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Abstract In the present paper,we investigate the question if the skeleton of aMumford
curve of genus two can be tropicalized faithfully in dimension three, i.e. if there exists
an embedding of the curve in projective three space such that the tropicalization maps
the skeleton of the curve isometrically to its image. Baker, Payne and Rabinoff showed
that the skeleton of every analytic curve can be tropicalized faithfully. However the
dimension of the ambient space in their proof can be quite large. We will define a
map from the skeleton to the tropicalization of the Jacobian, which is an isometry
on the cycles. It allows us to find principal divisors and simultaneously to determine
the retractions of their support on the skeleton which is necessary to calculate their
tropicalization. It turns out that a Mumford curve of genus two whose cycles of its
skeleton are either disjoint or share an edge of length at most half of the length of the
cycles, can be tropicalized faithfully in dimension three.

Keywords Mumford curves · Tropical geometry · Berkovich spaces · Tropicalization
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1 Introduction

This paper is inspired by recent work of (Baker et al. 2011, 2013) which compares
the analytic and tropical geometry of curves. Let K be a complete, non-archimedean
field with a non-trivial absolute value, and let X be a smooth, proper and connected
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curve over K . Then the subset H◦(X an) of non-leaves in the Berkovich space X an

carries a natural metric which is induced by skeletons of semistable models. If X is
embedded in a toric variety and meets the dense torus T , the resulting tropicalization
Trop(T ∩ X) is a one-dimensional polyhedral complex. All its edges have rational
slopes with respect to the cocharacter lattice of the torus. Hence Trop(T ∩ X) can
be endowed with a natural metric locally given by the lattice length on each edge. In
general the tropicalization map (X ∩ T )an → Trop(X ∩ T ) is not injective and does
not respect the metrics on both sides.

Among the main results in Baker et al. (2011) are Theorems 6.20 and 6.22, which
say that for every skeleton � in H◦(X an) there exists a closed immersion of X in a
quasiprojective toric variety such that X meets the dense torus T and� maps isometri-
cally to its image under the induced tropicalization map on X ∩ T . In the terminology
of Baker et al. (2011), 6.15.2 we say that in this case � is faithfully tropicalized.

Given a skeleton of an analytic curve, it is an interesting question to determine the
minimal dimension necessary to tropicalize it faithfully. Using the construction in the
proof of Theorem 6.22 in Baker et al. (2011), we may assume that the skeleton has
at least two vertices and there are at least g + 1 edges. To tropicalize the skeleton
faithfully they define two functions for each edge as well as one function for each
pair of vertices. These functions may not define an embedding thus we have to add
more rational functions (at most four additional functions since every curve can be
embedded in projective space of dimension three). This sums up to at least 2g + 6
functions. Given a finite subset D ⊂ X (K ) for every point p in D one needs two
functions to tropicalize the ray leading to p faithfully. Hence we obtain an embedding
of dimension at least 2(g+|D|)+5 that leads to a faithful tropicalization of a skeleton.

However, in special cases one can domuch better. For example, for Tate curves, this
bound would be 7, whereas by Baker et al. (2011), Theorem 7.2 there exists a faithful
tropicalization in two-dimensional projective space. Furthermore Chan and Sturmfels
showed that for every Tate elliptic curve, there exists a tropicalization that is in so
called honeycomb form, which is a faithful tropicalization (Chan and Sturmfels 2013,
Theorem 7).

In Baker and Rabinoff (2013), Theorem 8.2 Baker and Rabinoff defined for each
curve X together with a skeleton � a rational morphism X ��� P

3 whose tropicaliza-
tion, when restricted to �, is an isometry onto its image. However this morphism may
not be an embedding.

In the present paper, we investigate this question for Mumford curves of genus
two. There are two types of such curves: the cycles in the skeleton can share an edge
or the cycles are disjoint. It turns out that for curves whose cycles are disjoint there
exists an embedding in projective three-space such that the tropicalization is faithful
(Theorem 5.3). This is also true for curves whose cycles share an edge if the cycles are
at least twice as long as the shared edge. Let D be a very ample divisor of degree five
such that its support retracts to given points on the skeleton. We define two divisors as
follows: Choose three points from the support of D (three poles) and one additional K -
rational point on the curve (one zero). From general theory we know that there exist
two K -rational points (zeros) so that the resulting degree zero divisor is principal,
i.e. we obtain a rational function on the curve with three poles. However we do not
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know where the retractions of these new zeros lie on the skeleton. This is necessary
to calculate the slopes of the tropicalization.

To solve this problemwewill make use of the tropicalization of the Jacobian, which
inherits a group structure from the Jacobian, and a map μ from the skeleton to the
tropicalization of the Jacobian, which is an isometry on the cycles.

These will tell us where the new zeros of the function are retracting to (Lemma
5.1) and we are able to show that there exists a rational morphism from the curve to
two-dimensional projective space tropicalizing the skeleton faithfully.

Next we check if the rays from the extended skeleton are also tropicalized faithfully.
Wewill see that two raysmay intersect. To correct thiswe have to define a third function
in the linear system L(D), linearly independent from the others. These three functions
tropicalize the extended skeleton faithfully, and, since they are generators of L(D),
they also define an embedding of the curve in projective three-space.

2 Skeletons and tropicalizations of curves

Let K be a algebraically closed field which is complete with respect to a non-
archimedean non-trivial absolute value | · |. As usual, we put K ◦ = {x ∈ K : |x | ≤ 1}
and K ◦◦ = {x ∈ K : |x | < 1} and we denote by ˜K = K ◦/K ◦◦ the residue field of K .

For every K -scheme X of finite type we denote by X an the associated Berkovich
analytic space, as defined in Berkovich (1990). If X is a smooth, projective and geo-
metrically connected curve of positive genus, then X an is a special quasipolyhedron in
the sense of Berkovich (1990), Definition 4.1.1 and 4.1.5. Its Betti number is at most
g by Berkovich (1990), Theorem 4.3.2.

Let X be a smooth, projective curve over K with semistable reduction, and fix a
semistable model X of X . This gives rise to a skeleton S(X) inside X an which is a
deformation retract, see Berkovich (1990), Chapter 4. Let τ : X an → S(X) be the
continuous retraction map .

Let D be a finite subset of X (K ) and V be a finite set of type 2 points in X an. Set
U = X\D. Then U an\V is a semistable decomposition in the sense of Baker et al.
(2013), Definition 3.1 if it is the disjoint union of

• infinitely many open balls,
• finitely many open annuli,
• finitely many punctured balls, each of them containing precisely one point of D.

