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Abstract We prove that (a) a generalization of the Steiner–Lehmus theorem due to A.
Henderson holds in Bachmann’s standard ordered metric planes, (b) that a variant of
Steiner–Lehmus holds in all metric planes, and (c) that the fact that a triangle with two
congruent medians is isosceles holds in Hjelmslev planes without double incidences
of characteristic �= 3.
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1 Introduction

The Steiner–Lehmus theorem, stating that a triangle with two congruent interior bisec-
tors must be isosceles, has received, over the 170 years since it was first proved in
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1840, a wide variety of proofs. Some of those provided within the first hundred years
have been surveyed in Simon (1906), p. 131–134, MacKay (1902, 1939), M’Bride
(1943), Martini (1994): most use results of Euclidean geometry. Several proofs have
been provided for foundational reasons, being valid in Hilbert’s absolute geometry
[the geometry axiomatized by the plane axioms of the groups I, II, and III of Hilbert
(1977)], the first one being provided by Tarry (1895), the second one by Blichfeldt
(1902a), the third one in Anonymous (1933), p. 125, attributed to Casey, and with the
mention that H. G. Forder “points out that this proof is independent of the parallel
postulate”, and the fourth one—which, we are told, “excels most by being “absolute””
and “came in a letter from H. G. Forder”—in (Coxeter 1969, p. 460). The simplest
proof among these is the one provided in Descube (1880), and repeated, without being
aware of predecessors, in Tarry (1895) (and for congruent symmedians in Tarry 1895),
and then in (Anonymous 1933, p. 124–125, Anonymous 1885; Hogg 1982), is valid
not only in Hilbert’s absolute planes, but in more general geometries as well. While
Blichfeldt’s, Casey’s, and Forder’s proofs rely on the free mobility property of the
Hilbertian absolute plane (the segment and angle transport axioms), Descube’s proof
can be rephrased inside the geometry of a special class of Bachmann’s ordered metric
planes, in which no freemobility assumptions aremade (and thus not all pairs of points
need to have a midpoint, and not all angles need to be bisectable), but in which the
foot of the perpendicular to the hypotenuse needs to lie between the endpoints of that
hypotenuse, to be referred to as standard ordered metric planes.

On the other hand, the Steiner–Lehmus theoremhas been generalized, in the Euclid-
ean setting, by [Henderson (1937), p. 265, 272, Generalized Theorem (7)] [repeated,
without being aware of Henderson (1937), in Nicula and Pohoaţă (2009),Russell
(1961), Woyda (1973), Oxman (2012)] by replacing the requirement that two internal
bisectors be congruent by the weaker one that two internal Cevians which intersect on
the internal angle bisector of the third angle be congruent.

The purpose of this note is to present a proof, along the lines of Descube’s proof,
of Henderson’s generalization of the Steiner–Lehmus theorem in an axiom system
for standard ordered metric planes. Since the statement of the generalized Steiner–
Lehmus theorem presupposes both notions of order—so one can meaningfully refer
to “internal bisector” (without mentioning that the bisector is internal, the statement is
false, see Henderson (1955), van Yzeren (1997), Hajja (2001), Kharazishvili (2012),
and the remarkable generalization contained in [Montes and Recio (2014), Theorem
4.2], as well as Abu-Saymeh and Hajja (2010) for the generalized version we shall
prove) —and metric notions—so that one can meaningfully refer to “ angle bisector”,
“congruent” segments, and to an “isosceles triangle”—the setting of Bachmann’s
ordered metric planes represents the weakest absolute geometry in which the Steiner–
Lehmus theorem or its generalization byHenderson can be expected to hold. However,
we will show in Sect. 5 that there is a like-minded, purely metric statement, which
holds in the absence of any notion of order.

The assumption that the ordered metric plane be standard is very likely not needed
for the generalized Steiner–Lehmus theorem to hold, but it is indispensable for our
proof.

123



Beitr Algebra Geom (2016) 57:483–497 485

We will also present in Sect. 4 a short proof inside the theory of Hjelmslev planes
of the second of the “pair of theorems” considered in Blichfeldt (1902b), stating that
a triangle with congruent medians must be isosceles.

2 The axiom system for standard ordered metric planes

For the reader’s convenience,we list the axioms for orderedmetric planes, in a language
with one sort of individual variables, standing for points, and two predicates, a ternary
one Z , with Z(abc) to be read as “the point b lies strictly between a and c” (b is not
allowed to be equal to a or to c) and a quaternary one ≡, with ab ≡ cd to be read as
“ab is congruent to cd”. To improve the readability of the axioms, we will use the two
abbreviations λ and L , defined by

λ(abc) :⇔ Z(abc) ∨ Z(bca) ∨ Z(cab),

L(abc) :⇔ λ(abc) ∨ a = b ∨ b = c ∨ c = a,

with λ(abc) to be read as “a, b, and c are three different collinear points” and L(abc)
to be read as “a, b, and c are collinear points (not necessarily different).” Although we
have only points as variables, we will occasionally refer to lines, with the following
meaning: “point c lies on the line determined by a and b” is another way of saying
L(abc), and the line determined bya and bwill be denoted by 〈a, b〉. The axiom system
for ordered metric planes consists of the lower-dimension axiom (∃abc)¬L(abc),
which we will not need in our proof, as well as the following axioms:

