ⊆ P
n
K with Supp(X) = {p1, . . . , ps}, we have the isomor-

phism Qh(R) ∼= ∏s
j=1OX,p j [Tj , T −1

j ] (see Proposition 3.1). Our next lemma gives

us a smoothness criterion forX in terms of themodule ofKähler differentials�1
Qh (R)/K

of the K -algebra Qh(R).
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Lemma 6.7 Let X ⊆ P
n
K be a 0-dimensional scheme with Supp(X) = {p1, . . . , ps}.

Then X is smooth if and only if �1
Qh(R)/K

∼= ∏s
j=1OX,p j [Tj , T −1

j ]dTj .

Proof On account of Kunz (1986, Corollary 4.8), we have

�1
Qh(R)/K

∼=
s∏

j=1
�1
OX,p j [Tj ,T

−1
j ]/K

.

Also, Kunz (1986, Formula 4.4(b)) implies

�1
OX,p j [Tj ,T

−1
j ]/K

= �1
OX,p j ⊗K K [Tj ,T

−1
j ]/K

= OX,p j ⊗K �1
K [Tj ,T

−1
j ]/K

⊕ K [Tj , T −1
j ] ⊗K �1

OX,p j /K

= OX,p j [Tj , T −1
j ]dTj ⊕ K [Tj , T −1

j ] ⊗K �1
OX,p j /K .

It follows that �1
OX,p j [Tj ,T

−1
j ]/K

= OX,p j [Tj , T −1
j ]dTj if and only if �1

OX,p j /K = 0.

This is equivalent to the condition that p j is a smooth point of X (see Kunz 1986,
Theorem 7.14). Therefore �1

Qh(R)/K
∼= ∏s

j=1OX,p j [Tj , T −1
j ]dTj if and only if the

scheme X is smooth. ��
For the remainder of this section, we assume that the scheme X is smooth.

Using the lemma and the isomorphism Qh(R) ∼= ∏s
j=1OX,p j [Tj , T −1

j ], we see that
�1

Qh(R)/K
= Qh(R) dx0 is a free Qh(R)-module of rank one and that dxi = xi

x0
dx0

for all i = 0, . . . , n. Furthermore, letting L0 = K [x0, x−1
0 ], the canonical trace

Tr = TrQh(R)/L0
: Qh(R) −→ L0 is a Qh(R)-basis of HomL0

(Qh(R), L0) and
induces a homogeneous L0-linear map of degree zero

Tr� : �1
Qh(R)/K −→ �1

L0/K

such that Tr�( f dx0) = Tr( f ) dx0 for f ∈ Qh(R).

Definition 6.8 In the setting defined above, the set

�X = {ω ∈ �1
Qh(R)/K | Tr�(R ω) ⊆ �1

K [x0]/K }

is clearly a graded R-module. It is called the module of regular differential forms
of R/K (or of X).

This module was introduced by Kunz (1975, 1978) and later generalized and
extended by Kunz and Waldi (1988). In our setting, it has the following properties.

Proposition 6.9 Let X be a smooth 0-dimensional subscheme of P
n
K .

(a) The module of regular differential forms of X satisfies �X = CX dx0.
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(b) The image of the canonical map 
 : �1
R/K −→ �1

Qh(R)/K
is contained in �X.

Thus it induces an R-linear map cX : �1
R/K −→ �X which is called the funda-

mental class of X.

Proof Let f ∈ Qh(R) be a non-zero homogeneous element. We see thatw = f dx0 ∈
�X if and only if Tr�(g f dx0) = Tr(g f )dx0 ∈ K [x0]dx0 for all g ∈ R. This is
equivalent to ( f · Tr)(g) ∈ K [x0] for all g ∈ R, i.e., to f · Tr ∈ ωR(1). Under the
injection� given in Definition 3.5, this is also equivalent to f ∈ CX, and consequently
claim (a) follows.

Next we prove claim (b). In �1
Qh(R)/K

, we have dxi = xi
x0

dx0 for i = 0, . . . , n.

Since �1
R/K = Rdx0 + · · · + Rdxn , we have 
(�1

R/K ) = m
x0

dx0. Moreover, we
see that HFCX

(0) = deg(X) − HFX(−1) = deg(X), and so we have x0(CX)0 =
x0(Qh(R))0 = (Qh(R))1. Thus we get m ⊆ x0CX. Therefore, by part (a), we obtain

(�1

R/K ) = m
x0

dx0 ⊆ CXdx0 = �X, as we wanted to show. ��
In the preceding proof we showed that cX(�1

R/K ) = m
x0

dx0. The kernel of the
fundamental class can be described as follows.

Proposition 6.10 We have Ker(cX) = { ∑n
i=0 gi dxi ∈ �1

R/K | ∑n
i=0 gi xi = 0

}
.

