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Abstract Triangulations of 3-dimensional polyhedron are partitions of the poly-
hedron with tetrahedra in a face-to-face fashion without introducing new vertices.
Schönhardt (Math. Ann. 89:309–312, 1927), Bagemihl (Amer. Math. Mon. 55:411–
413, 1948), Kuperberg (Personal communication 2011) and others constructed special
polyhedra in such a way that clever one line geometric reasons imply nontriangulabil-
ity. Rambau (Comb. Comput. Geom. 52:501–516, 2005) proved that twisted prisms
over n-gons are nontriangulable. Our approach for proving polyhedra are nontrian-
gulable is to show that partitions with tetrahedra, which we call tilings, do not exist
even if the face-to-face-restriction is relaxed. First we construct a polyhedron which
is tileable but is not triangulable. Then we revisit Rambau type twisted prisms. In fact
we consider a slightly different class of polyhedra, and prove that these new twisted
prisms are nontileable, thus are nontriangulable. We also show that one can twist the
regular dodecahedron so that it becomes nontileable, which is abstracted to a new
family of nontileable polyhedra, called nonconvex twisted pentaprisms.
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1 Terminology and an account of known nontriangulable polyhedra

It is well known that every planar polygon can be partitioned into triangles with-
out introducing new vertices. The triangles in these triangulations automatically meet
in edge-to-edge fashion, moreover the number of triangles is dependent on the side-
number of the original polygon. Surprisingly none of the analogous statements remain
true when we move up by one dimension. For more information regarding these prop-
erties the texts De Loera et al. (2010), Devadoss and O’Rourke (2011), and O’Rourke
(1998) provide a detailed analysis of triangulations. In the rest of this paperwe consider
polyhedra in 3-space. We start by formally introducing the concepts of triangulations
and tilings with tetrahedra of 3-dimensional polyhedra.

Definition 1 A triangulation of a polyhedron P is a collection of tetrahedra that
satisfies the following three properties:

Vertex property: The vertices of each tetrahedron are vertices of P .
Union Property: The union of all tetrahedra is P .
Face-to-face Property: Any pair of tetrahedra intersect in a common face (possibly

empty).

Definition 2 A tiling with tetrahedra of a polyhedron P (in short tiling of P) is
a collection of tetrahedra with disjoint interiors, so that the collection satisfies the
Vertex Property and the Union Property of Definition 1. (Sometimes refered to as a
dissection in the literature.)

It is a simple exercise to show that the cube has a tiling with tetrahedra which
is not a triangulation. Therefore the family of triangulations of a given polyhedron
can be a proper subset of the family of its tilings with tetrahedra. It is also obvious
that if a polyhedron cannot be tiled with tetrahedra, then it cannot be triangulated. It
is somewhat harder to show that the opposite is not true. In Sect. 3, we construct a
polyhedron which is nontriangulable but can be tiled with tetrahedra.

The existence of a nontriangulable polyhedra was first shown by Lennes (1911).
Lennes constructed a simple connected polyhedron with 7 vertices and 10 triangular
faces, where each diagonal contained points on the exterior of the polyhedron. Lennes
checked by inspection that every tetrahedron on the vertex set had an edge, which was
a diagonal of the polyhedron, thus he desproved the existence of triangulations. (We
omit the formal description of Lennes example, since Schönhardt (1927) described
a much simpler polyhedron having the same properties.) Schönhardt (Fig. 1) started
with a triangular right prism and rotated the top triangle of a triangular prism within
its own plane so that each of the quadrilateral faces broke into two triangles along an
edge with a nonconvex interior angle. It was easy to see that every diagonal of the new
polyhedron lies outside of the twisted prism. Furthermore each of the three tetrahedra
on the set of vertices whose base coincides with the bottom triangle has an edge which
is a diagonal of the twisted prism, thus ruling out the existence of a triangulation.

Bagemihl (1948) modified Schönhardt’s nonconvex prism to get a new polyhedron
with n ≥ 6 vertices so that every diagonal lies outside of the polyhedron. One of the
twisted vertical edges of Schönhardt’s polyhedronwas replacedwith a suitable concave
curve and newverticeswere placed along this curve (Fig. 2). Finally, the two rectangles
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Fig. 1 Schönhardt’s twisted
triangular prism

Fig. 2 Bagemihl’s polyhedron

Fig. 3 Rambau’s twisted prism
over a hexagon

of the prism, which met along the vertical edges, were replaced with a sequence of
triangles so that the adjacent triangles meet along an edge with a nonconvex angle.
It is easy to see again that any tetrahedron on the vertex set whose base coincides
with the bottom triangle has an edge which is a diagonal of Bagamihl’s polyhedron,
contradicting the existence of a triangulation.

