

ORIGINAL PAPER

Generalized derivations and commutativity of prime Banach algebras

R. K. Sharma¹ · B. Prajapati²

Received: 7 December 2015 / Accepted: 12 July 2016 / Published online: 20 July 2016 @ The Managing Editors 2016

Abstract In this article we study various conditions on a unital prime Banach algebra that ensure its commutativity. More specifically, we prove that a unital prime Banach algebra *A* with a nonzero continuous linear generalized derivation *g* associated with a nonzero linear continuous derivation *d* satisfying either $g((xy)^n) - d(x^n)d(y^n) \in Z(A)$ or $g((xy)^n) - d(y^n)d(x^n) \in Z(A)$, for sufficiently many *x*, *y* and an integer n = n(x, y) > 1 is commutative.

Keywords Prime Banach algebra · Generalized derivation · Left multiplier

Mathematics Subject Classification 16W25 · 16N60 · 46J10

1 Introduction

The symbol *A* shall denote a Banach algebra over the complex field **C** with unity *e*. The symbols *Z*(*A*) and *M* will denote the center and a closed linear subspace of *A*. An algebra *A* is said to be prime if for any $x, y \in A$ such that xAy = 0, either x = 0 or y = 0. An additive mapping $d : A \to A$ is said to be a derivation if d(xy) = d(x)y + xd(y) and d(cx) = cd(x), for all $x, y \in A$ and for all $c \in \mathbf{C}$. An additive mapping $g : A \to A$ is said to be a generalized derivation associated with a derivation *d* if g(xy) = g(x)y + xd(y) and g(cx) = cg(x), for all $x, y \in A$

 B. Prajapati balchand@aud.ac.in
 R. K. Sharma rksharma@maths.iitd.ac.in

¹ Department of Mathematics, Indian Institute of Technology Delhi, New Delhi 110016, India

² School of Liberal Studies, Ambedkar University Delhi, Kashmere Gate, Delhi 110006, India

and for all $c \in \mathbb{C}$. An additive mapping $T : A \to A$ is said to be a left multiplier if T(xy) = T(x)y and T(cx) = cT(x), for all $x, y \in A$ and for all $c \in \mathbb{C}$.

Yood (1991), has shown that if *A* is a unital Banach algebra and n = n(x, y) > 1is a positive integer such that either $(xy)^n - x^n y^n \in M$ or $(xy)^n - y^n x^n \in M$ for sufficiently many *x* and *y*, then $[x, y] \in M$. Ali and Khan (2015) have shown that if *A* is a unital prime Banach algebra with nonzero continuous linear derivation $d : A \to A$ such that either $d((xy)^m) - x^m y^m$ or $d((xy)^m) - y^m x^m$ is in the center Z(A) of *A* for an integer m = m(x, y) > 1 and sufficiently many *x*, *y*, then *A* is commutative. In this article we extend these results for a generalized derivation. Let $p(t) = \sum_{i=0}^{n} a_i t^i$ be a polynomial in real variable *t* with coefficients in *A*. As mentioned in Yood (1991), if $p(t) \in M$ for infinitely many real *t* then each $a_i \in M$.

For a derivation d on a prime ring R, Posner proved the following result:

Lemma 1 [Posner (1957), Theorem 2] Let *R* be a prime ring and *d* be a nonzero derivation of *R* such that [d(x), x] is in the center of *R*, for all $x \in R$. Then *R* is commutative.

Many other authors have generalized Posner's result in several ways for rings and algebras (see Bell 1999; Brešar 2004; Herstein 1961; Vukman 1992; Yood 1984, 1990, where further references can be found). One of the generalizations of Posner's result by Lee and Lee is of our interest:

Lemma 2 [Lee and Lee (1983), Theorem 2] Let *d* be a nonzero derivation on a prime ring *R* and *U* be a lie ideal of *R* such that $[x, d(U)] \subseteq Z(R)$. Then either $x \in Z(R)$ or $U \subseteq Z(R)$.

