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Abstract Circle packings with specified patterns of tangencies form a discrete coun-
terpart of analytic functions. In this paper we study univalent packings (with a combi-
natorial closed disk as tangent graph)which are embedded in (or fill) a bounded, simply
connected domain. We introduce the concept of crosscuts and investigate the rigidity
of circle packings with respect to maximal crosscuts. The main result is a discrete ver-
sion of an indentity theorem for analytic functions (in the spirit of Schwarz’ Lemma),
which has implications to uniqueness statements for discrete conformal mappings.
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1 Introduction

The study of circle packings, as they are understood in this paper, was initiated by
Paul Koebe as early as 1936 in the context of conformal mapping, but the real success
of the topic began with William Thurston’s talk at the celebration of the proof of the
Bieberbach conjecture in 1985. The publication of Ken Stephenson’s book (Stephen-
son (2005)) inspired further research andmade the topic accessible to a wide audience.
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Since then many classical results in complex analysis found their discrete counterpart
in circle packing.

In this paper we consider circle packings embedded in a bounded, simply connected
domain. We introduce the concept of crosscuts for domain-filling circle packings,
and study the rigidity of packings with respect to maximal crosscuts (for definitions
see below). The main result is a discrete version of an identity theorem for analytic
functions, which has implications to uniqueness results for boundary value problems
for circle packings, and especially to discrete conformal mappings.

To be more specific, we recall that the tangency relations of a circle packing are
encoded in a 2-dimensional simplicial complex K , referred to as the combinatorics of
the packing. In this paper it is assumed that K is a finite triangulation of a topological
disk.

Circle packings are a mixture of flexibilty and rigidity. Counting the degrees of
freedom for the centers and the radii, and comparing this with the number of condi-
tions caused by the tangency relations, we see that the first number exceeds the latter
by m + 3, where m is the number of boundary circles. In fact, the set of all circle
packings for a fixed complex K forms a smooth manifold of dimension m + 3 (Bauer
et al. 2012). So the question arises which sort of conditions are appropriate to elimi-
nate the flexibility of a packing and make it rigid. Motivated by our work on nonlinear
Riemann-Hilbert problems, we are interested in boundary value problems for circle
packings. These problems involve m boundary conditions (one for each boundary
circle) and three additional conditions, which can be imposed in different form on
boundary circles and interior circles as well.

A standard boundary value problem of this kind consists in finding circle packings
with (given combinatorics and) prescribed radii of its boundary circles. Somewhat
surprisingly, this problem has always a locally univalent solution, and the solution is
unique up to a rigid motion of the complete packing (see Stephenson 2005, Sect. 11.4,
for details).

The existence of solutions is also known for a related more general problem, the
discrete Beurling problem, where the radii of the boundary circles are prescribed as
functions of their centers (see Wegert et al. 2012), but the question of uniqueness has
not yet been answered satisfactorily.

Last but not least there are several approaches to discrete conformalmapping via cir-
cle packing which fall into this category (see Stephenson 2005, in particular Chap. 19
and 20, with many interesting comments on the history of this topic, also summarizing
He and Schramm (1996), Rodin and Sullivan (1987) and Thurston (1985).

In our favorite setting of discrete conformal mapping, the domain packingP is a so-
calledmaximal packing, which ‘fills’ the complex unit diskD, while the range packing
P ′ is required to ‘fill’ a bounded, simply connected domain G. That a packing ‘fills a
domain G’ basically means that all its circles lie in the closure G of that domain and
all its boundary circles intersect (touch) the boundary ∂G ofG. For domains which are
not Jordan this has to be complemented by a more subtle condition (see Definition 2).

In a series of papers, Oded Schramm proved several outstanding results about
packings which fill a Jordan domain. His very general existence theorems do not only
address packings of circles, but ofmuchmore general packable sets (for an explanation
see Schramm 1990).
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Surprisingly, much less is known about uniqueness. It is clear that uniqueness
of a domain-filling (circle) packing can only be expected if one imposes additional
conditions which eliminate the (three) remaining degrees of freedom. Whether this
works depends on the type of normalization conditions and on the geometry of the
domain. For example, in his uniqueness proofs, Schrammneeds that the Jordan domain
is (as he says) decent (see Schramm 1991).