Rambau (2005) provided another natural generalization of the Schönhardt’s twisted
triangular prism.Rambau considered a right prismover an n-gon and inserted one diag-
onal on each of the lateral quadrilateral faces so that no two of the inserted diagonals
had a common endpoint. Then it was proved that this partial triangulation of the surface
cannot be extended to a triangulation of the right prism. In particular, this implied that if
the top face of a right prisms is rotatedwith a sufficiently small angle, in the Schönhardt
style, then the twisted prism over the given n-gon cannot be triangulated (Fig. 3).

For completeness, let us point out that there is another famous polyhedron, called
Jessen’s orthogonal icosahedron (Fig. 5), all of whose diagonals have points outside
of the polyhedron so that any tetrahedron on the vertex set has an edge, which was a
diagonal of Jessen’s icosahedron, thus making it nontriangulable. Interestingly, Jessen
(1967) constructed the polyhedron named after him for another purpose. He was
looking for a polyhedron which had only right dihedral angles without having only
axes papallel edges. Figures 4 and 5 explain the construction: start with three 1 by
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Fig. 4 Construction of Jessen’s
orthogonal icosahedron

Fig. 5 Front view of Jessen’s
orthogonal icosahedron

2 rectangles all at right angles to one another as depicted on Fig. 4. Then get the
(nonconvex) Jessen’s orthogonal icosahedron by joining the corners of the rectangles
so that it looks like Fig. 5.

Ruppert and Seidel (1992) described a simple way for constructing a new nontrian-
gulable polyhedron by gluing a sufficiently small Schönhardt prism along its triangular
base to one of the faces of a given polyhedron. If the Schönhardt’s prism was suffi-
ciently skinny, then one easily can assure that diagonals of the new polyhedron cannot
pierce the triangular base of the Schönhardt’s prism. Thus, each triangualtion of the
new shape, is the union of independent triangulations of the two components. Since
Schönhardt’s prism is nontriangulable, the same holds for the combined polyhedron.

The second ingenious idea for constructing nontriangulable polyhedra is to ensure
that there is at least one point inside of the polyhedron which does not see any of the
vertices. Indeed, if a polyhedron is triangulable then every interior point can see at
least four of the vertices of the polyhedron. Kuperberg (2011) removed three pairs of
mutually perpendicular tunnels (Fig. 6) and truncated the corners of the initial cube to
guarantee that the center of the cube does not ‘see’ any vertex of the new polyhedron.
We modified Kuperberg’s polyhedron so that it became simply connected, yet still
contained the view obstructing property (Fig. 7). The view obstructing property of the
cubewith tunnelswas used earlier for different purposes. For example, the construction
depicted on Fig. 8 was attributed to Thurston by Paterson and Yao (1989). This shape
(not the colored blocks, but the region of space surrounding themwithin the cube) was
used to give a bound on the complexity of subdividing the polyhedron into convex
regions. The bound followed from the observation that the points in the center of
each cubical void cannot see each other, therefore they should belong to different
components of the decomposition. The same construction with a slight modification
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Fig. 6 Kuperberg’s polyhedron

Fig. 7 Kuperberg’s example
made simple connected

Fig. 8 Thurston’s example

fits our discussion. Let the surrounding body be the convex hull of the colored block
minus all the blocks. This body obviously has not only one, but several points which
do not see any of the vertices, thus the body is nontriangulable.