Ashraf and Ali have given a relationship between the commutativity of a ring and its left multipliers (see Ashraf and Ali 2008). In this article we also find a connection between the commutativity of a prime Banach algebra and its left multipliers.

2 Main results

Theorem 1 Let A be a unital prime Banach algebra and $g : A \to A$ be a nonzero continuous generalized derivation associated with nonzero continuous derivation d on A such that $g(e) \in Z(A)$ and $d(g(e)) \neq 0$. Suppose that there are open subsets G_1 and G_2 of A such that either $g((xy)^n) - d(x^n)d(y^n) \in Z(A)$ or $g((xy)^n) - d(y^n)d(x^n) \in Z(A)$ for each $x \in G_1$ and for each $y \in G_2$ and an integer n = n(x, y) > 1. Then A is commutative.

Proof Set

$$f(x, y, n) := g((xy)^n) - d(x^n)d(y^n)$$

and

$$h(x, y, n) := g((xy)^n) - d(y^n)d(x^n).$$

🖉 Springer

Let $x \in G_1$ be an arbitrarily fixed element. For each positive integer *n* consider the set $U_n = \{y \in A \mid f(x, y, n) \notin Z(A), h(x, y, n) \notin Z(A)\}$. We show that U_n is open by showing that its complement U_n^c is closed. Let (s_k) be a sequence in U_n^c such that $\lim s_k = s$. Since $s_k \in U_n^c$ we have either

$$h(x, s_k, n) = g((xs_k)^n) - d(x^n)d(s_k^n) \in Z(A)$$
(1)

or

$$f(x, s_k, n) = g((xs_k)^n) - d(s_k^n)d(x^n) \in Z(A).$$
(2)

Since g and d are continuous it follows that

$$g((xs)^n) - d(x^n)d(s^n) \in Z(A) \text{ or } g((xs)^n) - d(s^n)d(x^n) \in Z(A).$$

This shows that $s \in U_n^c$ and so U_n is open.

By the Baire category theorem, if each U_n is dense then their intersection is also dense, which contradicts the existence of G_2 . Therefore there exists an integer i = i(x) > 1 such that U_i is not dense and a nonempty open set G_3 in the complement of U_i such that either $g((xy)^i) - d(x^i)d(y^i) \in Z(A)$ or $g((xy)^i) - d(y^i)d(x^i) \in Z(A)$, for all $y \in G_3$. Take $z \in G_3$ and $w \in A$. So for sufficiently small real $t, (z+tw) \in G_3$ and either

$$g((x(z+tw))^{i}) - d(x^{i})d((z+tw)^{i}) \in Z(A)$$
(3)

or

$$g((x(z+tw))^{l}) - d((z+tw)^{l})d(x^{l}) \in Z(A).$$
(4)

Thus for infinitely many t either (3) or (4), say (3) must hold. Since $g((x(z+tw))^i) - d(x^i)d((z+tw)^i)$ is polynomial in t which is in Z(A), each of its coefficients must be in Z(A). The coefficient of t^i is $g((xw)^i) - d(x^i)d(w^i)$ which is in Z(A). We have therefore shown that, given $x \in G_1$, there exists a positive integer i depending on x such that for each $w \in A$ either

$$g((xw)^{i}) - d(x^{i})d(w^{i}) \in Z(A)$$

or

$$g((xw)^{i}) - d(w^{i})d(x^{i}) \in Z(A).$$

Next we show that for each $y \in A$ there is an integer j = j(y) > 1 such that for each $v \in A$ either

$$g((vy)^j) - d(v^j)d(y^j) \in Z(A)$$

or

$$g((vy)^j) - d(y^j)d(v^j) \in Z(A)$$

Fix an arbitrary $y \in A$ and for each k > 1, define

$$W_k = \{ z \in A \mid f(z, y, k) \notin Z(A), h(z, y, k) \notin Z(A) \}.$$

As shown above each W_k is open, so by the Baire category theorem, if each W_k is dense then its intersection is also dense which contradicts the existence of G_1 . Hence there exists an integer j = j(y) > 1 and a nonempty open subset G_4 in the complement of W_j . If $z \in G_4$ and $v \in A$ then for sufficiently small real $t, (z + tv) \in G_4$ and either

$$g(((z+tv)y)^{J}) - d((z+tv)^{J})d(y^{J}) \in Z(A)$$
(5)

or

$$g(((z+tv)y)^{j}) - d(y^{j})d((z+tv)^{j}) \in Z(A).$$
(6)