A 1 Z(abc) → Z(cba),

A 2 Z(abc) → ¬Z(acb),

A 3 λ(abc) ∧ (λ(abd) ∨ b = d) → (λ(cda) ∨ c = d),

A 4 (∀abcde)(∃ f )¬L(abc) ∧ Z(adb) ∧ ¬L(abe) ∧ c �= e ∧ ¬λ(cde)
→ [(Z(a f c) ∨ Z(b f c)) ∧ (λ(ed f ) ∨ f = e)],

A 5 ab ≡ pq ∧ ab ≡ rs → pq ≡ rs,

A 6 ab ≡ cc → a = b,

A 7 ab ≡ ba ∧ aa ≡ bb,

A 8 (∀abca′b′)(∃=1c′) [λ(abc) ∧ ab ≡ a′b′ → λ(a′b′c′) ∧ ac ≡ a′c′ ∧ bc ≡ b′c′],
A 9 ¬L(abx) ∧ L(abc) ∧ L(a′b′c′) ∧ ab ≡ a′b′ ∧ bc ≡ b′c′ ∧ ac ≡ a′c′ ∧ ax ≡

a′x ′ ∧ bx ≡ b′x ′ → xc ≡ x ′c′,

A 10 (∀abx)(∃=1x ′) [¬L(abx) → x ′ �= x ∧ ax ≡ ax ′ ∧ bx ≡ bx ′],
A 11 (∀abxx ′)(∃y) [¬L(abx) ∧ x ′ �= x ∧ ax ≡ ax ′ ∧ bx ≡ bx ′ → L(aby)∧

Z(xyx ′)].
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Axioms A1–A 4 are axioms of ordered geometry, A 4 being the Pasch axiom. If we
were to add the lower-dimension axiom and (∀ab)(∃c) a �= b → Z(abc) to A 1–A
4, we’d get an axiom system for what Coxeter (1969) refers to as ordered geometry.
That we do not need the axiom stating that the order is unending on all lines follows
from the fact that, given two distinct points a and b, by (4.3) of Sörensen (1984), there
is a perpendicular in b on the line 〈a, b〉, and the image c (which exists and is unique
by A 10) of the reflection of a in that perpendicular line is, by A 11, such that Z(abc).

Axioms A 5–A 7 are axioms K1–K3 of Sörensen (1984), A 8 is W1 of Sörensen
(1984), A 9 is W2 of Sörensen (1984), A 10 is W3 of Sörensen (1984), and A 11 is
the conjunction of axioms W4 and WA of Sörensen (1984). The reflection of point x
in line 〈a, b〉, whose existence is ensured by A 10, will be denoted by σab(x), and the
reflection of a in b, which exists asW5 of Sörensen (1984) holds in our axiom system,
will be denoted by �b(a).

That the lower-dimension axiom and A 1–A 11 form an axiom system for ordered
(non-elliptic)metric planeswas shown in Sörensen (1984). The theory ofmetric planes
has been studied intensely in Bachmann (1973), where two axiom systems for it can
be found. Two other axiom systems were put forward in Pambuccian (2003) (for the
non-elliptic case only) and Pambuccian (2007).

The models of ordered metric planes have been described algebraically in the case
with Euclidean metric (i. e., in planes in which there is a rectangle) in Bachmann
(1949, 1948) and [Bachmann (1973), §19], and in the case with non-Euclidean metric
in Pejas (1964).

We will be interested in a class of ordered metric planes in which no right angle can
be enclosed within another right angle with the same vertex, or, expressed differently,
in which the foot c of the altitude oc in a right triangle oab (with right angle at o) lies
between a and b, i. e. in ordered metric planes that satisfy

A 12 Z(aoa′) ∧ oa ≡ oa′ ∧ ba ≡ ba′ ∧ o �= b ∧ λ(abc) ∧ Z(bcb′)cb ≡ cb′ ∧ ob ≡
ob′ → Z(acb).

To shorten statements, we denote the foot of the perpendicular from a to line 〈b, c〉
by F(bca).

That A 12 is equivalent to the statement RR, that no right angle can be enclosed
within another right angle with the same vertex, can be seen by noticing that (i) if,
assuming the hypothesis of A 12 we have, instead of its conclusion, that Z(abc) holds,
then the half-line −→ox , with origin o, of the perpendicular in o to 〈o, c〉 that lies on the
same side of 〈o, b〉 as a, must lie outside of triangle oac (if it lied inside it, −→ox would
have to intersect its side ac in a point p, so we would have two perpendiculars from p
to 〈o, c〉, namely 〈p, c〉 and 〈p, o〉), so the right angle � aob is included inside the right
angle � xoc, so ¬A 12 ⇒ ¬RR, and (ii) if 〈o, a〉 ⊥ 〈o, d〉 and 〈o, b〉 ⊥ 〈o, c〉 with−→
ob and −→oc between −→oa and

−→
od , with −→oc between

−→
ob and

−→
od , then, with e = F(odb),

we must have, by the crossbar theorem, that −→oc intersects eb in a point p, so that
F(obe) cannot lie on the segment ob, for else the segments eF(obe) and op would
intersect, and from that intersection point there would be two perpendiculars to 〈o, b〉,
namely 〈e, F(obe)〉 and 〈o, c〉, so that ¬RR ⇒ ¬ A 12. A 12 was first considered
as an axiom in [Bachmann (1951), p. 298], in the analysis of the interplay between
Sperner’s ordering functions and the orthogonality relation in affine planes. Ordering
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functions satisfying A 12 are referred to in [Bachmann (1951) p. 298] as “singled out
by the orthogonality relation” (durch die Orthogonalität ausgezeichnet). An axiom
more general than RR, stating that if an angle is enclosed within another angle with
the same vertex, then the two angles cannot be congruent, has been first considered as
axiom III,7 in [Bernays (1948), p. 31].