2 Results and outline of the paper

Obviously any nontileable polyhedron is nontriangulable. Theorem 1 in Sect. 3 shows
that the converse statement is false. One can easily check that the simple arguments
which proved that the polyhedra of Schönhardt’s, Bagamihl’s, Ruppert’s and Sidel’s,
Thurston’s, Jessen’s and Kuperberg’s are nontriangulable also prove that they are
nontileable. A detailed analysis of Rambau’s paper reveals that from the proof of
Rambau it does not follow that his twisted prisms are nontileable. Theorem 2 in Sect. 4
essentially claims that Rambau’s type twisted polyhedra are in fact nontileable. Here
the term ‘essentially’ refers to a technical detail in our definition of ’twists’ (see
Definition 3). Depending on the shape of the base polygons, ’our twist’ is slightly
different from that of Rambau. It will be clear that ’our twists’ are more general for
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most prisms, but as Theorem 3 in Sect. 4 claims there are some prisms for which
Rambau’s twists cannot be achieved with ’our twists’. Since relaxing the face-to-face-
restriction leads to the same negative result, the proof of Theorem 2 in Sect. 4 is a new
short proof of Rambau’s theorem for those twisted prismswhere the two types of twists
coincide. Theorem 4 in Sect. 5 claims that one can twist the regular dodecahedron so
that it becomes nontileable. In Sect. 6 we describe a new family of polyhedra, called
nonconvex twisted pentaprisms, and outline the proof of Theorem 5 which claims that
these polyhedra are also nontileable.

3 On a polyhedron which is tileable but is not triangulable

In view of the definitions any nontileable polyhedron is nontriangulable. If a tiling of
polyhedron is not a triangulation, then there must be two tetrahedra in the tiling so
that they meet along partially overlapping faces. In particular, we have that

Lemma 1 A nontriangulable polyhedron is tileable only if it contains at least four
coplanar vertices.

It is easy to see that for sufficiently small twists,Rambau’s nonconvex twistedprismsdo
not contain 4 coplanar points. Thus Lemma 1 together with Rambau’s theorem imply
that Rambau’s twisted polyhedra are nontileable. The following theorem highlights
the difference between triangulating and tiling polyhedra.

Theorem 1 There exist polyhedra which are nontriangulable, but can be tiled with
tetrahedra.

Proof of Theorem 1 We start by describing our counterexample: let us start with a
horizontal unit square Q = ABCD (see Fig. 9 for ordering of the vertices). Choose
thepointO over this square at unit distance from its center.Next add to this arrangement
a segment EF , whose midpoint is O , has length 4, and is parallel to AB (assume E is
closer to A, than to B). The convex hull of Q and the segment EF will be referred as
upper wedge P . Let wedge P ′ be the image of P under the reflection over the plane
of Q followed by a 90◦ rotation counterclockwise around the vertical line containing
O . Label the images of E and F as E ′ and F ′ respectively. Finally, we twist the union
of these two wedges by rotating the segments EF and E ′F ′ clockwise around their
midpoints in their horizontal plane by a small angle ε, so that each of the trapezoidal
faces of P and P ′ broke into two triangles along an edge with a nonconvex interior
angle (Figs. 10, 11). We will label the twisted images of wedges P and P ′ by Pt and
P ′
t and will label the union of them by U .
Next we prove that polyhedron U is nontriangulable: notice that the diagonals

EE ′, EF ′, FE ′ and FF ′ lie outside of the polyhedron U , therefore any triangulation
of U is the union of triangulations of Pt and P ′

t . Pt was constructed so that the
diagonals AF and EC lie outside of Pt . This implies that neither ABC nor ACD can
be faces of tetrahedra contained in Pt , so diagonal BD must be an edge of at least one
tetrahedron in any triangulation of Pt . A similar argument applied for P ′

t gives that
the diagonal AC is an edge of at least one tetrahedron in any triangulation of P ′

t . We
can thus conclude that U is nontriangulable. However Pt is triangulable by a unique
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Fig. 9 Union of two
perpendicular wedges
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Fig. 10 Transparent view of the
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Fig. 11 Front view of the
twisted wedges E
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set of tetrahedra, E ABD, EBDF and DBCF . By symmetry it is obvious that P ′
t is

also triangulable, providing that the union of these triangulations is a tiling of U with
tetrahedra. ��

4 Rambau’s twisted prisms in view of tiling by tetrahedra

Can Rambau’s nonconvex twisted prisms be tiled with tetrahedra? For technical rea-
sons, we start by defining a slightly different class of twisted polyhedra over n-gons
(called nonconvex skewed prisms over n-gons) and prove that they cannot be tiled with
tetrahedra. Relaxing the face-to-face-restriction leads to the same negative result and
yields a second shorter proof of Rambau’s theorem in the case of prisms which are
both twisted and skewed.

We will talk about caps over the sides of a given convex n-gon (n ≥ 3). The region
outside of the polygon bounded by a side and the extensions of its two adjacent sides
will be called the cap over the selected side (Fig. 12). Note that some caps can be
unbounded.