This paper is devoted to the question which additional conditions are appropriate to
make a domain filling circle packing unique. In analogy to the standard normalization
of conformal mappings, it seems reasonable to fix the center of a distinguished circle
(the so-called alpha-circle) at some point in G and to require that the center of a
neighboring circle lies on a given ray emerging from that point. Keeping the first
condition, we have chosen another setting for the second one. This condition, involving
crosscuts, is non-standard, more flexible and allows one to address other uniqueness
problems too.

In order to give the reader a flavor of the result, we first state an analogous theorem
for analytic functions. Recall that a crosscut of a domain G in the complex plane C is
an open Jordan arc J in G such that J = J ∪ {a, b} with a, b ∈ ∂G (see Pommerenke
1992). Slightly abusing terminology, we shall also denote J as a crosscut in G.

Theorem 1 (Identity Theorem for Analytic Functions) Let J be a crosscut of a simply
connected domain G, with G− and G+ denoting the (simply connected) components
of G\J . If f : G → G is analytic, f (z0) = z0 for some z0 ∈ G+, and f (G−) ⊂ G−,
then f (z) = z for all z ∈ G.

Proof Let g : G → D be a conformal mapping of G onto the unit disk D with
g(z0) = 0. Then g maps the crosscut J of G to a crosscut of D (see Pommerenke
1992, Prop. 2.14) and the composition g ◦ f ◦ g−1 satisfies the assumptions of the
lemma with G := D and z0 := 0. Hence it suffices to consider this special case.

Let z1 be a point on J with |z1| = minz∈J |z|. Since J is a crosscut in D, and
0 = z0 ∈ G+, we have

0 < |z1| ≤ min
{
|z| : z ∈ G−

}
< 1.

By continuity, f (G−) ⊂ G− and z1 ∈ G− imply that f (z1) ∈ G−, and hence
| f (z1)| ≥ |z1|. Invoking Schwarz’ Lemma, we get f (z) = cz in D, where c is a
unimodular constant. Finally, the only rotation of D which maps G− into itself is the
identity. 
�

Although Schwarz’ Lemma has already been investigated in the framework of circle
packing (see Rodin 1987; Pommerenke 1992, Chap. 13) the following interpretation
of Theorem 1 is new. Though precise definitions will be deferred to the next section,
we hope that Fig. 1 helps to get an intuitive understanding of the setting. The domain
G− is the one containing the brighter (yellow) disks.

Theorem 2 (Rigidity of Circle Packings with Crosscuts) Assume that a univalent
circle packing P = {Dv} for a complex K with vertex set V fills a bounded, simply
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Fig. 1 A domain-filling packing P with a crosscut and a maximal crosscut

connected domain G. Let J be a (maximal) crosscut of P in G, such that G− is a
simply connected component of G\J , and denote by V− and V+ the sets of vertices
of K associated with circles in G− and G+ := G\G−, respectively. Let Dα be an
interior circle of P which is contained in G+.

Assume further that a second univalent packing P ′ = {D′
v} for K is contained in

G, such that Dα and D′
α have the same center, and D′

v ⊂ G− for all v ∈ V−. Then
D′

v = Dv for all accessible vertices v ∈ V .

As follows from a simple topological argument, the condition D′
v ⊂ G− need only

be required for those vertices v ∈ V− which are associated with circles Dv touching
the crosscut J .

We point out that everything hinges on the assumption about the common center of
the two alpha-circles. Since we do not assume thatP ′ fills G, it is solely this condition
which prevents P ′ from lying entirely in G−.

The notion of accessible vertices will be explicated in Definition 1. Here we only
note that all vertices v ∈ V are accessible if and only if the complex K is strongly
connected, which means K satisfies the following conditions (1) and (2):

(1) Every boundary vertex has an interior neighbor.
(2) The interior of K is connected.