The punctured balls can be seen as open annuli with infinitemodulus. Their skeleton
is a semi-infinite ray (see Baker et al. 2013, chapter 2.1).

For D as before set W = {τ(x) : x ∈ D} ∪ {vertices of S(X)} ⊂ X an. This is a
semistable vertex set of X an in the sense of Baker et al. (2013), Definition 3.1. If two
distinct points x, y of D lie in the same open ball B of X an\W then there exists a
smallest closed disc in B containing x and y. The Gauss point of this closed disc will
be denoted by x ∨ y. If we adjoin all such points x ∨ y toW then it is still a semistable
vertex set and U an\W is a semistable decomposition. This follows from the proof of
Baker et al. (2013), Lemma 3.13 (3). The path from x∨y toS(X) yields a new bounded
edge. The skeleton associated to these data in Baker et al. (2013), Definition 3.3 is the
union of S(X) with the new bounded edges, the vertices W and the rays leading to
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points in D. We denote it by S(X, D) and call it an extended skeleton. By Baker et al.
(2013), Lemma 3.8 there exists a continuous retraction map τ : U an → S(X, D) from
the open curve to the extended skeleton.

A skeleton carries a natural metric, the shortest-path metric. The distance between
two points is the smallest length of all paths connecting the points, where the length of
an edge is defined to be the logarithmic modulus of the corresponding annulus (Baker
et al. 2013, Definition 3.10 and chapter 3.12). This metric extends to rays giving the
skeleton a degenerate metric.

We will use the following slope formula (Baker et al. 2013, Theorem 5.15), see
also Thuillier’s thesis (Thuillier 2005, 3.3.15).

Theorem 2.1 (Slope formula) Let f be a rational function on X and D be a finite
subset of X (K ) containing supp(div( f )). Set U = X\D, and consider the retraction
map τ : Uan → S(X, D). Then the function log | f | : Uan → R, mapping a point x
to log | f (x)|, has the following properties:
(i) log | f | = log | f | ◦ τ , i.e. log | f | factors over the skeleton.
(ii) log | f | is piecewise affine-linear with integer slopes on each edge of the skeleton

S(X, D).
(iii) Let x be a point in the skeleton and let dv(x) denote the outgoing slope of log | f |

along an edge v. Then
∑

v dv(x) = 0 where only finitely many outgoing slopes
are unequal to zero.

(iv) If v is a vertex in S and r a ray in v leading to a point x ∈ supp(div( f )), let dv

be the outgoing slope of log | f | along r. If x has multiplicity m in div( f ), then
dv(x) = −m.

If x is a point in the skeleton that is neither a vertex nor a retraction of a pole or zero
then there are two edges of the skeleton emanating from x . Thus by (iii) the slopes
along these edges have to be equal. Hence the slope of log | f | can only change at the
retractions of the poles and zeros of f and the vertices of the skeleton.

Let U be a connected K -scheme together with a closed immersion ϕ : U ↪→ G
n
m

into a K -split torus. As a set, the associated tropical variety Trop(U ) = Tropϕ(U ) is
the image of U an under the tropicalization map

(Gn
m)an = (SpecK [x±

1 , . . . , x±
n ])an −→ R

n, p 
−→ (log |x1(p)|, . . . , log |xn(p)|).

Note that Tropϕ(U ) = TropϕL
(UL) for any base change by a non-archimedean

complete extension field L/K , see Gubler (2013), Proposition 3.7. So if we start with
a non-algebraically closed field we can perform a base change to apply the theory
developed in this paper. The tropicalization Trop(U ) can be enrichedwith the structure
of a balanced, weighted, integral polyhedral complex of pure dimension d = dim(U ),
see e.g. Maclagan and Sturmfels (2014), Theorem 3.3.6. Trop(U ) is called faithful if
the restriction of the tropicalization map to the skeleton of the curve is an isometry.
If we consider extended skeletons we call the tropicalization faithful if it is faithful
on the skeleton, homeomorphic on the extended skeleton and the rays have slopes
±1. Let ϕ : X an → (Pn)an be an embedding in projective space given by rational
functions f0, . . . , fn and let D = ⋃

i supp(div( fi )) be the union of the support of
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the corresponding principal divisors. We say that the curve is tropicalized faithfully
with respect to ϕ if Trop(X\D) is a faithful tropicalization of the extended skeleton
S(X, D).

3 Mumford curves

The present paper deals with analytic Mumford curves, for which the Betti number of
X an is equal to the genus. Mumford curves are smooth curves with totally degenerate
stable reductions. In Mumford (1972) Mumford shows that these are precisely the
curves admitting a non-archimedean Schottky uniformization. Let us recall some facts
about these uniformizations.

Let � be a subgroup of PGL(2, K ). A point x ∈ P
1(K ) is called a limit point of

�, if there exists some y ∈ P
1(K ) and an infinite subset {γn : n ≥ 1} of � such

that γn(y) → x . We denote by L = L� the set of all limit points. A subgroup � of
PGL(2, K ) is called a Schottky group if it is finitely generated, free and discontinuous,
where the last property means that L �= P

1(K ) and that all orbit closures in P
1(K )

are compact. Every element γ �= 1 of a Schottky group is hyperbolic, i.e. it has two
different fixed points with different absolute values.

Let� be a Schottky group, andwrite� = (P1
K )an\L, where (P1

K )an is theBerkovich
analytic space associated to the projective line over K . Then� acts freely and properly
discontinuously on �, and the quotient �/� is a proper analytic curve over K , and
hence the analytification of an algebraic curve X . Every curve over K with such a
Schottky uniformization is called a Mumford curve.

Recall that a closed disc of radius r ≥ 0 with center a ∈ K is the set B := {z ∈
K : |z − a| ≤ r} and the corresponding open disc is B◦ := {z ∈ K : |z − a| < r}.
Every point inside the disc can serve as its center. Note that topologically each disc is
both open and closed.

It is shown in Gerritzen and van der Put (1980), section 1, paragraph 4, that every
Schottky group has a good fundamental domain, i.e. for each Schottky group� of rank
g there exist 2g pairwise disjoint closed discs B1, . . . , Bg , C1, . . . ,Cg with centers in
K and generators γ1, . . . , γg of � such that

• F = P
1(K )\(⋃i Bi ∪ ⋃

i C
◦
i ) is a fundamental domain for the action of � on �,

• γi (P
1(K )\B◦

i ) = Ci and γ −1
i (P1(K )\Bi ) = C◦

i for all i = 1, . . . , g.