Definition 3 [Nonconvex Skewed Prisms over n-gons (n ≥ 3)] Let us start with a
right prism, whose bottom and top faces (B andU respectively) are horizontal convex
n-gons. For visual orientation assume that if we look down at the horizontal planes,
then the vertices of B and U and the caps of B are labeled clockwise from 1 to n so that
the vertices with the same perpendicular projection have the same label and the label
of a cap over the side 12 (23, 34, . . . , n1 resp.) is 2 (3, 4, . . . , n, 1 resp.) The bottom
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Fig. 12 Vertical prism and
bottom face B with caps
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Fig. 13 Nonconvex skewed
prism over a 7-gon
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face B will remain unchanged, while the vertices of the upper face will be moved
within their plane so that they lie above the cap with the same index. As we move the
vertices of U , each of the vertical quadrilateral faces break into two triangles which
meet along an edge with a nonconvex angle (Fig. 13).

The following two remarks are immediate consequences of the above definition:

Remark 1 Since the diagonal connecting vertex i of B to vertex i ofU lies outside of
the skewed prism, the vertices i of B and i ofU cannot belong to a common tetrahedron
in a tiling of the nonconvex skewed prism.

Remark 2 Assume i and j are not consecutive indices modulo n. Let Q be the vertical
plane through i and j of U . The construction of U yields that the vertices k of U ,
i < k < j are exactly those vertices of U , which are not separated by Q from the
vertices m of B, i ≤ m < j .

Similarly to Schönhardt’s prisms, both Rambau’s twisted and our skewed prisms were
introduced to enhance the family of nontriangulable polyhedra. Rambau proved that
sufficiently small rotations of the top face always produce nontriangulable polyhedra.
Our main theorem says that in case of skewed prisms we do not have such restriction:
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Fig. 14 Proof of Lemma 2

uv
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Theorem 2 Nonconvex skewed prisms over a convex n-gon (n ≥ 3) cannot be tiled
with tetrahedra.

It is intuitively expected that in most cases twisted prisms are also skewed. In fact, it
takes some effort to construct a counterexample:

Theorem 3 There is a right prism for which no rotation of the top face will produce
a skewed prisms.

The rest of this section contains the proof of Theorems 2 and 3. First we will prove
Theorem 2. This proof will frequently refer to the following simple, but important
lemma:

Lemma 2 Let U and V be two adjacent triangles in plane P sharing an edge e.
Assume u and v are points in the same half space bounded by P, so that U and v

can be separated from V and u by a plane passing through e. Then the tetrahedra
conv{U, u} and conv{V, v} have common interior points.

Proof of Lemma 2 Notice that the two interior dihedral angles along the edge e of these
tetrahedra sum to greater than 180◦ (Fig. 14) and thus close to the edge e tetrahedra
conv{U, u} and conv{V, v} have common interior points. ��
Proof of Theorem 2 If T is a triangulation of a polygon, then t ∈ T is usually called
an ear, if exactly two of its edges are edges of the polygon. We will say that an ear is
pruned if it is deleted from the triangulation, making the triangulated polygon smaller.
It is a well known fact (Meisters 1975) that every triangulation of an n-gon, where
n > 3, has at least two ears, thus every triangulation can be pruned.

Consider a nonconvex skewed prism S together with all the notations of Definition
3 (Fig. 13). Indirectly assume that S can be tiled with tetrahedra. Let T be a family
of tetrahedra which tile S. The tiling T naturally induces a triangulation of the upper
face U . Let U be the family of those polygons contained by U , called sub-polygons,
whose edges are edges of this induced triangulation.

For each sub-polygon V ∈ U denote by T (V ) the set of those tetrahedra of T ,
which have a face belonging to the induced triangulation of U . A sub-polygon V ∈ U
is called non-splitting, if the vertical planes through the sides of V do not intersect the
interior of that tetrahedron of T (V ) which contains the particular side.

Let U∗ ⊆ U be the collection of all the non-splitting sub-polygons of U . Remark
1 essentially says that U ∈ U∗, thus U∗ is not empty. Choose a sub-polygon P ∈ U∗
with the fewest number of vertices.