With the same argument as earlier we see that for each $v \in A$, either

$$g((vy)^j) - d(v^j)d(y^j) \in Z(A)$$

or

$$g((vy)^j) - d(y^j)d(v^j) \in Z(A).$$

Now let S_k , k > 1 be the set of all $y \in A$ such that for each $w \in A$ either

$$g((wy)^k) - d(w^k)d(y^k) \in Z(A)$$

or

$$g((wy)^k) - d(y^k)d(w^k) \in Z(A).$$

The union of S_k is A. It is obvious to see that each S_k is closed. Again, by the Baire category theorem, some S_n must contain a nonempty open subset G_5 . Take $z \in G_5$ and $x \in A$. For all sufficiently small real t and each $w \in A$ either

$$g((w(z+tx))^n) - d(w^n)d((z+tx)^n) \in Z(A)$$

or

$$g((w(z+tx))^n) - d((z+tx)^n)d(w^n) \in Z(A).$$

By earlier arguments, for all $x, w \in A$, we have either

$$g((wx)^n) - d(w^n)d(x^n) \in Z(A)$$

or

$$g((wx)^n) - d(x^n)d(w^n) \in Z(A).$$

Since A is unital, for all real t and for all $x, y \in A$ we have either

$$g(((e+tx)y)^{n}) - d((e+tx)^{n})d(y^{n}) \in Z(A)$$
(7)

🖉 Springer

or

$$g(((e+tx)y)^{n}) - d(y^{n})d((e+tx)^{n}) \in Z(A).$$
(8)

Now, by collecting the coefficient of t in the above expressions, we have either

$$g(xy^{n} + Q) - nd(x)d(y^{n}) \in Z(A) \quad \text{for all} \quad x, y \in A$$
(9)

or

$$g(xy^{n} + Q) - nd(y^{n})d(x) \in Z(A) \quad \text{for all} \quad x, y \in A,$$
(10)

where $Q = \sum_{k=1}^{n-1} y^k x y^{n-k}$.

Again if we start with $g((y(e+tx))^n)$ in place of $g(((e+tx)y)^n)$, we have either

$$g(y^{n}x + Q) - nd(y^{n})d(x) \in Z(A) \quad \text{for all} \quad x, y \in A$$
(11)

or

$$g(y^n x + Q) - nd(x)d(y^n) \in Z(A) \quad \text{for all} \quad x, y \in A.$$
(12)

At least one of the pairs of equations $\{(9) (11)\}, \{(10) (12)\}, \{(9) (12)\}\$ and $\{(10) (11)\}\$ must hold. Subtracting these pairs we have either

$$g[x, y^n] - n[d(x), d(y^n)] \in Z(A) \quad \text{for all} \quad x, y \in A$$
(13)

or

$$g[x, y^n] + n[d(x), d(y^n)] \in Z(A) \quad \text{for all} \quad x, y \in A \tag{14}$$

or

$$g[x, y^n] \in Z(A) \quad \text{for all} \quad x, y \in A. \tag{15}$$

Now if $g[x, y^n] \in Z(A)$ then by replacing y by (e + ty) we have $g[x, y] \in Z(A)$ for all $x, y \in A$. Replace x by ex we get $g(e)[x, y] + d[x, y] \in Z(A)$, or equivalently,

$$[g(e)[x, y] + d[x, y], z] = 0, \quad \text{for all} \quad x, y, z \in A.$$
(16)

This can be written as [g(e)[x, y] + [x, dy], z] + [[dx, y], z] = 0. Replace y by [y, w]we get [g(e)[x, [y, w]] + [x, d[y, w]], z] + [[dx, [y, w]], z] = 0. Now use (16) to get [[dx, [y, w]], z] = 0; hence, $[dx, [y, w]] \in Z(A)$, for all x, y, $w \in A$. In the light Lemma 2 we have either $[y, w] \in Z(A)$ or $A \subseteq Z(A)$. In both the cases A is commutative.