That ordered metric planes do not need to be standard, not even if the metric is
Euclidean (i. e. if there is a rectangle in the plane), can be seen from the following
example:

The point-set of the model isQ×Q, with the usual betweenness relation (i. e. point
c lies between points a and b if and only if c = ta+(1− t)b, with 0 < t < 1, where a,
b, and c are in Q×Q and t is in Q) and with segment congruence≡ given by ab ≡ cd
if and only if ‖a − b‖ = ‖c − d‖, where ‖x‖ stands for x21 − 2x22 , with x = (x1, x2).
Two lines ux + vy + w = 0 and u′x + v′y + w = 0 are orthogonal if and only if
−2uu′ + vv′ = 0, and −2 is called the orthogonality constant of the Euclidean plane
[see Bachmann (1949, 1948), Schröder (1985), Schnabel and Pambuccian (1985),
Pambuccian (1994b), and Pambuccian (1994a) for more on Euclidean planes, and
(Bachmann 1951, p. 300) for a general result regarding Sperner’s ordering function
that satisfies A 12 in Euclidean planes]. If o = (0, 1), a = (1, 0), and b = (2, 0), then
âob is a right angle, and the foot c = (0, 0) of the perpendicular from o to line ab
does not lie between a and b.

However, all ordered Euclidean planes with free mobility (i. e. those that can be
coordinatized byPythagoreanfields)must be standard (seeBachmann 1973, p. 217), as
must be all absolute planes in Hilbert’s sense (see Schwabhäuser et al. 2011, I.11.47).

3 Proof of the Steiner–Lehmus theorem in standard ordered metric
planes

Before starting the proof (a variant of Descube’s proof) of the Steiner–Lehmus theo-
rem, we will first state it inside our language, and then list, without proof, the proofs
being straightforward, a series of results true in standard ordered metric planes.

With the abbreviation M(abc) standing for Z(abc) ∧ ba ≡ bc, to be read as “b
is the midpoint of the segment ac”, the generalized Steiner–Lehmus theorem can be
stated as

¬L(abc) ∧ Z(amc) ∧ Z(anb) ∧ ad ≡ ab ∧ (Z(adc) ∨ Z(acd) ∨ d = c)

∧sb ≡ sd ∧ Z(bsm) ∧ Z(csn) ∧ bm ≡ cn

∧M(mpn) ∧ M(boc) → ab ≡ ac. (1)

Notice thatwe assume the existence of twomidpoints: themidpoint p of the segment
mn and the midpoint o of the segment bc. These midpoints do exist whenever the
triangle abc is isosceles, but do not have to exist in general.

Notation Whenever the segment bc has a midpoint, we define ab < ac to mean that
the perpendicular bisector of bc intersects the open segment ac. We say that the lines
〈a, b〉 and 〈c, d〉 are perpendicular (〈a, b〉 ⊥ 〈c, d〉) if there are two different points
x and x ′ on 〈c, d〉 such that ax ≡ ax ′ and bx ≡ bx ′. We denote by � xoy the angle
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formed by the rays −→ox and −→oy . We say that “� abc is acute” if ¬L(abc) and if
−→
bc lies

between
−→
ba and

−→
bb′, where 〈b, b′〉 ⊥ 〈b, a〉, with b′ on the same side of 〈a, b〉 as c. A

point p lies in the interior of � xoy if −→op intersects the open segment xy. We say that
a segment ab can be transported from c on the ray

−→
cd , if there is a point x on

−→
cd (to

be referred as the second endpoint of the transported segment) such that ab ≡ cx .
The facts that we will need for (1)’s proof, which will be stated without proof, their

proofs being either well known or straightforward, are:

F 1 If ¬L(abu), ba ≡ bu, m �= b, and ma ≡ mu, then, for every point p with
L(bmp), we have px ≡ py, where x = F(bap) and y = F(bup) (points on the angle
bisector of an angle are equidistant from the legs of the angle). Also, bx ≡ by.

F 2 If � bac is acute, then � cab is acute as well, and any angle with the same vertex
a and inside � bac is also acute. If the triangles abc and a′b′c′ are congruent (i. e.
ab ≡ a′b′, bc ≡ b′c′, and ca ≡ c′a′), and � bac is acute, then so is � b′a′c′.

F 3 If a and a′ have a midpoint, Z(abc), Z(a′b′c′), ac ≡ a′c′, ab ≡ a′b′, then
bc ≡ b′c′ (a special case of Euclid’s Common Notion III “If equals are subtracted
from equals, then the remainders are equal.”)

F 4 The betweenness relation is preserved under orthogonal projection, i. e. if
Z(oa′b′), L(oab), and 〈a, a′〉 and 〈b, b′〉 are perpendicular on 〈a, b〉, then Z(oab).

F 5 The base angles of an isosceles triangles are acute, i. e. if ¬L(abc), ab ≡ ac,
〈b, b′〉 ⊥ 〈b, c〉 and 〈c, c′〉 ⊥ 〈c, b〉, and b′ and c′ lie on the same side of 〈b, c〉 as a,

then
−→
ba lies between

−→
bc and

−→
bb′ and −→ca lies between

−→
cb and

−→
cc′.