We will show that P is a triangle. Assume indirectly that k > 3. Since k > 3, T
restricted to P has at least two ears. Let t be one of these ears. Let t ′ be the triangle
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Fig. 15 Proof of Theorem 3

adjacent to t in the induced triangulation of U in P , d be the diagonal along which t
and t ′ meet, and Q be the vertical plane through d. Let bu and bv be the vertices of
the base polygon B so that conv{t ′, bv} and conv{t, bu} are tetrahedra in T . In view
of the assumption that P is non-splitting, Remarks 1 and 2 imply that t and bu are on
different sides of the plane Q. Thus, by Lemma 2, t ′ and bv cannot be separated by
the same plane Q. Therefore after pruning t , we get a non-splitting polygon P\t with
fewer vertices than P , a contradiction.

Therefore there exists a triangle t ∈ U which is a non-splitting sub-polygon, thus
along with Remark 2 we see that the only vertices of the bottom base which can be
the fourth vertex of the tetrahedron from T which has t as a face have the same labels
as the vertices of t . However Remark 1 provides the contradiction since each such
tetrahedron will have an edge lieing outside the skewed prism. ��

Proof of Theorem 3 Figure 15 depicts a parallelogram, with a pair horizontal sides
of unit length and with a unit area. Assume that the other pair of sides have length
100 and also assume that they have a negative slope. This parallelogram is going to
be base B of our counterexample. Let us label the vertices of B counterclockwise by
1, 2, 3, 4 so that the upper right vertex has label 1. Notice that the capsCi , i = 1, 2, 3, 4
associated with base B are half strips (see Fig. 15 for proper labeling). For Theorem
3 we need to show that one cannot rotate B so that each of the caps Ci (i = 1, 2, 3, 4)
contains exactly one vertex of the rotated parallelogram. Notice that the minimum
distance between the points of C1 and C3 is realized only for the vertex pair {1, 3}
of parallelogram B. This means that caps C1 and C3 must contain the vertex pair
{2, 4} of the rotated parallelogram. Since B has unit area the distance between the
slanted sides is 1

100 . It is easy to see that the slope of the diagonal 13 of the rotated
parallelogram is still negative, thus this diagonal is steeper than the diagonal 13 of B.
But this contradicts that vertices 1 and 3 of the rotated parallelogram belong to caps
C2 and C4. ��

5 Nonconvex twisted dodecahedra: a new family of nontileable
polyhedra

We would like to show that the proof we used to show that nonconvex skewed prisms
cannot be tiled, can be easily extended to verify that other nonconvex twisted poly-
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Fig. 16 Regular dodecahedron
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hedra cannot be tiled. In particular, we will alter the regular dodecahedron to fit our
approach.

For visual orientation let us place the regular dodecahedron D with one of its
pentagonal faces on a horizontal plane (Fig. 16). We could label the vertices of D
from 1 to 20, but that would make the rest of the text very hard to read, therefore
we choose another logical, but nonconventional labeling. Let us start by labeling the
vertices of the bottom face clockwise—looking down at the horizontal plane—from 10
to 50, where index 0 means that all these vertices belong to the zero level plane. P0 will
denote the bottom face of the dodecahedron. Similarly, the vertices of the top face will
be labeled clockwise by 11 to 51, where index 1 indicates that all these vertices are at a
distance 1 above the zero level plane. P1 will denote the top face of the dodecahedron.
Since the remaining 10 vertices belong to two cross sections parallel to the base plane,
they naturally will be labeled by 1a, . . . , 5a , and by 1b, . . . , 5b, where a < b are the
distances of these cross sections from the zero level plane. Figure 16 explains where
are the vertices 10, 1a, 1b and 11 relative to each other. We will refer to a triangle with
vertices a, b, c by using the terms ‘conv{a, b, c}’ or ‘triangle abc’. Several times we
will need to talk about a tetrahedron, determined by one of its triangular faces, say by
T , and by its fourth vertex, say by v. We will refer to this tetrahedron by conv{T, v}.