Now if (13) holds then by replacing y by (e + ty) we have $g[x, y] - n[d(x), d(y)] \in Z(A)$ for all $x, y \in A$. In this expression replace x by xg(e) in order to obtain

 $(g[x, y] - n[d(x), d(y)])g(e) + [x, y]d(g(e)) - n[xd(g(e)), d(y)] \in Z(A)$ for all $x, y \in A$. Consequently, since Z(A) is a linear subspace of A and $(g[x, y] - n[d(x), d(y)])g(e) \in Z(A)$, it follows that $[x, y]d(g(e)) - n[xd(g(e)), d(y)] \in Z(A)$ for all $x, y \in A$. Hence if we set y = x and observe that $g(e) \in Z(A)$ implies $d(g(e)) \in Z(A)$, we obtain $[x, d(x)]d(g(e)) \in Z(A)$ for all $x \in A$. So, in particular, [[x, d(x)]d(g(e)), z] = 0 for all $x, z \in A$. Replacing z by zy now yields [[x, d(x)], z]yd(g(e)) = 0 for all $x, y, z \in A$. Thus, since A is prime and $d(g(e)) \neq 0$, it follows that $[x, d(x)] \in Z(A)$ for all $x \in A$. Hence, by Lemma 1 we may infer that A is commutative. Similarly it can be shown that if (14) holds then A is commutative.

Theorem 2 Let A be a unital prime Banach algebra and $g : A \to A$ be a nonzero continuous generalized derivation associated with a nonzero continuous derivation d on A such that $g(e) \in Z(A)$. Suppose that there are open subsets G_1 and G_2 of A such that either $g((xy)^n) - x^n y^n \in Z(A)$ or $g((xy)^n) - y^n x^n \in Z(A)$ for each $x \in G_1$ and for each $y \in G_2$ and an integer n = n(x, y) > 1. Then A is commutative.

Proof Proceeding as in Theorem 1, we get either

$$g[x, y] \in Z(A) \quad \text{for all} \quad x, y \in A \tag{17}$$

or

$$g[x, y] - n[x, y] \in Z(A) \quad \text{for all} \quad x, y \in A \tag{18}$$

or

$$g[x, y] + n[x, y] \in Z(A) \quad \text{for all} \quad x, y \in A.$$
(19)

Suppose (17) holds. Replace x by ex we get $g(e)[x, y] + d[x, y] \in Z(A)$, or equivalently,

$$[g(e)[x, y] + d[x, y], z] = 0, \quad \text{for all} \quad x, y, z \in A.$$
(20)

This can be written as [g(e)[x, y] + [x, dy], z] + [[dx, y], z] = 0. Replace y by [y, w] we get [g(e)[x, [y, w]] + [x, d[y, w]], z] + [[dx, [y, w]], z] = 0. Use (20) to get [[dx, [y, w]], z] = 0 or $[dx, [y, w]] \in Z(A)$, for all $x, y, w \in Z(A)$. In the light Lemma 2 we have either $[y, w] \in Z(A)$ or $A \subseteq Z(A)$. In both the cases A is commutative.