Proof For an element w = ∑n
i=0 gi dxi ∈ �1

R/K , cX(w) = ( 1
x0

∑n
i=0 gi xi )dx0. So,

cX(w) = 0 if and only if 1
x0

∑n
i=0 gi xi = 0. Since x0 is a non-zerodivisor for Qh(R),

this is equivalent to
∑n

i=0 gi xi = 0. Hence the conclusion follows. ��
Next we use the image of the fundamental class to characterize 0-dimensional

complete intersections.

Theorem 6.11 Let X ⊆ P
n
K be a 0-dimensional smooth scheme. Then X is a complete

intersection if and only if cX(�1
R/K ) = ϑ

(1)
X

�X.

Proof Assume that X is a complete intersection. Let {F1, . . . , Fn} be a homogeneous
regular sequence generating IX. We set � j := ∂(F1,...,Fn)

∂(x0,...,x̂ j ,...,xn)
for j = 0, . . . , n. In

�1
R/K , there are relations

∂ Fi

∂x0
dx0 + ∂ Fi

∂x1
dx1 + · · · + ∂ Fi

∂xn
dxn = 0 for i = 1, . . . , n.

By Cramer’s Rule, we have �0dx j = (−1)n+1− j� j dx0 for j = 1, . . . , n. Thus we
deduce from �1

R/K = Rdx0 + · · · + Rdxn and CX = 〈�−1
0 〉R that

cX(�1
R/K ) =

〈
�0

�0
,
�1

�0
, . . . ,

�n

�0

〉

R
dx0

= ϑ
(1)
X

〈�−1
0 〉Rdx0 = ϑ

(1)
X

�X.

Conversely, suppose cX(�1
R/K ) = ϑ

(1)
X

�X. We know that cX(�1
R/K ) = m

x0
dx0. Thus

we get the equality mdx0 = x0ϑ
(1)
X

CXdx0. Since AnnR(dx0) = 〈0〉, we obtain m =
x0ϑ

(1)
X

CX. Therefore the conclusion follows from Theorem 6.6. ��
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From the proof of this theorem we also get a characterization of arithmetically
Gorenstein schemes which is based on the following observations.

Remark 6.12 Let X ⊆ P
n
K be a 0-dimensional smooth scheme.

(a) There is an exact sequence of graded R-modules

0 −→ Ker(cX) −→ �1
R/K −→ �X −→ �X/cX(�1

R/K ) −→ 0.

The R-module JX = �X/
(�1
R/K ) is also known as the Jacobian module of X.

(b) Notice that cX(�1
R/K ) ∼= m and �X

∼= CX(1). Thus the Hilbert function of JX is
given by

HFJX(i) = deg(X) − HFX(−i) − HFm(i)

for all i ∈ Z. Hence JX is a finite dimensional K -vector space with

dimK (JX) = (rX − 1)deg(X) + 1 +
rX−1∑

i=0
(deg(X) − HFX(i)

−HFX(rX − i − 1)).

Finally, we characterize arithmetically Gorenstein schemes using the dimension of
their Jacobian module as follows.

Corollary 6.13 Let K be an infinite field, and let X ⊆ P
n
K be a 0-dimensional smooth

scheme. Then the following conditions are equivalent.

(a) The scheme X is arithmetically Gorenstein.
(b) The scheme X is a CB-scheme and dimK (JX) = (rX − 1)deg(X) + 1.

Proof If X is an arithmetically Gorenstein scheme, Theorem 4.15 implies HFX(i) +
HFX(rX − i − 1) = deg(X) for i = 0, . . . , rX − 1. Hence Remark 6.12(b) yields the
equality dimK (JX) = (rX − 1)deg(X) + 1. Moreover, Proposition 5.8 shows that X

is a CB-scheme.
Conversely, assume that X is a CB-scheme and dimK (JX) = (rX − 1)deg(X) + 1.

Since K is infinite, Remark 4.13 tells us that there is an element g ∈ (CX)−rX such
that AnnR(g) = 〈0〉. Thus R(−rX) ∼= R · g ⊆ CX. This implies

HFX(i) ≤ HFCX
(i − rX) = deg(X) − HFX(rX − i − 1)

for all i ∈ Z. Since dimK (JX) = (rX − 1)deg(X) + 1, we deduce
∑rX−1

i=0 (deg(X) −
HFX(i)−HFX(rX− i −1)) = 0. Hence wemust have HFX(i) = deg(X)−HFX(rX−
i − 1) for all i ∈ Z. Observe that deg(X) − HFX(rX − 1) = HFX(0) = 1 and
HFCX

(i − rX) = deg(X) − HFX(rX − i − 1) = HFX(i) = HF〈g〉R (i − rX). Thus we
get CX = 〈g〉R , and therefore X is arithmetically Gorenstein. ��
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