We denote the corresponding open discs by B◦
i , C◦

i etc.
Note that we always choose our coordinates on P1 so that 0 lies outside these discs.
We fix centers bi of Bi and ci of Ci . Let ri be the radius of Bi and Ri the one of

Ci . Since 0 is not contained in any disc, the radii of Bi and Ci satisfy ri < |bi | and
Ri < |ci |. Furthermore, the absolute value of all points in Bi is equal to |bi | and the
absolute value of all points in Ci is equal to |ci |. Since Bi contains one fixed point of
γi and Ci contains the other, and since the two fixed points of a hyperbolic element
have different absolute values, we have |bi | �= |ci |. Moreover, for every a ∈ Bi and
b /∈ Bi we have |b − a| = |b − bi |. Similarly, for every a ∈ Ci and b /∈ Ci , we have
|b − a| = |b − ci |.
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Now choose some a ∈ F and define for all i = 1, . . . g theta functions

ui (z) =
∏

γ∈�

z − γ a

z − γ γi a
.

ByGerritzen and van der Put (1980), section II.2, ui (z) is an analytic function with-
out zeros on � which is independent of the choice of a. Moreover, the function ui (z)
is an automorphic function with respect to �, i.e. the quotient ci (γ ) = ui (z)/ui (γ z)
is a constant in K independent of z by Gerritzen and van der Put (1980), chapter VI,
paragraph 2. This constant is multiplicative in γ and satisfies ci (γ j ) = c j (γi ). We put
qi j = ci (γ j ). Then the matrix (qi j )i j is symmetric.

Proposition 3.1 For every z /∈ ⋃g
i=1(B

◦
i ∪ C◦

i ) we have |ui (z)| = | z−bi
z−ci

|.
Proof Choose a ∈ P

1(K ) inside the complement of the union of the discs Bi ,Ci . Let
γ be in � such that γ �= 1 and γ �= γi . Then γ = γ

sm
im

γ
sm−1
im−1

. . . γ
s1
i1

for i1, . . . , im ∈
{1, . . . , g} and signs s1, . . . , sm ∈ {−1, 1} . We assume that this expression is reduced,
i.e. that γ j and γ −1

j are never adjacent factors. Let us show by induction on m that the
points γ a and γ γi a are contained in the same disc. Since γ j maps the complement
of Bj to C◦

j and γ −1
j maps the complement of C j to B◦

j , the point γi a is contained in
C◦
i which lies in the complement of all Bj and in the complement of those C j with

j �= i . Hence our claim holds for m = 1.
If γ is an element of length m > 1 in �, consider γ ′ = γ

sm−1
im−1

. . . γ
s1
i1
. Then γ ′ �= 1.

If γ ′ = γ −1
i , then γ = γ −1

j γ −1
i or γ = γ jγ

−1
i such that γ j �= γi . In the first case, the

points γ −1
i a and a lie in the complement of C j , hence they are mapped to the disc B◦

j

by γ −1
j , and our claim holds. It also holds in the second case, since the points γ −1

i a and
a lie in the complement of Bj and are mapped to the disc C◦

j by γ j . Therefore we may
assume that γ ′ is neither 1 nor γi . We conclude by induction hypothesis that γ ′a and
γ ′γi a are contained in either B◦

im−1
orC◦

im−1
, depending on sm−1. Since γ

sm
im

�= γ
−sm−1
im−1

,

the element γ
sm
im

maps Cim−1 to B◦
im

if sm = −1 or Bim−1 to C◦
im

if sm = 1 and our
claim follows.

Hence for all γ not equal to 1 or γ −1
i we have |z − γ γi a| = |z − γ a|, since z lies

outside of the 2g open discs. This implies that

|ui (z)| =
∣

∣

∣

∣

∣

∣

∏

γ∈�

z − γ a

z − γ γi a

∣

∣

∣

∣

∣

∣

= |z − γ −1
i a|

|z − γi a| = |z − bi |
|z − ci | ,

since γ −1
i a lies in Bi and γi a lies in Ci . ��

Let us recall some facts about the Berkovich projective line (P1)an = (A1)an∪{∞}.
The points in the affine line (A1)an correspond to multiplicative seminorms on the
polynomial ring K [T ] extending the absolute value on K . These seminorms can be
described explicitly and are classified into four types, see Berkovich (1990), 1.4.4.
Every point a in A

1(K ) induces a point of type 1, i.e. the multiplicative seminorm
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f 
→ | f (a)|. For every point a ∈ A
1(K ) and every positive real number r , there is a

corresponding multiplicative seminorm ζa,r ( f ) mapping f = ∑

n cn(x − a)n to

ζa,r ( f ) = max
n

{|cn|rn}.

It can be described as a supremum norm over the disc in K around a with radius r .
The point ζa,r in (A1)an is called of type 2, if the radius r lies in the value group |K ∗|.
Otherwise it is called of type 3. Note that ζa,r = ζb,s if and only if |a − b| ≤ r = s.
Points of type 4 are realized as limits of series of points of type 2 and 3. They do only
appear over fields that are not spherically complete.

The Berkovich projective line is anR-tree in the sense of Baker and Rumely (2010),
Appendix B. It is uniquely arcwise connected. We denote the unique path between
two elements x, y of (P1)an by [x, y]. For a, b ∈ A

1(K ) and r < s the path [ζa,r , ζa,s]
consists of all points ζa,t such that t ∈ [r, s]. To determine [ζa,r , ζb,s] in general, put
R = max{r, s, |a − b|} and note that ζa,R = ζb,R . Then [ζa,r , ζb,s] = [ζa,r , ζa,R] ∪
[ζb,R, ζb,s].

The complement of the subset of points of type 1 in (A1)an can be endowed with a
path distance metric, see Baker and Rumely (2010), section 2.7. For points x = ζa,r

and y = ζb,s as above, it is equal to

ρ(x, y) = 2 log R − log r − log s.

Set ζ+
i = ζbi ,ri and ζ−

i = ζci ,Ri . Note that γi (ζ
−
i ) = ζ+

i . By the explicit description
above, is easy to see that the path [ζ−

i , ζ+
i [ is contained in the fundamental domainF .

The Berkovich curve X an contains the skeleton S(X an) of the semistable model of
X constructed by Mumford (1972), Theorem 3.3. The graph S(X an) is equal to the
image under the natural map π : � → X an of the convex hull of all the points ζ+

i , ζ−
i

in (P1)an. Note that this convex hull is contained in (�)an. The skeleton S(X an) can be
endowed with a natural metric induced by the path distance metric on the projective
line. It contains the g cycles Zi = π([ζ−

i , ζ+
i ]).