Now consider $g[x, y] - n[x, y] \in Z(A)$, for all $x, y \in A$. Replace x by ex we get $g(e)[x, y] + d[x, y] - n[x, y] \in Z(A)$ or [(g(e) - n)[x, y] + d[x, y], z] = 0 for all $x, y, z \in A$, which is similar to Eq. (20). Thus in this case it can also be shown that A is commutative. Similarly, we can prove that if $g[x, y] + n[x, y] \in Z(A)$ then A is commutative. \Box

Theorem 3 Let A be a unital prime Banach algebra and $g : A \rightarrow A$ be a nonzero continuous generalized derivation associated with a nonzero continuous derivation d

on A such that $g(e) \in Z(A)$. Suppose that there are open subsets G_1 and G_2 of A such that either $g((xy)^n - x^n y^n) \in Z(A)$ or $g((xy)^n - y^n x^n) \in Z(A)$ for each $x \in G_1$ and for each $y \in G_2$ and an integer n = n(x, y) > 1. Then A is commutative.

Proof Proceeding as in Theorem 1, we obtain either

$$g[x, y] \in Z(A)$$
 for all $x, y \in A$ (21)

or

$$g([x, y] - n[x, y]) \in Z(A) \quad \text{for all} \quad x, y \in A$$

$$(22)$$

or

$$g([x, y] + n[x, y]) \in Z(A) \quad \text{for all} \quad x, y \in A.$$

$$(23)$$

Equations (22) and (23) can be written as $(1-n)g[x, y] \in Z(A)$ and $(1+n)g[x, y] \in Z(A)$, respectively. Thus the equations (21), (22) and (23) all reduce to $g[x, y] \in Z(A)$. The result then follows using the argument in the proof of Theorem 2.

Theorem 4 Let A be a unital prime Banach algebra and $T : A \to A$ be a continuous left multiplier on A such that $T(x) \neq \pm nx$, for all nonzero $x \in A$ and integers $n \ge 0$. Suppose that there are open subsets G_1 and G_2 of A such that either $T((xy)^n) - x^n y^n \in Z(A)$ or $T((xy)^n) - y^n x^n \in Z(A)$ for each $x \in G_1$ and for each $y \in G_2$ and an integer n = n(x, y) > 1. Then A is commutative.

Proof Proceeding as in Theorem 1, we get either

$$T[x, y] \in Z(A)$$
 for all $x, y \in A$ (24)

or

$$T[x, y] - n[x, y] \in Z(A) \quad \text{for all} \quad x, y \in A \tag{25}$$

or

$$T[x, y] + n[x, y] \in Z(A) \quad \text{for all} \quad x, y \in A.$$
(26)

If $T[x, y] \in Z(A)$, for all $x, y \in A$, then [T[x, y], z] = 0, for all $x, y, z \in A$. Replacing y by yx and then z by rz we have T[x, y]r[x, z] = 0, for all $r, x, y, z \in A$. Hence, T[x, y]r[x, y] = 0, for all $r, x, y \in A$, and so, by hypothesis on T and the fact that A is prime, we have [x, y] = 0, for all $x, y \in A$. If $T[x, y] \pm n[x, y] \in Z(A)$, for all $x, y \in A$, then, as before $(T[x, y] \pm n[x, y])r[x, z] = 0$, for all $r, x, y, z \in A$. Since n > 1 it follows that $T[x, y] \neq \pm n[x, y]$, for all $x, y \in A$, and so, [x, z] = 0, for all $x, z \in A$. This completes the proof.

185

Theorem 5 Let A be a unital prime Banach algebra and $T : A \to A$ be a continuous left multiplier on A such that $T(x) \neq \pm nx$, for all $n \ge 0$. Suppose that there are open subsets G_1 and G_2 of A such that either $T((xy)^n - x^ny^n) \in Z(A)$ or $T((xy)^n - y^nx^n) \in Z(A)$ for each $x \in G_1$ and for each $y \in G_2$ and an integer n = n(x, y) > 1. Then A is commutative.

Proof The proof is similar to the proof of Theorem 4.