Note that some authors of the circle packing community make the general assumption
that the underlying complex K is strongly connected (see Stephenson 2005). For circle
packings with this simpler combinatoric structure the theorem yields complete rigidity
with respect to crosscuts, i.e., D′

v = Dv for all v ∈ V .
Figure 2 illustrates some effects which can be observed for packings with general

combinatorics. The picture on the left shows an Apollonian packing P with four
generations. The highlighted line is a maximal crosscut, separating the disks in the
“lower domain” from the disks in the “upper domain”. The disk with the darkest
color is the alpha-disk with fixed center. The accessible disks are those which can be
connected with the alpha-disk by a chain of interior disks (see Definition 1).

The packing P ′, depicted in the middle, satisfies the assumptions of the theorem.
In this example, only the accessible disks ofP ′ (shown in darker colors) coincide with
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Fig. 2 Some examples illustrating assumptions and assertions of Theorem 2

their partners in P . The non-accessible disks (shown in lighter colors) differ from the
corresponding disks in P .

The example on the right illustrates that the result need not hold if the alpha-disk is
a boundary disk. The depicted packingP ′′ satisfies all other assumptions (for the same
crosscut), but, apart from the alpha disk, it is completely different from the packing
P shown on the left-hand side.

The result has an intuitive interpretation when we think of circle packings as
dynamic structures: Suppose that P fills G, and allow its circles to move (change
position and size) in such a way, that they all remain in G, the center of the alpha-
circle is fixed in G+, and the circles in G− are not allowed to leave G−. Then only
those circles which are not accessible can be moved, while the core part of the packing
is rigid.

In order to illustrate the analogies with Theorem 1, we interpret the result in the
framework of discrete analytic functions: The circle packingP filling G is the domain
packing, the packing P ′ lies in G, so that P → P ′ defines a discrete analytic function
from G into itself. Fixing the centers of the alpha-circles of both packings at the same
point z0 corresponds to the normalization f (z0) = z0. Finally, the condition D′

v ⊂ G−
for all v ∈ V− expresses the invariance of the subdomain G−.

Since the packing P represents the identity function on G, it is natural to suppose
that P is univalent. Contrary to the continuous setting of Theorem 1, also P ′ was
assumed to be univalent in Theorem 2. It is challenging to investigate what happens
when this condition is dropped.

Terminological remark. For our purposes it would be better to work with disk
packings instead of circle packings. Though we stay with the traditional notion, we
shall often speak of the disks in a circle packing. In order to avoid cumbersome
formulations, we also say that a circle ∂D lies in a domain G when this holds for the
open disk D bounded by that circle. We already made use of this convention above.

2 Circle packings

In order to make the paper self-contained we recall basic concepts and notions of
topology and circle packing (for details we refer to Henle 1979; Stephenson 2005).
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Some geometry If A and B are subsets of the (complex) plane, we say that A
intersects B if A ∩ B = ∅. If A is a disk, then the phrase A touches B is in general
used when A ∩ B = ∅ and A ∩ B = ∅. In this case we also say that the circle ∂A
touches B. As usual, the symbol ∂ denotes the boundary operator.

By a curve γ we understand the image of a continuous mapping ϕ : [a, b] → C.
The points ϕ(a) and ϕ(b) are said to be the initial point and the terminal point of γ ,
respectively; both are referred to as endpoints of γ . A Jordan arc and a Jordan curve
are the homeomorphic images of a segment and a circle, respectively. By an open
Jordan arc we mean a Jordan arc without its endpoints.

Let J be an oriented Jordan curve. For p, q ∈ J with p = q we denote by J (p, q)

the (oriented) open subarc of J with initial point p and terminal point q. If p, q, r
are three pairwise different points on J , we say that q lies between p and r on J if
q ∈ J (p, r). Corresponding to whether q lies between p and r , or q lies between r
and p, the orientation of the triplet (p, q, r) with respect to J is said to be positive or
negative, respectively.