Proposition 3.2 (i) The cycle Zi has length − log |qii |.
(ii) The intersection Zi ∩ Z j has length | log |qi j ||.
Proof (i) After exchanging γi with γ −1

i if necessary, we may assume that |bi | < |ci |.
The length of Zi is equal to the path distance ρ(ζ−

i , ζ+
i ). Since ri , Ri < |ci | =

|ci − bi |, we find

ρ(ζ−
i , ζ+

i ) = 2 log |ci | − log ri − log Ri .

On the other hand, |qii | = |ui (z)/ui (γi z)| for any point z ∈ �. Let us choose a
rational point z ∈ ∂Bi . Then γi z lies in ∂Ci . Therefore we can apply Proposition
3.1 to z and γi z to deduce

− log |qii | = − log
|z − bi ||γi z − ci |
|z − ci ||γi z − bi | .
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Since by the choice of z we have |z−bi | = ri and |γi z−ci | = Ri and |z−ci | = |ci |
as well as |γi z − bi | = |γi z| = |ci |, we deduce that

− log |qii | = 2 log |ci | − log ri − log Ri .

(ii) After exchanging γi and γ −1
i if necessary, we may again assume that |bi | < |ci |.

Similarly, we may assume that |b j | < |c j |. After exchanging i and j if necessary
we also have |bi | ≤ |b j |.

Choose z ∈ ∂Bj . Then γ j z ∈ ∂C j . Hence we can apply Proposition 3.1 to z and
γ j z to deduce

− log |qi j | = − log

∣

∣

∣

∣

ui (z)

ui (γ j z)

∣

∣

∣

∣

= − log
|z − bi ||γ j z − ci |
|z − ci ||γ j z − bi | .

By the choice of z we have |z − bi | = |b j − bi | and |z − ci | = |b j − ci | as well as
|γ j z − bi | = |c j − bi | and |γ j z − ci | = |c j − ci |. Hence

− log |qi j | = log
|b j − ci | |c j − bi |
|b j − bi | |c j − ci | . (1)

Recall that [ζ+
i , ζ−

i ] = [ζ+
i , ζbi ,|ci |] ∪ [ζci ,|ci |, ζ−

i ]. The first part [ζ+
i , ζbi ,|ci |]

intersects [ζ+
j , ζ−

j ] in all points ζbi ,r satisfying |bi − b j | ≤ r ≤ min{|ci |, |c j |}.
The second part [ζci ,|ci |, ζ−

i ] intersects [ζ+
j , ζ−

j ] in all points ζci ,r such that either
|c j − ci | ≤ r ≤ min{|ci |, |c j |} or |b j − ci | ≤ r ≤ min{|ci |, |c j |}.

Now we can check our claim case by case.
Case 1 |ci | < |b j |. This implies |bi | < |ci | < |b j | < |c j |. In this case Zi ∩ Z j is
empty and by formula (1) we have − log |qi j | = 0.
Case 2 |ci | = |b j |. This implies |bi | < |ci | = |b j | < |c j |. Here, Zi ∩ Z j is the
image of [ζci ,|b j−ci |, ζci ,|ci |], which has length log(|ci ||b j − ci |−1), which coincides
with log |qi j | = | − log |qi j || by formula (1).
Case 3 |ci | > |b j | and |ci | �= |c j |. Put m = min{|ci |, |c j |}. Then Zi ∩ Z j is the
image of [ζbi ,|bi−b j |, ζbi ,m], which has length log(m|bi − b j |−1). This coincides with
− log |qi j | by formula (1).
Case 4 |ci | > |b j | and |ci | = |c j |. In this case, Zi ∩ Z j is the image of
[ζbi ,|bi−b j |, ζbi ,|ci |] ∪ [ζci ,|ci |, ζci ,|ci−c j |], which has length

log
|ci ||ci |

|bi − b j ||ci − c j | = − log |qi j |.

��
Note that part (ii) of the preceding statement follows also from van der Put (1992),

proof of Theorem 6.4 (2).
We can use the functions ui to give an explicit description of the embedding of

X into its Jacobian. We give here a short summary, for details see Gerritzen and van
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der Put (1980), chapter II (5.1), chapter IV (3.9) and Manin (1974), chapter 3. Fix
a ∈ �(K ) and consider the analytic morphism

u : � −→ (G
g
m)an, z 
→

(

u1(z)

u1(a)
, . . . ,

ug(z)

ug(a)

)

.

Let � be the multiplicative lattice in (G
g
m)an generated by all λi = (qi1, . . . , qig).

Then the quotient (Gg
m)an/� is isomorphic to the analytification J an of the Jacobian

J of X , and the following uniformization diagram is commutative, where j is the
embedding of X into its Jacobian associated to the point π(a) ∈ X (K ).

There exists a birational morphism j (g) : X (g) → J where X (g) denotes the g-
th symmetric power of the curve sending (z1, . . . , zg) to j (z1) · · · j (zg) (see Milne
(1986), Theorem 5.1).

There is a natural tropicalization map

trop : (G
g
m)an −→ R

g,

which maps a multiplicative seminorm x on the Laurent polynomial ring K [T±1
1 , . . . ,

T±1
g ] to (log |T1(x)|, . . . , log |Tg(x)|), where |Ti (x)| denotes the value of x on Ti

(Baker et al. 2013, 2.1).
It induces a tropicalization map trop : J an −→ R

g/log |�| by passing to quotients,
where log |�| denotes the tropicalization of the lattice �, which is generated by the
vectors (log |qi1|, . . . , log |qig|) (see Baker and Rabinoff 2013, 6.5). We will use this
tropicalization map on the Jacobian to construct faithful tropicalizations.

4 Mumford curves of genus two

We study the situation of Mumford curves of genus g = 2. In this case, the skeleton
S(X an) contains two distinguished cycles Z1 and Z2. These cycles are either disjoint,
meet in a point or meet in an edge (Fig. 1). We know from the proof of Proposition
3.2 that in the first two cases |q12| = |q21| = 1, and that in the third case the length of
the shared edge is | log |q12||.
Lemma 4.1 For a Schottky group � of rank two there exists an element γ ∈
PGL(2, K ) such thatγ�γ −1 has agood fundamental domain satisfying |b1| < |c1| <

|c2| and |b1| < |b2| < |c2|. If the skeleton of the corresponding Mumford curve has
a shared edge, we may also assume |b2| < |c1|.
Proof Let γ1, γ2 be generators of � and B1, B2,C1,C2 discs in P

1 providing a good
fundamental domain. For i = 1, 2 let bi be the fixed point of � in Bi , and let ci be
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Fig. 1 The three possible types of skeletons in genus two, from the left to the right skeleton with shared
edge, connecting edge and connecting point

the fixed point of � in Ci . Recall that all elements in Bi have absolute value |bi |,
all elements in Ci have absolute value |ci |, and the discs B1, B2,C1,C2 are pairwise
disjoint. We have

|c1 − b1| ≤ max{|c1 − c2|, |c2 − b1|}.

