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Abstract In this article we study various conditions on a unital prime Banach algebra
that ensure its commutativity. More specifically, we prove that a unital prime Banach
algebra A with a nonzero continuous linear generalized derivation g associated with
a nonzero linear continuous derivation d satisfying either g((xy)n) − d(xn)d(yn) ∈
Z(A) or g((xy)n) − d(yn)d(xn) ∈ Z(A), for sufficiently many x, y and an integer
n = n(x, y) > 1 is commutative.
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1 Introduction

The symbol A shall denote a Banach algebra over the complex field C with unity
e. The symbols Z(A) and M will denote the center and a closed linear subspace of
A. An algebra A is said to be prime if for any x, y ∈ A such that x Ay = 0, either
x = 0 or y = 0. An additive mapping d : A → A is said to be a derivation if
d(xy) = d(x)y + xd(y) and d(cx) = cd(x), for all x, y ∈ A and for all c ∈ C.
An additive mapping g : A → A is said to be a generalized derivation associated
with a derivation d if g(xy) = g(x)y + xd(y) and g(cx) = cg(x), for all x, y ∈ A
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and for all c ∈ C. An additive mapping T : A → A is said to be a left multiplier if
T (xy) = T (x)y and T (cx) = cT (x), for all x, y ∈ A and for all c ∈ C.

Yood (1991), has shown that if A is a unital Banach algebra and n = n(x, y) > 1
is a positive integer such that either (xy)n − xn yn ∈ M or (xy)n − ynxn ∈ M for
sufficiently many x and y, then [x, y] ∈ M . Ali and Khan (2015) have shown that if A
is a unital prime Banach algebra with nonzero continuous linear derivation d : A → A
such that either d((xy)m)− xm ym or d((xy)m)− ymxm is in the center Z(A) of A for
an integer m = m(x, y) > 1 and sufficiently many x, y, then A is commutative. In
this article we extend these results for a generalized derivation. Let p(t) = ∑n

i=0 ai t
i

be a polynomial in real variable t with coefficients in A. As mentioned in Yood (1991),
if p(t) ∈ M for infinitely many real t then each ai ∈ M .

For a derivation d on a prime ring R, Posner proved the following result:

Lemma 1 [Posner (1957), Theorem 2] Let R be a prime ring and d be a nonzero
derivation of R such that [d(x), x] is in the center of R, for all x ∈ R. Then R is
commutative.

Many other authors have generalized Posner’s result in several ways for rings and
algebras (see Bell 1999; Brešar 2004; Herstein 1961; Vukman 1992; Yood 1984,
1990, where further references can be found). One of the generalizations of Posner’s
result by Lee and Lee is of our interest:

Lemma 2 [Lee and Lee (1983), Theorem 2] Let d be a nonzero derivation on a prime
ring R and U be a lie ideal of R such that [x, d(U )] ⊆ Z(R). Then either x ∈ Z(R)
or U ⊆ Z(R).

Ashraf and Ali have given a relationship between the commutativity of a ring and its
left multipliers (see Ashraf and Ali 2008). In this article we also find a connection
between the commutativity of a prime Banach algebra and its left multipliers.

2 Main results

Theorem 1 Let A be a unital prime Banach algebra and g : A → A be a nonzero
continuous generalized derivation associated with nonzero continuous derivation d on
A such that g(e) ∈ Z(A) and d(g(e)) �= 0. Suppose that there are open subsets G1 and
G2 of A such that either g((xy)n)−d(xn)d(yn) ∈ Z(A) or g((xy)n)−d(yn)d(xn) ∈
Z(A) for each x ∈ G1 and for each y ∈ G2 and an integer n = n(x, y) > 1. Then A
is commutative.

Proof Set

f (x, y, n) := g((xy)n) − d(xn)d(yn)

and

h(x, y, n) := g((xy)n) − d(yn)d(xn).
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Let x ∈ G1 be an arbitrarily fixed element. For each positive integer n consider the
set Un = {y ∈ A | f (x, y, n) /∈ Z(A), h(x, y, n) /∈ Z(A)}. We show that Un is open
by showing that its complement Uc

n is closed. Let (sk) be a sequence in Uc
n such that

lim sk = s. Since sk ∈ Uc
n we have either

h(x, sk, n) = g((xsk)
n) − d(xn)d(snk ) ∈ Z(A) (1)

or

f (x, sk, n) = g((xsk)
n) − d(snk )d(x

n) ∈ Z(A). (2)

Since g and d are continuous it follows that

g((xs)n) − d(xn)d(sn) ∈ Z(A) or g((xs)n) − d(sn)d(xn) ∈ Z(A).

This shows that s ∈ Uc
n and so Un is open.