Let G be a bounded, simply connected domain in C. A conformal mapping
g : D → G of D onto G has a continuous extension to D if and only if ∂G is a
closed curve, i.e., a continuous image of the unit circle T (see Pommerenke 1992,
Theorem 2.1). This extension (which we again denote by g) is a homeomorphism
between D and G if (and only if) G is a Jordan domain, i.e., ∂G is a Jordan curve
(see Pommerenke 1992, Theorem 2.6).

In general, the conformal mapping g induces a one-to-one correspondence between
the points onT and certain equivalence classes of open Jordan arcs γ inG with terminal
point q on ∂G, so called prime ends. For the details we refer to Pommerenke (1992),
Chap. 2, and Golusin (1957), Sect. 2.3.

IfG contains a disk D which touches the boundary ∂G at some point p ∈ ∂D∩∂G,
then every Jordan arc with starting point in D and terminal point p is contained in the
same equivalence class. Hence there is a well-defined prime end of G associated with
p by D.

ComplexesThe skeletonof a circle packing is a simplicial 2-complex K. Throughout
this paper it is assumed that K is a combinatorial closed disk, i.e., it is finite, simply
connected and has a nonempty boundary. Simply speaking of a complex, we always
mean a complex of this class. Properties of complexes which are relevant in circle
packing are summarized in Lemma 3.2 of Stephenson (2005).

We denote the sets of vertices, edges and faces of K by V, E, F , respectively. The
edge adjacent to the vertices u and v is denoted by e(u, v) or 〈u, v〉, where the first
version stands for the non-oriented edge, while the second means the oriented edge
from u to v. Similarly, a face of K with vertices u, v, w is written as f (u, v, w) (non-
oriented) or 〈u, v, w〉 (oriented), respectively. Two vertices u and v are said to be
neighbors if they are connected by an edge e(u, v) in E . For any vertex v ∈ V we
denote by E(v) the set of edges adjacent to v. This set is endowed with a natural cyclic
(counterclockwise) ordering, so that for e1, e2 ∈ E(v) definitions like {e ∈ E(v) :
e1 < e ≤ e2} make sense. Any edge e of K is adjacent to one or two faces. In the first
case e is a boundary edge, otherwise it is an interior edge of K . Boundary vertices are
those vertices of K which are adjacent to a boundary edge. The sets of boundary edges
and boundary vertices are denoted ∂E and ∂V , respectively, the vertices in V \∂V are
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Fig. 3 The sub-complex of a (incomplete) flower and a corresponding packing

called interior vertices. We point out that a boundary vertex can be adjacent to many
other boundary vertices, and that an edge which connects two boundary vertices need
not be a boundary edge (as vertex v and edge e in Fig. 3, left). We let B(v) denote the
smallest sub-complex of K which contains a vertex v and all its neighbors. If v is an
interior vertex B(v) is said to be the flower of v (see Fig. 3, middle), if v is a boundary
vertex we speak of an incomplete flower (see Fig. 3, left). Note that B(v) need not
contain all edges which connect neighbors of v (see Fig. 3, right).

Since K is a triangulation with non-void boundary, it must have at least three
boundary vertices. The natural cyclic ordering of boundary edges, corresponding to
the orientation of the boundary of the triangulated surface, induces a cyclic ordering
of the boundary vertices. With respect to this ordering, any boundary vertex has a
precursor and a successor which are well-defined.

Speaking of a chain, we mean a finite sequence (c1, . . . , cn) of vertices, edges or
faces, such that neighboring elements c j and c j+1 are adjacent to a common edge (if
the c j are vertices or faces) or a common vertex (if the c j are edges), respectively.

We have illustrated some limitations of Theorem 2 in Figure 2. The reason for the
observed effects is the relative independence of some substructures from the rest of
the packing. This is described more precisely in the following definition.

Definition 1 Let K be a complex with a distinguished interior vertex, the alpha-
vertex vα . Then a vertex v ∈ V is called accessible (from vα) if there is a chain of
vertices (v, v1, . . . , vn, vα) such that v1, . . . , vn are interior vertices. The set of all
accessible vertices of K is denoted by V ∗, the set of all edges e(u, v) ∈ E with
u, v ∈ V ∗ by E∗, and the set of all faces f (u, v, w) ∈ F with u, v, w ∈ V ∗ by F∗.
The kernel K ∗ of K is defined as the simplicial-2-complex arising from V ∗, E∗, F∗,
that is K ∗(V ∗, E∗, F∗) ⊂ K (V, E, F).