If |c1 − c2| > |c2 − b1| we exchange the generators γ1 and γ −1
1 , and hence the pair

of fixed points. Therefore we may assume that |c1 − c2| ≤ |c2 − b1|, which implies
|c1 − b1| ≤ |c2 − b1|. Similarly, after exchanging γ2 and γ −1

2 if necessary, we may
assume that |b1 − b2| ≤ |c2 − b1|, which implies that |b2 − c2| ≤ |c2 − b1|. Since

|b1 − b2| ≤ max{|b1 − c2|, |c2 − b2|}

we have |b1 − b2| ≤ |c2 − b1| and similarly |c1 − c2| ≤ |c2 − b1|. Thus

|c2 − b1| ≥ max{|c1 − b1|, |c2 − b2|, |c2 − c1|, |b2 − b1|}.

We find points p, q ∈ K , p �= q lying outside the closed discs B1 and C2 such
that

|b1 − p| < min{|b1 − c1|, |b1 − b2|, |c2 − b1|} and
|c2 − q| < min{|c2 − b1|, |c2 − c1|, |c2 − b2|}.

Such points do exist since the discs are pairwise disjoint. This implies that

|c1 − p| = |c1 − b1|, |b2 − p| = |b2 − b1| and |c2 − p| = |c2 − b1|,

as well as

|b1 − q| = |b1 − c2|, |c1 − q| = |c1 − c2| and |b2 − q| = |b2 − c2|.

Hence p and q lie in the fundamental domain F .
We conjugate � by the element γ (z) = z−p

z−q in PGL(2, K ). Then we obtain

|γ (b1)| =
∣

∣

∣

∣

b1 − p

b1 − q

∣

∣

∣

∣

<

∣

∣

∣

∣

c1 − p

c1 − q

∣

∣

∣

∣

= |γ (c1)|
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since |b1 − p| < |c1 − p| and |c1 − q| = |c2 − c1| ≤ |c2 − b1| = |b1 − q|.
Moreover, we have

|γ (c1)| =
∣

∣

∣

∣

c1 − p

c1 − q

∣

∣

∣

∣

<

∣

∣

∣

∣

c2 − p

c2 − q

∣

∣

∣

∣

= |γ (c2)|

since |c2 − q| < |c1 − q| and |c1 − p| = |c1 − b1| ≤ |c2 − b1| = |c2 − p|.
This shows |γ (b1)| < |γ (c1)| < |γ (c2)|. We also find

|γ (b1)| =
∣

∣

∣

∣

b1 − p

b1 − q

∣

∣

∣

∣

<

∣

∣

∣

∣

b2 − p

b2 − q

∣

∣

∣

∣

= |γ (b2)|

since |b1 − p| < |b2 − p| and |b1 − q| = |c2 − b1| ≥ |b2 − c2| = |b2 − q|. Similarly,

|γ (b2)| =
∣

∣

∣

∣

b2 − p

b2 − q

∣

∣

∣

∣

<

∣

∣

∣

∣

c2 − p

c2 − q

∣

∣

∣

∣

= |γ (c2)|

since |b2 − p| = |b2 −b1| ≤ |c2 −b1| = |c2 − p| and |b2 −q| = |b2 −c2| > |c2 −q|.
Thus we also get |γ (b1)| < |γ (b2)| < |γ (c2)|.

Hence γ�γ −1 has a good fundamental domain satisfying the first claim of the
lemma.

In order to prove the second claim, we consider the case that the skeleton has a
shared edge. By the first part of the proof we may assume that |b1| < |c1| < |c2| and
|b1| < |b2| < |c2| hold. Recall from the proof of Proposition 3.2 that the inequality
|b2| > |c1| implies that the cycles are disjoint. Hence we have |b2| ≤ |c1|. If the
inequality is strict, our claim follows. Therefore we may assume that |c1| = |b2|. Note
that in the case of a shared edge we have |c1 − b2| < |c1| = |b2|. This follows from
the discussion of Case 2 in the proof of Proposition 3.2.

There exists a point p ∈ K outside the disc C1 such that

|c1 − p| < min{|c2 − c1|, |b1 − c1|, |b2 − c1|}
and a point q ∈ K , q �= p outside C2 such that

|c2 − q| < min{|c2 − c1|, |c2 − b2|, |c2 − b1|}.
A similar argument as in the proof of the first claim shows that p and q lie in the

fundamental domain F . Let γ (z) = z−p
z−q . We find

|γ (c1)| =
∣

∣

∣

∣

c1 − p

c1 − q

∣

∣

∣

∣

= |c1 − p|
|c2| <

|b2 − p|
|c2| =

∣

∣

∣

∣

b2 − p

b2 − q

∣

∣

∣

∣

= |γ (b2)|

since |c1 − p| < |b2 − c1| = |b2 − p| and |c1 − q| = |c1 − c2| = |c2| as well as
|b2 − q| = |b2 − c2| = |c2|. Similarly, we find

|γ (b2)| =
∣

∣

∣

∣

b2 − p

b2 − q

∣

∣

∣

∣

= |b2 − c1|
|c2| <

|b1 − c1|
|b1 − q| =

∣

∣

∣

∣

b1 − p

b1 − q

∣

∣

∣

∣

= |γ (b1)|
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since |b2 − p| = |b2 − c1| < |c1| = |b1 − c1| = |b1 − p| and |b2 − q| = |b2 − c2| =
|c2| = |c2 − b1| = |b1 − q|. Moreover, we have

|γ (b1)| =
∣

∣

∣

∣

b1 − p

b1 − q

∣

∣

∣

∣

= |c1|
|c2| <

|c2|
|c2 − q| =

∣

∣

∣

∣

c2 − p

c2 − q

∣

∣

∣

∣

= |γ (c2)|

since |b1 − p| = |b1 − c1| = |c1| < |c2| and |c2 − q| < |c2|. Thus |γ (c1)| <

|γ (b2)| < |γ (b1)| < |γ (c2)|. Now exchange γ1 and γ −1
1 which exchanges c1 and b1.

This concludes the proof. ��
Let X be a Mumford curve of genus 2 over K obtained by a Schottky uniformiza-

tion with a Schottky group �. Since conjugation of � by an element in PGL(2, K )

corresponds to a K -rational automorphism of the curve, we may assume by Lemma
4.1 that the set of generators of � satisfy the inequalities |b1| < |c1| < |c2| and
|b1| < |b2| < |c2| with the additional inequality |b2| < |c1| in the case of a shared
edge.