F 6 If ab ≡ a′b′, ac ≡ a′c′, Z(abc), and Z(a′b′c′) ∨ Z(a′c′b′), then Z(a′b′c′).

F 7 If � bac has an interior angle bisector, then any segment xy on 〈a, b〉 can be
transported on any halfline that is included in 〈a, c〉, i. e. for all x, y with x �= y,
L(abx) and L(aby), and any u, v with L(acu) and L(acv) and u �= v, there exists a
z with uz ≡ xy and Z(vuz).

F 8 If ab ≡ a′b′, with a �= b, and if the lines 〈a, b〉 and 〈a′, b′〉 intersect, then the two
lines have an angle bisector (as both segments ab and a′b′ can be transported along
the lines 〈a, b〉 and 〈a′, b′〉 respectively (via A8) to their intersection point).

F 9 If ¬L(abc), ab ≡ a′b′, ac ≡ a′c′, cb ≡ c′b′, L(adc), ad ≡ a′d ′, dc ≡ d ′c′,
then d F(abd) ≡ d ′F(a′b′d ′).

F 10 If p1 and p2 are two distinct points on the same side of the line 〈a, b〉, and
p1F(abp1) ≡ p2F(abp2), then the lines 〈p1, p2〉 and 〈a, b〉 do not meet (given
that the perpendicular from the point of intersection of segments p1F(abp2) and
p2F(abp1) to 〈a, b〉 is perpendicular to 〈p1, p2〉 as well).

We will also need the following lemmas:

Lemma 1 ¬L(bsc) ∧ Z(bxs) ∧ Z(cxm′) ∧ Z(csn) ∧ cn ≡ cm′ → bm′ < bn
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Proof Since cn ≡ cm′, d = F(nm′c) is the midpoint of the segment m′n, and thus
〈d, c〉 is the perpendicular bisector of the segment m′n. By the crossbar theorem the
ray

−→
cd intersects the segment xs in a point p. By the Pasch axiom applied to �bsn

and secant 〈d, p〉, we get that the latter must intersect the segment bn, thus bm′ < bn.

Lemma 2 M(boc) ∧ ¬L(abc) ∧ Z(ab′c) ∧ ab ≡ ab′ → ab < ac.

Proof Let o′ = F(bb′a), i. e. the midpoint of segment bb′. By the Pasch axiom,
〈a, o′〉 intersects the side bc of �bcb′ in a point p with Z(ao′ p) and Z(bpc). Point
p cannot coincide with o, as 〈o, o′〉 and 〈c, b′〉 do not intersect (given that 〈o, o′〉 and
〈c, b′〉 have a common perpendicular (by Bachmann 1973, §4,2, Satz 2), and it also
cannot be such that Z(cpo), for in that case the Pasch axiom with �pac and secant
〈o, o′〉 would ask the latter to intersect segment ac, contradicting the fact that 〈o, o′〉
and 〈a, c〉 do not intersect. Thus Z(opb) must hold. Also by the Pasch axiom the
perpendicular bisector of segment bc must intersect one of the segments ac or ab.
Suppose it intersects segment ab in s. By A12, with f = F(pbo′), we have Z(p f b).
Since we have Z(po′a) and Z(asb), for g = F(pba) and for o, which is F(pbs), we
have, by F4, Z(p f g) and Z(gob). From these two betweenness relations and Z(p f b)

we get that Z(opb) cannot hold, a contradiction. Hence the perpendicular bisector of
bc must intersect ac.

Lemma 3 M(bab′) ∧ o �= a ∧ Z(abc) ∧ ob ≡ ob′ ∧ od ≡ ob ∧ (Z(odc) ∨ Z(ocd))

→ Z(odc).

Proof Suppose we have Z(ocd). Let x be the intersection point of the perpendicular
in b on 〈b, a〉 with side oc of �aoc (which it must intersect by the Pasch axiom and
the fact that it cannot intersect 〈o, a〉), and let y be the point of intersection of the
perpendicular in b on 〈b, d〉 with segment xd (by RR, i. e. by A12, there must be such
an intersection point). Let m = F(bdo). Since we have Z(dmb), we should, by F4,
also have Z(doy), which cannot be the case, since we have Z(dyx) and Z(dxo), thus
Z(dyo). Hence we must have Z(odc).

Lemma 4 If ¬L(oac), ray
−→
ob lies between −→oa and −→oc, then one of the halflines deter-

mined by o on 〈o, d〉, the line for which σocσobσoa = σod (which exists, since metric
planes satisfy the three reflection theorem for concurrent lines), also lies between −→oa
and −→oc.

Proof Let a′ = σob(a). If a′ lies on the side determined by 〈o, c〉 opposite to the one
in which a lies, then segment aa′ must intersect−→oc in a point z and thus we have, with
x = a and y = F(oba), that x , y, and z are three points on the rays −→oa,

−→
ob, and −→oc

respectively, such that Z(xyz) and y = F(xzo). Three such points can be found even
in case a′ lies on the same side determined by 〈o, c〉 as a. For, in that case, it must be
that c′ = σob(c) is on the side determined by 〈o, a〉 opposite to the one in which c

lies. To see this, notice that, by the crossbar theorem,
−→
oa′ must intersect the segment

cF(obc) in a point p, so we have Z(F(obc)pc). Since σob preserves betweenness and
p′ = σob(p) is on −→oa, we have Z(F(obc)p′c′), i. e. segment cc′ intersects 〈o, a〉. So,
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in this case, we set x = p′, y = F(obc), z = c, to have three points on the rays −→oa,−→
ob, and −→oc respectively, such that Z(xyz) and y = F(xzo).