By the Baire category theorem, if each Un is dense then their intersection is also
dense, which contradicts the existence of G2. Therefore there exists an integer i =
i(x) > 1 such that Ui is not dense and a nonempty open set G3 in the complement of
Ui such that either g((xy)i )− d(xi )d(yi ) ∈ Z(A) or g((xy)i )− d(yi )d(xi ) ∈ Z(A),
for all y ∈ G3. Take z ∈ G3 and w ∈ A. So for sufficiently small real t , (z+ tw) ∈ G3
and either

g((x(z + tw))i ) − d(xi )d((z + tw)i ) ∈ Z(A) (3)

or

g((x(z + tw))i ) − d((z + tw)i )d(xi ) ∈ Z(A). (4)

Thus for infinitely many t either (3) or (4), say (3) must hold. Since g((x(z+ tw))i )−
d(xi )d((z + tw)i ) is polynomial in t which is in Z(A), each of its coefficients must
be in Z(A). The coefficient of t i is g((xw)i )−d(xi )d(wi ) which is in Z(A). We have
therefore shown that, given x ∈ G1, there exists a positive integer i depending on x
such that for each w ∈ A either

g((xw)i ) − d(xi )d(wi ) ∈ Z(A)

or
g((xw)i ) − d(wi )d(xi ) ∈ Z(A).

Next we show that for each y ∈ A there is an integer j = j (y) > 1 such that for each
v ∈ A either

g((vy) j ) − d(v j )d(y j ) ∈ Z(A)

or
g((vy) j ) − d(y j )d(v j ) ∈ Z(A).
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Fix an arbitrary y ∈ A and for each k > 1, define

Wk = {z ∈ A | f (z, y, k) /∈ Z(A), h(z, y, k) /∈ Z(A)}.

As shown above each Wk is open, so by the Baire category theorem, if each Wk is dense
then its intersection is also dense which contradicts the existence of G1. Hence there
exists an integer j = j (y) > 1 and a nonempty open subset G4 in the complement of
Wj . If z ∈ G4 and v ∈ A then for sufficiently small real t , (z + tv) ∈ G4 and either

g(((z + tv)y) j ) − d((z + tv) j )d(y j ) ∈ Z(A) (5)

or

g(((z + tv)y) j ) − d(y j )d((z + tv) j ) ∈ Z(A). (6)

With the same argument as earlier we see that for each v ∈ A, either

g((vy) j ) − d(v j )d(y j ) ∈ Z(A)

or
g((vy) j ) − d(y j )d(v j ) ∈ Z(A).

Now let Sk, k > 1 be the set of all y ∈ A such that for each w ∈ A either

g((wy)k) − d(wk)d(yk) ∈ Z(A)

or
g((wy)k) − d(yk)d(wk) ∈ Z(A).

The union of Sk is A. It is obvious to see that each Sk is closed. Again, by the Baire
category theorem, some Sn must contain a nonempty open subset G5. Take z ∈ G5
and x ∈ A. For all sufficiently small real t and each w ∈ A either

g((w(z + t x))n) − d(wn)d((z + t x)n) ∈ Z(A)

or
g((w(z + t x))n) − d((z + t x)n)d(wn) ∈ Z(A).

By earlier arguments, for all x, w ∈ A, we have either

g((wx)n) − d(wn)d(xn) ∈ Z(A)

or
g((wx)n) − d(xn)d(wn) ∈ Z(A).

Since A is unital, for all real t and for all x, y ∈ A we have either

g(((e + t x)y)n) − d((e + t x)n)d(yn) ∈ Z(A) (7)
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or

g(((e + t x)y)n) − d(yn)d((e + t x)n) ∈ Z(A). (8)

Now, by collecting the coefficient of t in the above expressions, we have either

g(xyn + Q) − nd(x)d(yn) ∈ Z(A) for all x, y ∈ A (9)

or

g(xyn + Q) − nd(yn)d(x) ∈ Z(A) for all x, y ∈ A, (10)

where Q = ∑n−1
k=1 ykxyn−k .

Again if we start with g((y(e+ t x))n) in place of g(((e+ t x)y)n), we have either

g(ynx + Q) − nd(yn)d(x) ∈ Z(A) for all x, y ∈ A (11)

or

g(ynx + Q) − nd(x)d(yn) ∈ Z(A) for all x, y ∈ A. (12)

At least one of the pairs of equations {(9) (11)}, {(10) (12)},{(9) (12)} and {(10) (11)}
must hold. Subtracting these pairs we have either

g[x, yn] − n[d(x), d(yn)] ∈ Z(A) for all x, y ∈ A (13)

or

g[x, yn] + n[d(x), d(yn)] ∈ Z(A) for all x, y ∈ A (14)

or

g[x, yn] ∈ Z(A) for all x, y ∈ A. (15)

Now if g[x, yn] ∈ Z(A) then by replacing y by (e + t y) we have g[x, y] ∈ Z(A) for
all x, y ∈ A. Replace x by ex we get g(e)[x, y] + d[x, y] ∈ Z(A), or equivalently,