Every K -rational point in X (and hence every K -rational point of �) induces
an embedding j : X ↪→ J into the Jacobian. Recall from the last section that the
uniformization of J an by a two-dimensional torus gives rise to a tropicalization map
trop : J an → R

2/log |�|. We consider the composition

μ : S(X an) ↪→ X an jan
↪→ J an

trop−→ R
2/log |�|

Note that μ is in general not injective.

Theorem 4.2 Denote by e1, e2 the standard basis of R
2. There exists a point a ∈

�(K ) such that the map μ defined with the embedding j : X ↪→ J associated to a
has the following image in a fundamental parallelepiped in R

2/log |�|:
(1) In the case of disjoint cycles or cycles meeting in a point we have

im(μ) = [0,− log |q11|) e1 ∪ [0,− log |q22|) e2.

(2) In the case of cycles sharing an edge, we put l = | log |q12|| = | log |q21|| and
v = (l, l). Then we have

im(μ) = [0, 1) v ∪ v + [0, log |q11| − l) e1 ∪ v + [0, log |q22| − l) e2.

(3) In the case of cycles sharing an edge, we have furthermore μ(Z1\Z2) ⊂ v +
[0, log |q11| − l) e1 and μ(Z2\Z1) ⊂ v + [0, log |q22| − l) e2.

(4) μmaps the two cycles Z1, Z2 inS(Xan) isometrically to their imagesμ(Z1) resp.
μ(Z2) where we endow the fundamental parallelepiped with the metric induced
from the maximum metric on R

2. See Fig. 2 for an illustration.
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Fig. 2 The fundamental parallelepiped and the image of μ. Depicted on the left is the case of a connecting
edge, on the right the case of a shared edge

Proof Recall that by Proposition 3.1 |ui (z)| = |z−bi ||z−ci | on the fundamental domain.
Hence we find for all x = ζb1,r with r1 ≤ r ≤ |c1|:

(|u1(x)|, |u2(x)|) =
(

r

|c1| ,
max{r, |b1 − b2|}

|c2|
)

For all x = ζc1,r with R1 ≤ r ≤ |c1| we have

(|u1(x)|, |u2(x)|) =
( |c1|

r
,
max{r, |c1 − b2|}
max{r, |c1 − c2|}

)

Let us first discuss the case where the cycles are disjoint or share a point. By
Proposition 3.2 this corresponds to the case |b1| < |c1| < |b2| < |c2| or to the case
|b1| < |c1| = |b2| < |c2| with |b2 − c1| = |c1|. Choose a point a ∈ �(K ) such that
|a| = |c1| = |c1 − a| and |b2| = |b2 − a|. Then (|u1(a)|, |u2(a)|) = (1, |b2|/|c2|).
If we use π(a) to define the embedding j of X into its Jacobian, the associated map
μ is given by μ(x) = (log |u1(x)|/|u1(a)|, log |u2(x)|/|u2(a)|) mod log |�| on the
fundamental domain. Hence the cycle Z1 is mapped to

{(log r − log |c1|, 0) : r ∈ [r1, |c1|]} ∪ {(log |c1| − log r, 0) : r ∈ [R1, |c1|]}.

Recall that in this case log |q12| = 0, so that we can add (− log |q11|, 0) =
(2 log |c1| − log r1 − log R1, 0) ∈ log |�| to the first subset. Therefore the image
of Z1 is [0,− log |q11|) e1. The second cycle Z2 can be treated in the same way. This
proves claim (1).

Now let us discuss the cases of cycles sharing an edge. In this case we have
|b1| < |b2| < |c1| < |c2|. Choose a point a ∈ �(K ) such that |a| = |b2| =
|b2 − a|. Then (|u1(a)|, |u2(a)|) = (|b2|/|c1|, |b2|/|c2|). If we use π(a) to define
the embedding j of X into its Jacobian, the associated map μ is given by μ(x) =
(log |u1(x)|/|u1(a)|, log |u2(x)|/|u2(a)|) mod log |�| on the fundamental domain.
Recall from the proof of Proposition 3.2 that the intersection Z1 ∩ Z2 corresponds
to the line segment [ζb1,|b2|, ζb1,|c1|]. Hence Z1 ∩ Z2 is mapped to the line segment
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between (0, 0) and (log |c1|− log |b2|, log |c1|− log |b2|)with slope one. Formula (1)
in part (ii) of the proof of Proposition 3.2 implies that− log |q12| = log |c1|− log |b2|.
Therefore the shared edge is mapped to [0,1] v. Let us now look at Z1\Z2. It corre-
sponds to the union of the paths [ζb1,r1 , ζb1,|b2|] and [ζc1,R1 , ζc1,|c1|]. On the first path
[ζb1,r1 , ζb1,|b2|] the map μ is given by

ζb1,r 
→
(

log
r

|b2| , 0
)

.

Adding (log |q11|, log |q12|) = (−2 log |c1| + log r1 + log R1,− log |c1| +
log |b2|) ∈ log |�| we find that this is the line segment between (log |c1|2

R1|b2| , l) and
the lattice point (log |q11|, l). On the second path [ζc1,R1 , ζc1,|c1|] the map μ is given
by

ζc1,r 
→
(

log
|c1|2
r |b2| , log

|c1|
|b2|

)

.

Its image is the line segment between v and (log |c1|2
R1|b2| , l). The cycle Z2 can be

treated similarly. Hence claims (2) and (3) hold. To show claim (4), write μ(x) =
(μ1(x), μ2(x)). Recall that on the first cycle μ1 is of the form ζb,r 
→ log r − log |b|.
In the case of a connecting edgeμ2 is equal to zero, which implies thatμ is an isometry
on this cycle. In the shared edge case there is also a change in μ2, but μ1 will increase
in the same way, so the maximum will be achieved in μ1. A similar argument holds
for the second cycle. ��
Lemma 4.3 Again let v = (− log |q12|,− log |q12|). If x = 2v + αe1 + βe2 with
0 < α < − log |q11| + log |q12| and 0 < β < − log |q22| + log |q12| then there
are exactly two points S and T in the skeleton such that μ(S) + μ(T ) = x, namely
S = μ−1(v + αe1) and T = μ−1(v + βe2).