Let now z′ = σocσobσoa(z) = σoaσob(z). Note that, with d = F(zz′o), we have
σocσobσoa = σod , so if we prove that z′ lies inside the angle � aoc, we are done, since
d, as the midpoint of zz′, must lie inside the angle � aoc as well.

With u = σob(z), we notice that we must have one of Z(yxu) or Z(yux) or
u = x , and that, in case u = x , we are done, for then 〈o, d〉 = 〈o, b〉. Given that
σocσobσoa = σoaσobσoc, we may assume, w. l. o. g., that that Z(yxu). Suppose now
that z′ does not lie inside the angle � aoc. With v = F(oau) and w = F(oay), we
must have, by F4, Z(wxv). By A12 we also have Z(owx), thus also Z(oxv). Since
the line 〈u, v〉 intersects the extensions of two sides of �oxz, it cannot, by the Pasch
axiom, intersect the segment oz, so if the segment uz′ intersects line 〈o, z〉, then it can
intersect it only in a point q with Z(ozq) (and Z(uqz′)). In that case, by the Pasch
axiom, the secant 〈o, d〉must intersect the side qz′ of�zqz′ in a point r . Given Z(ozq)

and Z(zdz′), we have Z(odr). The perpendicular in r on 〈q, z′〉 must intersect, by
the Pasch axiom, one of the sides oq or oz′ of �oqz′. It cannot intersect oq, for then,
it would also have to intersect, by the Pasch axiom, side vq of �oqv, and from that
intersection point there would be two perpendiculars to 〈q, z′〉. So it must intersect
segment oz′ in s. By the Pasch axiom applied to �doz′ and secant 〈r, s〉, we conclude
that there is a point f with Z(r f s) and Z(d f z′). By A12 we have Z(r F(r f d) f ), and
the Pasch axiom applied to�r z′ f with secant 〈d, F(r f d)〉 gives a point of intersection
of the latter with segment z′r , a contradiction, as from that point one has dropped two
distinct perpendiculars to 〈r, s〉. Thus, z′ has to lie inside the angle � aoc, and we are
done. ��
Theorem 1 The generalized Steiner–Lehmus theorem, (1), holds in Bachmann’s stan-
dard ordered metric planes.

Proof Let b′ = �p(b). Then, since �p is an isometry, nb ≡ mb′ and bm ≡ b′n. Since
bm ≡ cn, we have nb′ ≡ nc as well.

We will first show that Z(aF(abs)b) and Z(aF(acs)c) must hold. The perpendic-
ular raised in s on 〈a, s〉 must intersect, by the Pasch axiom, one of the sides ac or an
of �acn (including the ends c and n of segments ac and an). Thus, it must intersect
at least one of the sides ab and ac of �abc. If it intersects both sides (including the
ends b and c of the segments ab and ac), then, by A12, we get the desired conclusion,
namely that Z(aF(abs)b) and Z(aF(acs)c). Suppose the perpendicular raised in s
on 〈a, s〉 intersects one of the two, say ac, but not the closed segment ab. Since the
point q, obtained by reflecting in 〈a, s〉 the intersection of the perpendicular raised in
s on 〈a, s〉 with ac, lies on both 〈a, s〉 and on 〈a, b〉, we must have Z(abq) (since we
assumed that we do not have Z(aqb)) and 〈s, a〉 ⊥ 〈s, q〉. We want to show that we
still need to have Z(aF(abs)b) in this case as well. Suppose that were not the case,
and we’d have Z(F(abs)ba). We thus have Z(F(abs)bn) and Z(cm F(acs)). With
s′ = �p(s), we have, given that point-reflections are isometries, s′n ≡ sm, s′b′ ≡ sb.
Recall that we also have cn ≡ b′n. With u = F(b′cn), w = σnu(s), we notice that
Z(nwb′), ns ≡ nw, sc ≡ wb′ (since lines 〈n, c〉 and 〈n, b′〉 are symmetric with
respect to 〈n, u〉, and symmetry in lines preserves both congruence and betweenness).
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Let v be the point (whose existence is ensured by A8) for which (by F6) Z(nvb′),
ns′ ≡ b′v, and b′s′ ≡ nv. We thus have bs ≡ nv, ns ≡ nw, sm ≡ b′v, sc ≡ wb′.
By Lemma 3 (with (s, F(abs), b, n) and (s, F(acs), m, c) for (o, a, b, c)), using F8
(i. e. bearing in mind that sb can be transported from n on −→ns , and that sm can be
transported from c on −→cs , and that the second points resulting from the transport are
on the open segments ns and cs), we deduce that Z(nvw) and Z(b′vw), which is
impossible. This proves that both Z(aF(abs)b) and Z(aF(acs)c) must hold.

If o coincides with F(bcs), then sb ≡ sc and thus, since bm ≡ cn, also sm ≡ sn
(by F3). Since σso(b) = c, and σso is an isometry and preserves betweenness, we
must, by the uniqueness requirement in A8, have σso(m) = n, and thus σso maps line
〈b, n〉 onto line 〈m, c〉. Since these two lines intersect in a, point a must lie on the axis
of reflection, and thus ab ≡ ac.