Recall that a complex K is strongly connected, if the interior of K is connected, and
every boundary vertex has an interior neighbor. The following lemma establishes a
relation between this property and accessible vertices, and summarizes the crucial
properties of the kernel. Since the statements are intuitive, we leave the details of the
(somewhat tedious) proof to the reader.

Lemma 1 Let K be a complex with a distinguished interior alpha-vertex vα . Then
the following assertions hold:
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(1) The kernel K ∗(V ∗, E∗, F∗) of K (V, E, F) is a strongly connected complex with
∂V ∗ = ∂V ∩ V ∗.

(2) The complex K coincides with its kernel K ∗ (i.e., all vertices of K are accessible)
if and only if K is strongly connected.

Circle packings A collection P of open disks Dv is said to be a circle packing for
the complex K = K (V, E, F) if it satisfies the following conditions (1)–(3):

(1) Each vertex v ∈ V has an associated disk Dv ∈ P , such that P = {Dv : v ∈ V }.
(2) If 〈u, v〉 ∈ E is an edge of K , then the disks Du and Dv touch each other.
(3) If 〈u, v, w〉 ∈ F is a positively oriented face of K , then the centers of the disks

Du, Dv, Dw form a positively oriented triangle in the plane.

A circle packing is called univalent, if its disks are non-overlapping, Du ∩ Dv = ∅ for
all u, v ∈ V with u = v. In this paper all circle packings are assumed to be univalent.

Since the structure of the underlying complex K carries over to the associated
packing P , all related attributes can be applied to the disks Dv as well—so we shall
speak of boundary disks, interior disks, neighboring disks, etc.

The contact point of two neighboring disks Du, Dv is defined by c(u, v) :=
Du ∩ Dv . The contact points of a packing P for the complex K (V, E, F) are the
points c(u, v) with e(u, v) ∈ E .

We denote by D the union of all disks in P , D := ⋃
v∈V Dv . If P is univalent and

p and q are different points of ∂D, there is at most one disk Dv whose boundary ∂Dv

contains p and q. If such a disk exists, we define δ(p, q) as the positively oriented open
subarc of ∂Dv from p to q, and δ[p, q] := δ(p, q). In addition we set δ(p, p) := ∅
and δ[p, p] := {p}. Note that δ(p, q) and δ[q, p] are complementary subarcs of ∂Dv ,
provided that p = q.

If 〈u, v, w〉 is a face of K , the interstice I (u, v, w) of P is the Jordan domain
bounded by the arcs δu := δ

(
c(u, v), c(u, w)

)
, δv := δ

(
c(v,w), c(v, u)

)
and δw :=

δ
(
c(w, u), c(w, v)

)
(see Fig. 4, left).

Besides the union D of all disks in a packing P we need the carrier of P , which
is the compact set

D∗ := D ∪
⋃

f (u,v,w)∈F
I (u, v, w)

Du Dv

Dw

δu δv

δw

c(v, u)

c(w, u) c(v, w)

I

Fig. 4 Definition of the interstice I := I (u, v, w) and the carrier D∗ of two packings
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(see Fig. 4, middle and right). Note that this definition is somewhat different from
Stephenson’s (cp. Stephenson 2005, p. 58). The carrier is essential in the next defini-
tion.

Definition 2 LetG be a bounded, simply connected domain.We say that a (univalent)
circle packing P is contained in G (or lies in G) if the interior of D∗ is a subset of G.
A packing P contained in G is said to fill G if every boundary disk of P touches ∂G.

If G is a Jordan domain, P is contained in G if and only if any disk of P is a subset
of G. For general domains the latter condition alone would be too week, since then it
could happen that “spikes” of ∂G (think of G as a slit disk) penetrate into the packing,
sneaking through between two boundary disks at their contact point. This is prevented
by our definition; in particular it guarantees that ∂G∩ I = ∅ for every interstice I ofP .