Proof If μ(S) = v + αe1 and μ(T ) = v + βe2 then clearly μ(S) + μ(T ) = x .
So let us suppose there exist two other points U and V in the skeleton such that
μ(U ) + μ(V ) = x . We have to handle several cases:

(1) μ(U ) = v + α′e1 and μ(V ) = v + β ′e2 with 0 < α′ < − log |q11| + log |q12|
and 0 < β ′ < − log |q22| + log |q12|. Then 2v + αe1 + βe2 = 2v + α′e1 + β ′e2
so v + αe1 + βe2 = v + α′e1 + β ′e2. Since these points lie in the fundamental
domain of the tropicalization of the Jacobian we obtain α′ = α and β = β ′, thus
U and V coincide with S and T .

(2) μ(U ) = v+α′e1 andμ(V ) = v+α′′e1 with 0 < α′, α′′ < − log |q11|+log |q12|.
Then μ(U ) + μ(V ) lies inside the image of the interior of the first cycle, but x
does not. Thus such points U and V cannot exist. The same argument holds if
both points lie on the other cycle.

(3) μ(U ) = v +α′e1 and μ(V ) = γ v with 0 < α′ < − log |q11|+ log |q12| and γ ∈
[0,1]. Then 2v +αe1 +βe2 = (1+ γ )v +α′e1 thus v +αe1 +βe2 = γ v +α′e1.
To satisfy this equality γ v + α′e1 cannot lie in the fundamental domain of the
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tropicalization of the Jacobian. Then (1 + γ )v + α′e1 − log |q22|e2 lies in the
fundamental domain, but this point is not equal to x = 2v + αe1 + βe2.

(4) μ(U ) = γ v andμ(V ) = γ ′vwith γ, γ ′ ∈ [0,1]. Then 2v+αe1+βe2 = (γ ′+γ )v

thus v + αe1 + βe2 = δv, δ ∈ [−1, 1]. This is not possible if δ ≥ 0. So suppose
δ < 0. We replace δv by an equivalent point:

δv = 2v + (− log |q11| + log |q12|)e1 + (− log |q22| + log |q12|)e2 + δv

= (1 + δ)v − log |q11|e1 − log |q22|e2
Thus δv− log |q11|e1− log |q22|e2 = αe1+βe2 and we obtain α = − log |q11|−
δ log |q12|. This contradicts α < − log |q11|+ log |q12|. The same argument holds
for β thus the points U and V cannot exist. ��

5 Faithful tropicalization in genus two

In this section we will always assume that the cycle lengths are at least twice as long
as the length of the shared edge, i.e. |q11| < |q12|2 and |q22| < |q12|2.
Lemma 5.1 Let A = − log |q11| + 2 log |q12|, B = − log |q22| + 2 log |q12| and v =
(− log |q12|,− log |q12|). Then there exist points P1, P2, P3, P4, S1, S2, S3, T1, T2, T3
∈ X (K ) such that

• μ ◦ τ(P1) = v + 1
4 Ae1

• μ ◦ τ(P2) = v + 1
2 Ae1

• μ ◦ τ(P3) = v + 1
4 Be2

• μ ◦ τ(P4) = v + 1
2 Be2

• μ ◦ τ(S1) = μ ◦ τ(T3) = v + ( 34 B − log |q12|)e2
• μ ◦ τ(T1) = μ ◦ τ(S3) = v + ( 34 A − log |q12|)e1
• μ ◦ τ(S2) = v − 1

2 log |q22|e2
• μ ◦ τ(T2) = v − 1

2 log |q11|e1
• j (P1) j (P2) j (P3)

j (S1) j (S2) j (S3)
,
j (P1) j (P3) j (P4)

j (T1) j (T2) j (T3)
are trivial in J .

Proof All points on the skeleton stated in the lemma are of type 2 thus there exist
K -rational points P1, P2, P3, P4, S1 and T1 as postulated. Since the map j (2) from
X (2) to J is surjective there are points S2, S3 and T2, T3 in X (K ) with

j (S2) j (S3) = j (P1) j (P2) j (P3)

j (S1)
and j (T2) j (T3) = j (P1) j (P3) j (P4)

j (T1)

thus
j (P1) j (P2) j (P3)

j (S1) j (S2) j (S3)
and

j (P1) j (P3) j (P4)

j (T1) j (T2) j (T3)
are trivial in J . To determine the posi-

tion of the retractions of S2 and S3 on the skeleton we use that

μ ◦ τ(S2) + μ ◦ τ(S3) = μ ◦ τ(P1) + μ ◦ τ(P2)

+ μ ◦ τ(P3) − μ ◦ τ(S1) mod log |�|.

123



62 Beitr Algebra Geom (2017) 58:47–67

Thus

μ ◦ τ(S2) + μ ◦ τ(S3) = 2v + 3

4
Ae1 −

(

1

2
B + log |q12|

)

e2 mod log |�|

= 2v + 3

4
Ae1 + 1

2
log |q22|e2 mod log |�|

= 3v + 3

4
Ae1 +

(

− log |q22| + log |q12| + 1

2
log |q22|

)

e2

mod log |�|

where we replaced the point 1
2 log |q22|e2 by an equivalent one. Splitting one of the

vectors v = − log |q12|e1 − log |q12|e2 yields

μ ◦ τ(S2) + μ ◦ τ(S3) = 2v +
(

3

4
A − log |q12|

)

e1 − 1

2
log |q22|e2.

Hence by Lemma 4.3

μ ◦ τ(S2) = v − 1

2
log |q22|e2 and μ ◦ τ(S3) = v +

(

3

4
A − log |q12|

)

e1.

μ ◦ τ(T2) and μ ◦ τ(T3) can be determined by a similar calculation. ��
Theorem 5.2 Let P1, P2, P3, P4 ∈ X (K ) be given as in the previous lemma and let
D = P1+P2+P3+P4 be the corresponding effective divisor. Then there exist functions
f, g in the linear system L(D) such that the rational morphism (1, f, g) : X ��� P

2

tropicalizes the skeleton faithfully.