Suppose o �= F(bcs). W. l. o. g. we may assume that Z(boF(bcs)). By the Pasch
axiom, the perpendicular bisector of the segment bc must intersect one of the sides
sb and sc of �sbc. Given Z(boF(bcs)) and F4, it must intersect side sb in a point x
(and thus does not intersect the side sc). By the Pasch axiom, line 〈x, o〉must intersect
one of the sides ab and ac of �abc. Line 〈x, o〉 cannot intersect ac, for else, by the
Pasch axiom applied to �asc and secant 〈x, o〉, it would have to intersect one of the
sides sa and sc. Since we have already seen that 〈x, o〉 cannot intersect segment sc,
〈x, o〉 would have to intersect the segment sa in a point z. We will show that this
leads to a contradiction. Let z1 = F(abz) and z2 = F(acz). We have shown that
Z(aF(abs)b) and Z(aF(acs)c), so, given Z(sza), we can apply F4, to obtain that
we have Z(az1b), Z(az2c). We also have az1 ≡ az2 (by F1) and zb ≡ zc (as z is a
point on the perpendicular bisector of segment bc). Since σaz maps line 〈a, b〉 onto
line 〈a, c〉, we have that zb ≡ zσaz(b), and thus zc ≡ zσaz(b), and L(acσaz(b)). Since
σaz(b) �= c (else, we’d have ab ≡ ac, so o = F(bcs)), we must have σaz(b) = �z2(c),
a contradiction, as σaz preserves the betweenness relation, and we have Z(az1b), and
thus should have Z(az2σaz(b)). Thus 〈x, o〉 must intersect ab in a point g.

Let m′ = σox (m). Since c = σox (b) and σox is an isometry, we have cm ≡ bm′, as
well as bm ≡ cm′, and thus, given the hypothesis that bm ≡ cn, we have cm′ ≡ cn,
and since x is a fixed point of σox and Z(bxm), we have Z(cxm′), and thus the
hypothesis of Lemma 1 holds, and thus so must the conclusion, i. e., bm′ < bn.
By F7, cm can be transported from n on the ray

−→
nb to get m1 with nm1 ≡ cm and

Z(bm1n) (given bm′ < bn and Lemma 2). Since reflections in points are isometries
and preserve betweenness, for m2 = �p(m1) we have mm2 ≡ nm1 (thus mm2 ≡ cm)
and Z(mm2b′), so, by Lemma 2 (which can be applied as the segment cb′ does have
u as midpoint), we have mc < mb′.

Let h be the intersection point of the perpendicular bisector 〈u, n〉 of b′c with
segment mb′. Let a′ = �p(a) and a1 = σnh(a′). We have na1 ≡ na′ and na′ ≡ am
(since symmetries in both lines and points are isometries), thus na1 ≡ ma. Let m′′ =
σas(m) and b1 = σas(b). Given ac < ab, we must have Z(acb1) (by Lemma 2), and
thus, by the Pasch axiom applied to �anc and secant 〈b1, s〉, the latter must intersect
side na, and the point of intersection must be m′′, so Z(am′′n). Since ma ≡ m′′a, we
also have na1 ≡ m′′a. We also have b′a′ ≡ ba, b′a′ ≡ ca1 (since symmetries in both
points and lines are isometries), so ba ≡ ca1, and, since ba ≡ b1a, also ca1 ≡ b1a.
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We turn our attention to the congruent triangles ca1n and b1am′′. The � aca1 being
bisectable (by F8), let −→cc1 be its internal bisector (i. e. σcc1σcaσcc1 = σca1 and −→cc1
lies between −→ca and −→ca1). Let ϕ = σcaσcc1 . By F2, � ϕ(a1)cϕ(n) is acute (as triangles
ca1n and cϕ(a1)ϕ(n) are congruent and � a1cn is acute (by F2, �ca1n and �ab1m′′
being congruent, and � ab1m′′ being included in the base angle � ab1b of isosceles
�ab1b, thus acute, by F5). Given that Z(a′mb′) (preservation of the betweenness
relation Z(anb) under the reflection in point p), 〈a′, b′〉 passes through h, and thus
so must the 〈c, a1〉, the reflection in 〈n, u〉 of 〈a′, b′〉 passes through h, and thus so
must the 〈c, a1〉, given that h is fixed under σnu . Since Z(b′hm) and Z(cha1), the
points a1 and b′ must lie on the same side of 〈c, a〉. Points b′ and b are known to
lie on different sides of line 〈c, a〉 (since 〈a, b〉 and 〈m, b′〉 do not intersect, which is
not possible if b′ and b were to lie on the same side of 〈c, a〉). Thus −→ca is between−→ca1 and −→cn . Notice that σcϕ(n) = σϕ(c)ϕ(n) = ϕσcnϕ−1 = (σcaσcc1)σcn(σcc1σca) =
σca(σcc1σcaσcc1)σcn = σcaσca1σcn . If we denote by 〈c, i〉 the fourth reflection line that
is the line of reflection for σca1σcaσcn , i. e., σca1σcaσcn = σci , then by Lemma 4, i

can be chosen such that
−→
ci lies between −→ca1 and

−→cn . Since σcaσca1 = σcnσci , we have
σcϕ(n) = σcaσca1σcn = σcnσciσcn , thus 〈c, σcn(i)〉 = 〈c, ϕ(n)〉. Since � ϕ(a1)cϕ(n)

is acute, this implies that
−−−→
cϕ(n) is between −→cn and

−→
cb1. Thus

−−−→
cϕ(n) must intersect

segment b1s in a point p1. Let p2 be a point on −→cp1 with cp2 ≡ b1 p1 (such a point
exists by F8). Notice that p1 �= p2, given that one of the base angles of �p1b1c,
� b1cp1 is not acute (since its supplement, � p1ca is acute), so �p1b1c cannot be
isosceles by F5. On ray −→cp1 there are thus two points, p1 and p2, whose distance to
line 〈b1, a〉 is the same (by F9), contradicting F10.