[g(e)[x, y] + d[x, y], z] = 0, for all x, y, z ∈ A. (16)

This can be written as [g(e)[x, y]+[x, dy], z]+[[dx, y], z] = 0. Replace y by [y, w]
we get [g(e)[x, [y, w]] + [x, d[y, w]], z] + [[dx, [y, w]], z] = 0. Now use (16) to
get [[dx, [y, w]], z] = 0; hence, [dx, [y, w]] ∈ Z(A), for all x, y, w ∈ A. In the
light Lemma 2 we have either [y, w] ∈ Z(A) or A ⊆ Z(A). In both the cases A is
commutative.
Now if (13) holds then by replacing y by (e + t y) we have g[x, y] − n[d(x), d(y)] ∈
Z(A) for all x, y ∈ A. In this expression replace x by xg(e) in order to obtain
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(g[x, y] − n[d(x), d(y)])g(e) + [x, y]d(g(e)) − n[xd(g(e)), d(y)] ∈ Z(A) for all
x, y ∈ A. Consequently, since Z(A) is a linear subspace of A and (g[x, y] −
n[d(x), d(y)])g(e) ∈ Z(A), it follows that [x, y]d(g(e))−n[xd(g(e)), d(y)] ∈ Z(A)
for all x, y ∈ A. Hence if we set y = x and observe that g(e) ∈ Z(A) implies
d(g(e)) ∈ Z(A), we obtain [x, d(x)]d(g(e)) ∈ Z(A) for all x ∈ A. So, in par-
ticular, [[x, d(x)]d(g(e)), z] = 0 for all x, z ∈ A. Replacing z by zy now yields
[[x, d(x)], z]yd(g(e)) = 0 for all x, y, z ∈ A. Thus, since A is prime and d(g(e)) �= 0,
it follows that [x, d(x)] ∈ Z(A) for all x ∈ A. Hence, by Lemma 1 we may
infer that A is commutative. Similarly it can be shown that if (14) holds then A is
commutative. ��
Theorem 2 Let A be a unital prime Banach algebra and g : A → A be a nonzero
continuous generalized derivation associated with a nonzero continuous derivation d
on A such that g(e) ∈ Z(A). Suppose that there are open subsets G1 and G2 of A such
that either g((xy)n) − xn yn ∈ Z(A) or g((xy)n) − ynxn ∈ Z(A) for each x ∈ G1
and for each y ∈ G2 and an integer n = n(x, y) > 1. Then A is commutative.

Proof Proceeding as in Theorem 1, we get either

g[x, y] ∈ Z(A) for all x, y ∈ A (17)

or

g[x, y] − n[x, y] ∈ Z(A) for all x, y ∈ A (18)

or

g[x, y] + n[x, y] ∈ Z(A) for all x, y ∈ A. (19)

Suppose (17) holds. Replace x by ex we get g(e)[x, y] + d[x, y] ∈ Z(A), or equiva-
lently,

[g(e)[x, y] + d[x, y], z] = 0, for all x, y, z ∈ A. (20)

This can be written as [g(e)[x, y] + [x, dy], z] + [[dx, y], z] = 0. Replace y by
[y, w] we get [g(e)[x, [y, w]] + [x, d[y, w]], z] + [[dx, [y, w]], z] = 0. Use (20)
to get [[dx, [y, w]], z] = 0 or [dx, [y, w]] ∈ Z(A), for all x, y, w ∈ Z(A). In the
light Lemma 2 we have either [y, w] ∈ Z(A) or A ⊆ Z(A). In both the cases A is
commutative.

Now consider g[x, y] − n[x, y] ∈ Z(A), for all x, y ∈ A. Replace x by ex we get
g(e)[x, y] + d[x, y] − n[x, y] ∈ Z(A) or [(g(e) − n)[x, y] + d[x, y], z] = 0 for all
x, y, z ∈ A, which is similar to Eq. (20). Thus in this case it can also be shown that
A is commutative. Similarly, we can prove that if g[x, y] + n[x, y] ∈ Z(A) then A is
commutative. ��
Theorem 3 Let A be a unital prime Banach algebra and g : A → A be a nonzero
continuous generalized derivation associated with a nonzero continuous derivation d
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on A such that g(e) ∈ Z(A). Suppose that there are open subsets G1 and G2 of A such
that either g((xy)n − xn yn) ∈ Z(A) or g((xy)n − ynxn) ∈ Z(A) for each x ∈ G1
and for each y ∈ G2 and an integer n = n(x, y) > 1. Then A is commutative.