Proof By the previous lemma there exist points S1, S2, S3, T1, T2, T3 ∈ X (K ) such
that S1 + S2 + S3 − P1 − P2 − P3 = div( f ) and T1 + T2 + T3 − P2 − P3 − P4 =
div(g) are principal divisors. Both functions f and g are elements in the linear
system L(D). Since μ is an isometry on the cycles by Theorem 4.2 the points
P1, P2, P3, P4, S1, S2, S3, T1, T2, T3 retract to the skeleton as shown in Fig. 3 where
we label the edges on the first cycle by a, b, c, d, e, λ. Note that λ and c are not
present in the connecting edge case. We orient all edges so that b, c, d, e, λ, a is the
path τ(P1) → τ(P2) → τ(T2) → τ(T1) → τ(P1). Similarly we label the edges
on the second cycle by α, β, γ, δ and λ, where again λ and γ are not present in
the case of a connecting edge. We orient the cycle so that β, γ, δ, λ, α is the path
τ(P3) → τ(P4) → τ(S2) → τ(S1) → τ(P3). In the connecting edge case the edge
χ will be oriented from the first to the second cycle. ��

By |a| we mean the length of edge a, and we use similar notation for the other
edges. By isometry of μ we obtain

|c| + |d| = 3

4
A − log |q12| − 1

2
A = 1

4
A − log |q12| = |a| + |λ| (2)
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P1
P2

T2
S3 T1

P3

P4

S2

T3 S1

λ

α β

γ

δ

ab

c

d e

P1

P2

T2

T1 S3

P3

S1 T3

P4

S2

χ

α β

δ

ab

d e

Fig. 3 The extended skeletons

and

|β| + |γ | − |ε| = −1

2
log |q22|− 1

4
B − (− log |q22| + log |q12|) +

(

3

4
B−log |q12|

)

= 1

2
log |q22| − 2 log |q12| + 1

2
B = − log |q12| = |λ|

where |c| = |γ | = |λ| = 0 in the connecting edge case.
We start by looking at log | f |. It suffices to calculate the slopes along a and α

denoted by ma and mα resp. since the other slopes can be determined using the slope
formula (Theorem 2.1), e.g. the slope along edge b isma−1. Since log | f | is piecewise
linear by walking around the first cycle we get

mλ|λ| + ma |a| + (ma − 1)|b| + (ma − 2)(|c| + |d|) + (ma − 1)|e| = 0.

Rearranging and making use of Eq. (2) leads us to

mλ|λ| + ma(− log |q11| − |λ|) = − log |q11|.

Thus (mλ −ma)|λ| = (1−ma) log |q11|. If |λ| = 0, i.e. if we are in the connecting
edge case, then ma = 1. If not then mλ − ma = mα by the slope formula. Thus

mα|λ| = (1 − ma) log |q11|. (3)

Similarly since

mλ|λ| + mα|α| + (mα − 1)(|β| + |γ |) + mα|δ| + (mα + 1)|ε| = 0

and |β| + |γ | = |ε| + |λ| on the second cycle we obtain

mλ|λ| + mα(− log |q22| − |λ|) = |λ|.
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Thus

−mα log |q22| = (mα − mλ + 1)|λ|.

If |λ| = 0 then mα = 0. If not then mα − mλ = −ma thus

−mα log |q22| = (1 − ma)|λ|.

Inserting mα = −(1 − ma)
|λ|

log |q22| into (3) gives

−(1 − ma)
|λ|2

log |q22| = (1 − ma) log |q11|.

Since |λ| = − log |q12| and 0 < log |q12|2 < log |q11| log |q22| this implies
ma = 1 and hence mα = 0. The calculation for log |g| is similar to that of
log | f | treating the second cycle first. Thus we obtain the following slope vectors
for (log | f |, log |g|):

ma = (1, 0), mb = (0,−1), mc = (−1,−1), md = (−1, 0), me = (0, 1)

on the first cycle and

mα = (0, 1), mβ = (−1, 0), mγ = (−1,−1), mδ = (0,−1), mε = (1, 0)

on the second one. If the skeleton has a shared edge then by the slope formula (Theorem
2.1) the corresponding slope vector is mλ = (1, 1). If the skeleton has a connecting
edge we obtain mχ = (−1, 1). Hence the tropicalization maps the skeleton of the
curve isometrically to its image, i.e. the tropicalization is faithful. See Fig. 4 for an
illustration.

Theorem 5.3 Let D′ = D + S3. Then there exists a function h ∈ L(D′) such that
(1, f, g, h) : X ↪→ P

3 is a closed immersion tropicalizing the extended skeleton
faithfully.

Proof Since deg(D′) = 5 the divisor is very ample. By Riemann–Roch dim L(D′) =
3 thus a basis of the linear system defines an embedding into three-dimensional pro-
jective space. The functions 1, f and g are linearly independent in L(D′) so they can
be completed to a basis by a function having a pole at S3. We already know that log | f |
and log |g| tropicalize the skeleton faithfully.

First note that there can be up to two additional bounded edges on the extended
skeleton with respect to D′: The rays to S1 and T3 (resp. T1 and S3) may meet outside
the skeleton. The slopes along these edges can be determined using the slope formula
thus the slope vectors are (−1,−1) in both cases (oriented away from the skeleton).
Hence these edges are mapped isometrically to their image in the tropicalization.
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Fig. 4 Tropicalization with respect to log | f | and log |g| of Theorem 5.2 in the case of a shared edge resp.
connecting edge where the possible intersection points are marked by a circle

In the case of a connecting edge there are possibly twomore bounded edges between
the point where the rays leading to S2 and P4 meet and the skeleton resp. between the
point where the rays leading to P2 and T2 meet and the skeleton. Again using the slope
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formula we see that the slope vectors are (−1, 1) resp. (1,−1) so also these edges are
going to be tropicalized faithfully.

The slope vector of the ray leading to P1 is denoted bymP1 ; we use similar notation
for other rays. By convention they are oriented away from the skeleton and are equal
to the multiplicities of the poles resp. zeros of each function (Theorem 2.1). Thus we
obtain

mP1 = (1, 1), mP2 = (1, 0), mT2 = (0,−1), mT1 = (0,−1), mS3 = (−1, 0)

on the first cycle and

mP3 = (1, 1), mP4 = (0, 1), mS2 = (−1, 0), mS1 = (−1, 0), mT3 = (0,−1)

on the second cycle.
Without loss of generality choose coordinates inR2 such that via the tropicalization

map one vertex of the connecting resp. shared edge lies in the origin. Let the plane be
divided into two halfspaces by the line 〈(1, 1)〉. Then each cycle lies in one of the two
halfspaces. Except for the rays leading to S3 resp. T3 all rays of one cycle lie in the
same halfspace. This means these rays cannot intersect with rays from the other cycle.
However the rays leading to S3 and T3 may well intersect, see Fig. 4. By arguments
similar to that in the Proof of Lemma 5.1 there exists a rational function h having
poles at S3, P1 and P3 as well as a zero in T2 which implies that none of the other
zeros will retract to τ(S3). Since h has a pole at S3 the ray leading to this pole (and
also a possible additional bounded edge) will be lifted into the third dimension as the
ray leading to T3 will not.

Thus log |h| separates the remaining rays, and the tropicalization of the extended
skeleton with respect to log | f |, log |g| and log |h| is faithful. ��
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