4 A triangle with two congruent medians is isosceles

We will turn to the proof of the second result proved in Blichfeldt (1902b) to be true
in Hilbert’s absolute planes, i. e.

Theorem 2 A triangle with two congruent medians is isosceles.

Wewill show that this theorem is true in a purelymetric setting (without introducing
a relation of order). The axiom system for this theory can be expressed in first order
logic, as done in Pambuccian (2009). Here we will present it in its group-theoretical
formulation of [Bachmann (1989), p. 20].

Basic assumption Let G be a group which is generated by an invariant set S of
involutory elements.

Notation The elements of G will be denoted by lowercase Greek letters, its identity
by 1, those of S will be denoted by lowercase Latin letters. The set of involutory
elements of S2 will be denoted by P and their elements by uppercase letters A, B, ....
The ‘stroke relation’ α | β is an abbreviation for the statement that α, β and αβ are
involutory elements. The statement α, β | δ is an abbreviation of α | δ and β | δ. We
denote α−1σα by σα .

(G, S, P) is called a Hjelmslev group without double incidences if it satisfies the
following axioms:
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F 1 For A, b there exists c with A, b | c.

F 2 If A, B | c, d then A = B or c = d.

F 3 If a, b, c | e then abc ∈ S.

F 4 If a, b, c | E then abc ∈ S.

F 5 There exist a, b with a | b.

The elements of S can be thought of as reflections in lines (and can be thought of as
lines), those of P as reflections in points (and can be thought of as points), thus a|b can
be read as “the lines a and b are orthogonal”, A|b as “A is incident with b”. Thus, the
axioms state that: through any point to any line there is a perpendicular, two points have
atmost one joining line, the three reflection theorem for three lines incidentwith a point
or having a common perpendicular, stating that the composition of three reflections
in lines which are either incident with a point or have a common perpendicular is a
reflection in a line, and the existence of a point. In contrast to Bachmann’s metric
planes (Bachmann 1973) there may be points which have no joining line.

A notion of congruence for segments can be introduced in the following way:

Definition 1 AB and C D are called congruent (AB ≡ C D) if there is a motion α (i.
e. α ∈ G) with Aα = C and Bα = D or with Aα = D and Bα = C .

Our theorem on triangles with congruent medians can be stated in this setting as:

(*) Let A, B, C be three non-collinear points and CU = B and BW = A and
b | A, C and n | C, W . If AU ≡ CW then there exists a line v through B with
Av = C , i.e. triangle ABC is isosceles.

This statement does not hold in Bachmann’s metric planes which are elliptic or of
characteristic 3 (such as the Euclidean plane over G F(3); see (Bachmann 1989, 7.4).
A Hjelmslev group (G, S, P) (and with it a Bachmann plane) is called non-elliptic if
S ∩ P = ∅, and of characteristic �= 3 if (AB)3 �= 1 for all A �= B.

Theorem 3 Let (G, S, P) be a Hjelmslev group without double incidences which is
non-elliptic and of characteristic �= 3. Let A, B, C be three non-collinear points and
CU = B and BW = A and b | A, C and n | C, W . If AU ≡ CW then there exists a
line v through B with Av = C.

For the proof of Theorem 3 we need the following:

Lemma 5 Let C, W be points and s, n lines with C, W |n and W |s and C � s. Then
there exists at most one point V �= W with V |s and CW ≡ CV .

Proof Let C, W | n and V, W | s with C � s. If CW ≡ CV then there exists a motion
α with Cα = C and W α = V or with Cα = V and W α = C .

Suppose Cα = C and W α = V (case 1). Then α is a line through C or a rotation
which leaves C fixed. Since in the latter case nα is a line through C (see Bachmann
1989, Section 3.4), we can assume that α is a line g which leaves C fixed. Let h be
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Fig. 1 A triangle with two congruent medians must be isosceles

the line with h|W, g. Then V, W |h, s and according to H2 it is h = s. Hence g is
the unique perpendicular with g|C, s and V is the unique point with V = W g and
CW ≡ CgW g ≡ CV .

Suppose now Cα = V and W α = C (case 2). Since α or nα is a glide reflec-
tion (according to Bachmann 1989, Proposition3.2) we can assume without loss of
generality that α is glide reflection i.e. α ∈ P S.

Let M be the midpoint of C and W and let N be the midpoint of C and V (which
exist according to (Bachmann 1989, Proposition 2.33). Let a be the axis of the glide
reflection α. According to (Bachmann 1989, Proposition 2.32) we have a|M, N .