For a given pair of small numbers δ and ε, we will construct a nonconvex twisted
dodecahedron D(δ, ε). Let us start by rotating the top face P1 of D about its center point
clockwise by an angle δ and the bottom pentagon P0 about its center counterclockwise
by an angle ε. Labeling the rotated vertices with their original label will not cause any
confusion, since in the rest of the paper we will talk only about the new positions of
these vertices. It is natural to call the convex hull of the twelve points {i0, ia, ib, i1|i =
1, . . . , 5} twisted convex dodecahedron. We will focus on what we call nonconvex
twisted dodecahedron (Fig. 17), which is the difference body of the twisted convex
dodecahedron and the union of ten rather flat convex ‘wedges’. Each of the ten convex
wedges is associate with one of the non-horizontal faces of the original dodecahedron.
Each wedge is the convex hull of the their vertices of the respected pentagon in their
rotated position. These wedges are conv{i0, (i + 1)0, (i + 1)a, (i + 1)b, (i + 2)a} and
conv{i1, (i + 1)1, (i − 1)b, ib, ia} for i = 1, 2, 3, 4, 5 so that the indices are taken
modulo 5 (Fig. 18).
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Fig. 17 Edge diagram of the
nonconvex twisted
dodecahedron 11
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Fig. 18 Front view of the
nonconvex twisted
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Remark 3 The diagonals of the form inix for i = 1, 2, 3, 4, 5, n = 0, 1, and x ∈ {a, b}
lie outside D(δ, ε).

Theorem 4 For 0 < δ < 18◦ and 0 < ε < 18◦ the nonconvex twisted dodecahedron
D(δ, ε) cannot be tiled by tetrahedra.

Proof of Theorem 4 The outline of the proof is rather straightforward.Wewill assume
indirectly that a tiling of D(δ, ε) exists. We will study the induced triangulation on
P1 and use Lemma 2 to show that at least one triangle of this triangulation belongs to
a tetrahedron whose fourth vertex belongs to the bottom pentagon P0. Finally, a case
analysis and Lemma 2 will show that this is not possible and thus there is no tiling of
D(δ, ε). The following are the details of this outline:

As inTheorem2,wewill consider a tiling S of D(δ, ε) and S’s induced triangulation
on the upper face of D(δ, ε). Denote by T this induced triangulation. Since D(δ, ε) has
the same rotational symmetry as its top face we can assume, without loss of generality,
that

T = {triangle 112131, triangle 113141, triangle 114151} .

For simplicity we will denote triangle 112131 by A, triangle 113141 by B, and triangle
114151 by C (Fig. 19). ��
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Fig. 19 Top view of D(δ, ε)
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Lemma 3 The tiling S contains a tetrahedron such that one of its face is a triangle
of the induced triangulation T and its fourth vertex is a vertex of the bottom face P0.

Proof of Lemma 3 Recall that there is no tetrahedron in the tiling S with B as a face
and containing a vertex from the set {1a, 1b, 3a, 3b, 4a, 4b}. Similarly there is no
tetrahedron in the tiling S with triangle A as a face and containing a vertex from the
set {1a, 1b, 2a, 2b, 3a, 3b} and there is no tetrahedron in the tiling S with triangle C
as a face and containing a vertex {1a, 1b, 4a, 4b, 5a, 5b}.

Now indirectly assume each tetrahedron containing three points from P1 does not
contain a fourth point from P0. In particular, let us discuss the tetrahedron in the tiling S
whose face is the triangle B. If triangle B is the face a tetrahedron which also includes
vertex 2a or 2b, then by Lemma 2 triangle A cannot be the face of a tetrahedron
containing vertices from the set {4a, 4b, 5a, 5b}. Thus reaching a contradiction that
triangle A is not in a tetrahedron containing a vertex from P0.

Similarly, if triangle B is the face of a tetrahedron containing 5a or 5b, then by
Lemma 2 triangle C cannot be the face of a tetrahedron containing vertices from the
set {2a, 2b, 3a, 3b}. Thus reaching a contradiction that triangleC is not in a tetrahedron
containing a vertex from P0. This analysis completes the proof of Lemma 3. ��

Returning to the proof of Theorem 4 we assume here exists a tetrahedron of S of
the form conv{X, z0} for X ∈ {A, B,C} and z ∈ {1, 2, 3, 4, 5} and via a case analysis
we will find a contradiction.