What happens when ∂G meets a contact point of two boundary disks is explored in
the following lemma (an explanation of associated prime ends is given at the beginning
of this section).

Lemma 2 Let G be abounded, simply connected domain, and letP be a circle packing
contained in G. Then every contact point c(u, v) ∈ ∂G is associated with the same
prime end by both Du and Dv .

Proof Let c = c(u, v) be a contact point of P which lies on the boundary of G. Then
there exists a vertex w ∈ V such that f (u, v, w) is a face in the complex of P , and
we denote by I = I (u, v, w) the corresponding interstice.

For ε > 0, let Bε be an open disk centered at c with radius ε and define

B̃ε := Bε ∩ (
Du ∪ Dv ∪ I

)
.

If ε is sufficiently small, B̃ε\{c} is a Jordan domain contained in G, and we have
Du ∩ Bε ⊂ B̃ε, Dv ∩ Bε ⊂ B̃ε (see Fig. 5, left). As a Jordan domain B̃ε\{c} has a
unique prime end c∗ corresponding to its boundary point c, so the prime ends of G
associated with c by the disks Du and Dv , respectively, must coincide. 
�

A packing which fills the unit disk D is called maximal. A celebrated result, the
Koebe-Andreev-Thurston-Theorem (which can be traced back toKoebe’s paper 1936),

∂G

c
DvDu

Dw

˜Bε

Dk−1

c+k−1
c−
k

c+k

Dk

c−
k+1

Dk+1

δ(c−
k , c+k )

δ(c+k , c−
k )

ηk

Dk+1

Dk

Ik

c+k

g+k
g−
k+1

Fig. 5 Definitions of B̃ε , boundary arcs and boundary interstices
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tells us that any complex K has an associated maximal packing, which is unique up to
conformal automorphisms of D. A far reaching generalization is the Uniformization
Theorem of Beardon and Stephenson (1990, see also Chap. II in Stephenson 2005).
Recall that the boundary disks of a packing form a chain D1, . . . , Dm . Since this is
a cyclic structure, we label it modulo m, in particular D0 := Dm and Dm+1 := D1.
For k ∈ {1, . . . ,m}, we denote by ηk the closed segment which connects the centers
of Dk and Dk+1. These boundary segments form a (polygonal) Jordan curve η.

If Dk−1, Dk and Dk+1 are three consecutive boundary disks, the contact points
c−
k := Dk−1 ∩ Dk and c+

k := Dk ∩ Dk+1 split ∂Dk into two arcs. We call δ(c−
k , c+

k )

the exterior boundary arc and δ(c+
k , c−

k ) the interior boundary arc of Dk , respectively
(see Fig. 5, middle).

Lemma 3 Let Dk be aboundary disk of a circle packingP . Then the exterior boundary
arc of Dk contains no contact points of disks in P .

Note that, by definition, the contact points of the disks in a packing are prescribed by
the combinatorics of P .

Proof The polygonal line η which connects consecutive centers of the boundary disks
is a Jordan curvewhich separates the exterior boundary arcs from the interior boundary
arcs. The interior of η contains the closures Dv of all interior disks. Any contact point
c of P is either a contact point of two boundary disks, or it lies on the boundary of an
interior disk. In both cases c does not belong to any exterior boundary arc. 
�

To provide some more notation, let P be a circle packing which fills a bounded,
simply connected domain G. By definition, every boundary disk Dk touches ∂G in a
non-void (possibly uncountable) set Gk of points, and Gk must be contained in the
closure δ[c−

k , c+
k ] of the exterior boundary arc δ(c−

k , c+
k ) of Dk . Let δk := δ[g−

k , g+
k ]

be the smallest subarc (we allow the possibility that this ‘arc’ degenerates to a point)
of δ[c−

k , c+
k ] which contains Gk . Since Gk is a closed set, we have g−

k , g+
k ∈ Gk .