Since α ∈ P S there exists a line b with α = bN and b|a (see Bachmann 1989,
Section 2.3). Hence V = Cα = CbN and Cb = V N = C (since N is the midpoint of
V and C). Thus we get b|C, a. In an analogous way there exists a line d with α = Md
and d|a. Hence C = W α = W Md = Cd and d|C, a. Since in a non-elliptic Hjelmslev
group there is at most one perpendicular from C to a we get b = d.

Hence α = Mb = bN and Mb = N , i.e. b is the midline of M and N . Thus
W b = (C M )b = MbCb Mb = NC N = C N = V , i.e. b is also the midline of W and
V . Hence b is the unique perpendicular from C to s (the joining line of V, W ) and V
the unique point with V = W b.

We now turn to the proof of Theorem 3.

Proof Let U and W be the midpoints of the sides BC and B A of triangle ABC and
AU ≡ CW . Let n and b denote the lines 〈C, W 〉 and 〈A, C〉 respectively. Since
AWU = C there exists a midpoint V of A, C (see Bachmann 1989, Proposition 2.33)
and a midline v = V b of A, C . Moreover according to (Bachmann 1989, Proposition
2.48) there is a joining line s of U, W which is orthogonal to v, i.e. v|b, s. Since
v, W, U |s the element vWU = h is a line with h|s and h|C (since CvWU = AWU =
BU = C), i.e. h is the perpendicular from C to s.

Hence W, W h are points on s with CW ≡ CW h . Since AU ≡ CW it is AvU v ≡
CW and hence CU v ≡ CW with U v|s (since U, v|s). According to Lemma 5 there
are at most two points P on s with CW ≡ C P , namely W and W h . Hence U v = W
or U v = W h .

If U v = W h then U v = W vWU = W U Wv and hence U = W U W . This implies
(U W )3 = 1 which is a contradiction to our assumption that (G, S, P) is of character-
istic �= 3.

Hence U v = W and Bv = (CU )v = U vCvU v = W AW = B which shows that v
is a line through B with Av = C .
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5 An absolute order-free version of the Steiner–Lehmus theorem

In its original version, stating that a triangle with two congruent internal bisectors
must be congruent, the Steiner–Lehmus theorem requires the notion of betweenness,
to ensure that the two angle bisectors are internal.

However, we will show that it is possible to state and prove an order-free absolute
version of the Steiner–Lehmus theorem, one stated inside the theory of metric planes,
from which all we need are the axioms H2–H4 and “For all A, B, with A �= B, there
exists c with A, B | c”. Metric planes will be again considered in group-theoretical
terms, with (G, S, P) as in Sect. 4. The elements of G will be again referred to as
motions.

To this end, we first notice that, for the angle bisectors of a triangle ABC , we have
the following facts that can be proved to hold in metric planes:

(a) If there is an angle bisector w through A, then there is exactly another angle
bisector v through A, which is the perpendicular in A on w.

(b) Every triangle ABC has precisely six angle bisectors (through each of the points
A, B, and C , there are precisely two perpendicular angle bisectors

(c) If an angle bisector through A intersects an angle bisector through B in a point
M , then the line joining M and C is an angle bisector through C .

With ≡ defined as in Definition 1, we have

Lemma 6 If AM ≡ B M then there exists a motion α with Aα = B and Mα = M.

Proof Suppose there is a motion α with Aα = M and Mα = B. Given that M is the
image of A under a motion, A and M must have, by [Bachmann (1973), §3, Satz 28]
a midpoint N . Thus ANα = Mα = B and M Nα = Aα = M .

Here is now the order-free, absolute version of the Steiner–Lehmus theorem:

Theorem 4 Let ABC be a triangle with sides a, b, and c, and u, v, and w are angle
bisectors through A, respectively B, respectively C. Then we have:

(a) If u, v, and w have a point M in common and AM ≡ B M, the triangle ABC is
isosceles.

(b) If u, v, and w are the sides of a triangle with vertices U, V , and W , and triangle
U V W is isosceles, then so is triangle ABC.

Proof (a) : By Lemma 1, we can assume that there is a motion α ∈ G with Mα = M
and Aα = B. Since A, M |u, the motion uα must also satisfy Muα = M and
Auα = B. According to (Bachmann 1989, §3.1), we must have α ∈ S or uα ∈ S.
We conclude that there exists a line h with h|M and Ah = B. Given the uniqueness
of the joining line of two points (i. e., given H2), we have h|c and uh = v (the
latter holds since A, M |u and B, M |v). Since u, h, v|M , we have uhv ∈ S and
buhv = chv = cv = a.
We conclude that uhv = uhuh = uh(huh) = h is an angle bisector of a and b.
By Bachmann (1973), we have h|C , and since Ah = B, h is a symmetry axis of
triangle ABC , i. e. the latter is isosceles.
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(b) :Let u, v|W ; u, w|V ; v,w|U , and let U W ≡ V W . As in (a), one can prove
that there is a line m with m|W , U m = V , and m|w. Line m joins the point W
of intersection of the angle bisectors u and v with C , and thus is (according to
Bachmann 1973, §4,7, Satz 11) an angle bisector through C . The reflection in
m thus switches the lines a and b, as well as the lines u and v. Thus it switches
the intersection points A (of b and u) and B (of a and v). This means that m is
symmetry axis of triangle ABC , i. e., the latter is isosceles.

This formulation of the Steiner–Lehmus theorem also shows that there is, indeed,
a version of the Steiner–Lehmus theorem that is invariant under what is called an
‘extraversion’ in Conway and Ryba (2014).
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