Proof Proceeding as in Theorem 1, we obtain either

g[x, y] ∈ Z(A) for all x, y ∈ A (21)

or

g([x, y] − n[x, y]) ∈ Z(A) for all x, y ∈ A (22)

or

g([x, y] + n[x, y]) ∈ Z(A) for all x, y ∈ A. (23)

Equations (22) and (23) can be written as (1−n)g[x, y] ∈ Z(A) and (1+n)g[x, y] ∈
Z(A), respectively. Thus the equations (21), (22) and (23) all reduce to g[x, y] ∈ Z(A).
The result then follows using the argument in the proof of Theorem 2. ��
Theorem 4 Let A be a unital prime Banach algebra and T : A → A be a continuous
left multiplier on A such that T (x) �= ±nx, for all nonzero x ∈ A and integers n ≥ 0.
Suppose that there are open subsets G1 andG2 of A such that either T ((xy)n)−xn yn ∈
Z(A) or T ((xy)n) − ynxn ∈ Z(A) for each x ∈ G1 and for each y ∈ G2 and an
integer n = n(x, y) > 1. Then A is commutative.

Proof Proceeding as in Theorem 1, we get either

T [x, y] ∈ Z(A) for all x, y ∈ A (24)

or

T [x, y] − n[x, y] ∈ Z(A) for all x, y ∈ A (25)

or

T [x, y] + n[x, y] ∈ Z(A) for all x, y ∈ A. (26)

If T [x, y] ∈ Z(A), for all x, y ∈ A, then [T [x, y], z] = 0, for all x, y, z ∈ A.
Replacing y by yx and then z by r z we have T [x, y]r [x, z] = 0, for all r, x, y, z ∈ A.
Hence, T [x, y]r [x, y] = 0, for all r, x, y ∈ A, and so, by hypothesis on T and the fact
that A is prime, we have [x, y] = 0, for all x, y ∈ A. If T [x, y] ± n[x, y] ∈ Z(A),
for all x, y ∈ A, then, as before (T [x, y] ± n[x, y])r [x, z] = 0, for all r, x, y, z ∈ A.
Since n > 1 it follows that T [x, y] �= ±n[x, y], for all x, y ∈ A, and so, [x, z] = 0,
for all x, z ∈ A. This completes the proof.
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Theorem 5 Let A be a unital prime Banach algebra and T : A → A be a continuous
left multiplier on A such that T (x) �= ±nx, for all n ≥ 0. Suppose that there are open
subsets G1 and G2 of A such that either T ((xy)n − xn yn) ∈ Z(A) or T ((xy)n −
ynxn) ∈ Z(A) for each x ∈ G1 and for each y ∈ G2 and an integer n = n(x, y) > 1.
Then A is commutative.

Proof The proof is similar to the proof of Theorem 4.

Theorem 6 Let A be a unital prime Banach algebra and T : A → A be a nonzero
continuous left multiplier on A such that T (e) ∈ Z(A) and nT (e) �= ±e, for all
integers n ≥ 1. Suppose that there are open subsets G1 and G2 of A such that either
T ((xy)n)−T (xn)T (yn) ∈ Z(A) or T ((xy)n)−T (yn)T (xn) ∈ Z(A) for each x ∈ G1
and for each y ∈ G2 and an integer n = n(x, y) > 1. Then A is commutative.

Proof Proceeding as in Theorem 1, we obtain either

T [x, y] ∈ Z(A) for all x, y ∈ A (27)

or

T [x, y] − n[T (x), T (y)] ∈ Z(A) for all x, y ∈ A (28)

or

T [x, y] + n[T (x), T (y)] ∈ Z(A) for all x, y ∈ A. (29)

Since T (e) ∈ Z(A), it follows from the fact that A is prime that T (x) = 0 implies
x = 0. Now, if T [x, y] ∈ Z(A), for all x, y ∈ A, then A is commutative as in the
proof of Theorem 4. On the other hand, if T [x, y] ± n[T (x), T (y)] ∈ Z(A), for all
x, y ∈ A, then as in the proof of Theorem 4, we have

(T [x, y] ± n[T (x), T (y)])r [x, z] = 0, for all r, x, y, z ∈ A.

Hence, T [x, y](e± nT (e))r [x, y] = 0, for all r, x, y ∈ A. If T [x, y](e± nT (e)) = 0
then T [x, y]r(e±nT (e)) = 0, for all r ∈ A and so, T [x, y] = 0 and hence [x, y] = 0.
So, [x, y] = 0, for all x, y ∈ A. The result now follows. ��

3 Open questions

The authors would like to open the following questions for further studies:

Question 1 Can the hypothesis that g(e) ∈ Z(A) be removed from the assumptions
in Theorem 1, Theorem 2 and Theorem 3?

Question 2 Can the hypothesis that T (x) �= ±nx be removed from the assumptions
in Theorem 4 and Theorem 5?

Question 3 Can the hypotheses T (e) ∈ Z(A) and nT (e) �= ±e, for n ≥ 1 be removed
from the assumptions in Theorem 6?
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