In order to define the boundary interstice Ik between two consecutive boundary
disks Dk and Dk+1 (see Fig. 5, right) we distinguish two cases. If g+

k = c+
k , we set

Ik := ∅. Otherwise we let δ be the union of the arcs δ(g+
k , c+

k ] (a subarc of ∂Dk)
and δ[c+

k , g−
k+1) (a subarc of ∂Dk+1). The open Jordan arc δ is contained in G with

different endpoints on ∂G, hence it is a crosscut. The set G\δ consists of two simply
connected components G1 and G2. One of these components contains all disks of P ,
the other one is (by definition) the boundary interstice Ik .

Lemma 4 Ik ∩ D = ∅ for all k = 1, . . . ,m.

Proof Let k ∈ {1, . . . ,m} be fixed. If Ik = ∅ the assertion is trivially fulfilled. Let
Ik = ∅ and let δ be the crosscut defined above, so that G\δ consists of exactly two
simply connected domains G1 = Ik and G2.

Clearly every disk of P is contained either in G1 or G2. We assume that there is
a disk Du in G1 (remember Dk ⊂ G2). Because K is connected there is a chain C
of vertices {u, . . . , v}, where v is the vertex associated with Dk . Because Du ⊂ G1
and Dk ⊂ G2 there have to be two consecutive vertices w1, w2 in C , so that Dw1
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is contained in G1 and Dw2 in G2. The contact point c(w1, w2) must lie on ∂G1\δ,
because there are no contact points of P on δ according to Lemma 3.

Let w3 be a vertex, so that f (w1, w2, w3) is a face of K . The interstice I :=
I (w1, w2, w3) is contained either inG1 orG2, because it is disjoint from ∂G.Moreover
both arcs ∂Dw1 ∩ ∂ I and ∂Dw2 ∩ ∂ I (up to their endpoints) lie in the same domain
as I , without being contained in the boundary of G. This implies, that both disks Dw1

and Dw2 are contained either in G1 or G2, a contradiction. Hence, Ik ∩ D = ∅ for all
k = 1, . . . ,m. 
�

Last but not least we state a result about glueing simply connected domains along
a common boundary arc. The proof is left as an exercise (see Pommerenke 1992).

Lemma 5 Let G1 andG2 be simply connected domainswith locally connected bound-
aries. If G1 and G2 touch each other along a Jordan arc J with endpoints a, b, i.e.,
G1 ∩ G2 = ∅ and G1 ∩ G2 = J , then

(
G1 ∪ J ∪ G2

)\{a, b} is a simply connected
domain and its boundary is locally connected.

3 Crosscuts

Before we introduce crosscuts of a (univalent) circle packing which fills a domain G,
we define crosscuts of its complex.

Definition 3 A (combinatoric) crosscut of a complex K is a sequence L = (e0, e1,
. . . , el) of edges in K with the following properties (1)–(4):

(1) The edges are pairwise different, if 0 ≤ j < k ≤ l then e j = ek .
(2) For 1 ≤ j ≤ l the edges e j−1 and e j are adjacent to a common face of K .
(3) Three consecutive edges are not adjacent to the same face of K .
(4) The edges e0 and el are boundary edges.

It is easy to see that only the first and the last edge of a crosscut can be boundary
edges of K . Because e0 = el we have l ≥ 1. When one edge of a face f belongs to

L

K−
L

K+
L

Fig. 6 A crosscut L of K , the vertex sets V−
L , V+

L , U+
L , and a corresponding packing
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L , then L must contain exactly two edges of f , and these are subsequent members of
L . So a crosscut can also be represented by a sequence ( f1, . . . , fl) of faces, where
e j−1 and e j are adjacent to f j . Since the three edges of a face are not allowed to be
consecutive members of L , all faces f j must be pairwise different.