Theorem 6 Let A be a unital prime Banach algebra and $T : A \to A$ be a nonzero continuous left multiplier on A such that $T(e) \in Z(A)$ and $nT(e) \neq \pm e$, for all integers $n \ge 1$. Suppose that there are open subsets G_1 and G_2 of A such that either $T((xy)^n) - T(x^n)T(y^n) \in Z(A)$ or $T((xy)^n) - T(y^n)T(x^n) \in Z(A)$ for each $x \in G_1$ and for each $y \in G_2$ and an integer n = n(x, y) > 1. Then A is commutative.

Proof Proceeding as in Theorem 1, we obtain either

$$T[x, y] \in Z(A)$$
 for all $x, y \in A$ (27)

or

$$T[x, y] - n[T(x), T(y)] \in Z(A) \quad \text{for all} \quad x, y \in A$$
(28)

or

$$T[x, y] + n[T(x), T(y)] \in Z(A) \quad \text{for all} \quad x, y \in A.$$
⁽²⁹⁾

Since $T(e) \in Z(A)$, it follows from the fact that A is prime that T(x) = 0 implies x = 0. Now, if $T[x, y] \in Z(A)$, for all $x, y \in A$, then A is commutative as in the proof of Theorem 4. On the other hand, if $T[x, y] \pm n[T(x), T(y)] \in Z(A)$, for all $x, y \in A$, then as in the proof of Theorem 4, we have

$$(T[x, y] \pm n[T(x), T(y)])r[x, z] = 0$$
, for all $r, x, y, z \in A$.

Hence, $T[x, y](e \pm nT(e))r[x, y] = 0$, for all $r, x, y \in A$. If $T[x, y](e \pm nT(e)) = 0$ then $T[x, y]r(e \pm nT(e)) = 0$, for all $r \in A$ and so, T[x, y] = 0 and hence [x, y] = 0. So, [x, y] = 0, for all $x, y \in A$. The result now follows.

3 Open questions

The authors would like to open the following questions for further studies:

Question 1 Can the hypothesis that $g(e) \in Z(A)$ be removed from the assumptions in Theorem 1, Theorem 2 and Theorem 3?

Question 2 Can the hypothesis that $T(x) \neq \pm nx$ be removed from the assumptions in Theorem 4 and Theorem 5?

Question 3 Can the hypotheses $T(e) \in Z(A)$ and $nT(e) \neq \pm e$, for $n \ge 1$ be removed from the assumptions in Theorem 6?

Acknowledgements The authors would like to express their sincere thanks to the reviewers for the valuable suggestions which help to clarify the whole paper and suggesting a shorten and precise proof of some of the results.

References

- Ali, S., Khan, A.N.: On commutativity of banach algebras with derivations. Bull. Aust. Math. Soc. **91**(03), 419–425 (2015)
- Ashraf, M., Ali, S.: On left multipliers and the commutativity of prime rings. Demonstratio Math. **41**(4), 763–771 (2008)
- Bell, H.E.: On the commutativity of prime rings with derivation. Quaestiones Mathematicae **22**(3), 329–335 (1999)
- Brešar, M.: Commuting maps: a survey. Taiwanese J. Math. 8(3), 361 (2004)
- Herstein, I.N.: Power maps in rings. Michigan Math. J. 8(1), 29-32 (1961)
- Lee, P.H., Lee, T.K.: Lie ideals of prime rings with derivations. Bull. Inst. Math. Acad. Sinica (NS) **11**(1), 75–80 (1983)
- Posner, E.C.: Derivations in prime rings. Proc. Am. Math. Soc. 8(6), 1093–1100 (1957)
- Vukman, J.: On derivations in prime rings and banach algebras. Proc. Am. Math. Soc. 116(4), 877–884 (1992)
- Yood, B.: Continuous homomorphisms and derivations on banach algebras. Contemp. Math **32**, 279–284 (1984)
- Yood, B.: Commutativity theorems for banach algebras. Michigan Math. J. 37(2), 203-210 (1990)
- Yood, B.: On commutativity of unital banach algebras. Bull. London Math. Soc. 23(3), 278–280 (1991)