Case 1 s = conv{B, z0}
Subcase 1A: z = 2 Since the triangular face 31412b shares and edge with triangle
B we can see by Lemma 2 that the tetrahedron of S having triangle 31, 41, 2b as a
face can only have its fourth vertex be from the set {3a, 3b, 20}, but by construction
all tetrahedra of these constraints contain a diagonal lying outside D(δ, ε), thus a
contradiction.
Subcase 1B: z = 1, 3, 4, or 5 We will find a contradiction for z = 5, so s =
conv{B, 50}. The other three will follow with symmetry and similar arguments.
Since triangle B and triangle A share edge 1131, then Lemma 2 provides that
the tetrahedron of S having triangle A as a face can only have its fourth vertex
from the set {10, 50, 1a, 1b, 2a, 2b}, but by construction A cannot be the face of a
tetrahedron containing the vertices from the set {1a, 1b, 2a, 2b}.
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Thus, if we assume the tetrahedron conv{A, 10} ∈ S, then by a similar argument
as in Subcase 1A the tetrahedra of S having triangle 21311b as a face, will have
its fourth vertex be from the set {2a, 2b, 10} but by construction all tetrahedra of
these constraints contain a diagonal lying outside D(δ, ε). Similarly if we assume
the tetrahedron conv{A, 50} ∈ S, then by a similar argument as in Subcase 1A
the tetrahedron of S having triangle 11215b as a face, will have its fourth vertex
be from the set {1a, 1b, 50} but by construction all tetrahedra of these constraints
contain a diagonal ling outside D(δ, ε), thus a contradiction.

Case 2 s = conv{A, z0} (By symmetry a similar argument can be made for
triangle C .)

Subcase 2A: z = 1 or 5 We have seen that z �= 1 or 5 by the argument in Case
1-B.
Subcase 2B: z = 2Since triangular face 21311b shares an edgewith triangle A, then
Lemma 2 along with the construction yields that the tetrahedron of S containing
triangle 21311b as a face must have as its fourth vertex 20. Since triangular face
311b2a shares an edge with triangular face 21311b, Lemma 2 provides that the
tetrahedron of S containing triangle 311b2a as a face has as its fourth vertex be
from the set {10, 2b, 20, 3a}, but by construction all tetrahedra of these constraints
contain a diagonal lying outside D(δ, ε), thus a contradiction.
Subcase 2C: z = 3 or 4Wewill find a contradiction for z = 3, so s = conv{A, 30}.
The case of z = 4 will follow from a similar argument. Recall that Case 1 showed
triangle B cannot be in a tetrahedron with a vertex of P0. Since triangle A and
triangle B share and edge Lemma 2 and the construction provides that the tetra-
hedron of S containing B as a face has as its fourth vertex 5a . Since triangle B
and triangle C share an edge and B is in a tetrahedron with vertex 5a , then by
Lemma 2, all tetrahedra not intersecting conv{B, 5a} and containing C as a face
has a diagonal lying outside D(δ, ε), thus a contradiction. ��

6 Nonconvex twisted pentaprisms: another new family of nontileable
polyhedra

Antiprisms are similar to vertical prisms except the bases are rotated relative to
each other and the side faces are triangles, rather than quadrilaterals. In this paper
we restrict ourselves to the case of regular antiprisms, where the bases are regular
n-sided polygons, and where the top face is rotated around its center by an angle
180◦
n relative to the bottom face (Fig. 20). Simultaneously rotating all triangular faces

of a regular antiprism outward around their horizontal edges by the same angle, the
triangular faces became congruent pentagons. Such convex polyhedra will be called
regular pentaprisms (Fig. 21). Notice that the regular dodecahedron is a special reg-
ular pentaprism. The same twist, which in Sect. 5 changed the regular dodecahedron
into nonconvex twisted dodecahedron, will change regular pentaprisms into noncon-
vex twisted pentaprisms (Fig. 22). In this section we prove that for sufficiently small
twists the nonconvex twisted pentaprisms are nontileable.
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Fig. 20 Antiprism over
hexagonal base

Fig. 21 Pentaprism over
hexagonal base

Fig. 22 Twisted pentaprism
over hexagonal base

Theorem 5 Let P be a regular pentaprism over a regular n-sided base. Twisting the
top and bottom faces of P in opposite direction by an angle ≤360

4n
◦
will result in a

nonconvex twisted pentaprism which cannot be tiled by tetrahedra.

Proof of Theorem 5 Indirectly assume that a nonconvex twisted pentaprism can be
tiled by tetrahedra. Again we will study the triangulation of the top face induced by
one of these tilings. It is easy to show that Lemma 3 holds for the induced triangulation
of the top face and thus the tiling of the nonconvex twisted pentaprismhas a tetrahedron
containing three vertices from the top face and one vertex from the bottom face. Finally,
we use a case analysis hinging on a generality of Lemma 2 to contradict the existence
of tiling of the nonconvex twisted pentaprism. The details of such case analysis are
similar to those used in the proof of Theorem 4 and thus are omitted here. ��
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