After removing the edges of a crosscut L from K , the remaining graph consists of
two edge-connected components K−

L and K+
L . We assume that K−

L ‘lies to the right’
and K+

L ‘lies to the left’, respectively, when we move along the edges e0, e1, . . . , el
in this order. The vertex sets of K−

L and K+
L are denoted by V−

L and V+
L , respectively,

and we call them the lower and the upper vertices of K with respect to L . The setU+
L

is constituted by all vertices v in V+
L which are adjacent to an edge in L . These vertices

and the corresponding disks are said to be the upper neighbors of L . An analogous
definition is made for the set U−

L of lower neighbors of L (see Fig. 6).
Given a (combinatoric) crosscut L of a complex K and a circle packing P for K

which fills a domain G, we define several related (geometric) crosscuts J of P in
G. To begin with, we associate with every edge e j = e(u, v) in L the contact point
x j := Du ∩ Dv of the disks Du, Dv ∈ P . The common tangent to Du and Dv at x j is
denoted τ j . The set X := {x0, . . . , xl} of all contact points associated with edges of
L has a natural ordering, induced by the ordering of edges in the crosscut. Since the
indexing of the elements fits with this ordering, we write x j < xk if j < k.

The polygonal crosscut J 0L is built from the common tangents τi of disks at their
contact points xi as follows. Let i ∈ {1, . . . , l} and assume that xi−1 and xi are
consecutive contact points of the pairs Du, Dv and Dv, Dw, respectively. Then the
three circles ∂Du, ∂Dv, ∂Dw bound an interstice I := I (u, v, w). The tangents τi−1
and τi intersect each other at a point si in I , and the union of the closed segments
[si , si+1] for i = 1, . . . , l − 1 is a Jordan arc in G (see Fig. 7).

In order to complete this arc to a crosscut in G we look at the boundary disks Dk

and Dk+1 which touch each other at x0. If x0 is not a boundary point of G we define
s0 as the endpoint of the largest segment (x0, s0) on the tangent τ0 which is contained
in Ik . Since there is no disk of P intersecting Ik (Lemma 4) we see that [x0, s0) ⊂ G
is disjoint from P and s0 ∈ ∂G. If x0 is a boundary point of G we set s0 := x0.

Du Dv

Dw

tk

xi−1

xi

si

Fig. 7 Local construction and global view of a polygonal crosscut
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Du

Dv ⊂ G−
L

Dw

ti

xk−1

xk

αk

Fig. 8 Construction of a maximal crosscut (which is not a Jordan arc)

A similar construction is made for the point sl+1 as (“the first”) intersection point
of the tangent τl with ∂G. Here x0 = xl ensures that [s0, s1] and [sl , sl+1] live in two
different boundary interstices. Although this does not exclude s0 = sl+1, it guarantees
that s0 and sl+1 are endpoints of the segments [s1, s0] and [sl , sl+1], belonging to
different prime ends s∗

0 and s∗
l+1, respectively.

Finally, the union of the closed segments [sk, sk+1] for k = 0, . . . , l forms the
desired polygonal crosscut J 0L := ⋃l

k=0[sk, sk+1] in G. It can easily be verified that
J 0L is a (topologically closed) Jordan arc which meets D at the contact points xk –
more precisely we have X ⊂ J 0L ∩ D ⊂ X ∪ {s0, sl+1}. The open set G\J 0L has two
simply connected components G+

0 and G−
0 , containing the disks associated with V+

L
and V−

L , respectively.
It is clear that, for a fixed combinatorial crosscut L of K , the statement of Theorem 2

depends on the choice of the geometric crosscut J : the assertion becomes the stronger,
the larger the domain G−

J is. Unfortunately, there exists (in general) no crosscut J
which maximizes G−

J , since the boundary of the largest domain G−
J need not be a

Jordan curve. We therefore extend the concept of crosscuts somewhat, defining the
maximal crosscut J+

L in P as follows.
Recall thatU+

L is the vertex set of upper neighbors of L . If xk−1 and xk are contact
points of the disks Du, Dv and Dv, Dw, respectively, then eitherv ∈ U+

L oru, w ∈ U+
L .

The interstice I (u, v, w) is bounded by three (topologically closed) circular arcs αu ,
αv and αw, respectively. If v ∈ U+

L we connect xk−1 with xk by the arc ak := αv , in the
second casewe connect these points by the concatenation ak := αu∪αw (see Fig. 8). In
addition we connect x0 and xl with ∂G by arcs a0 := δ(g+

j , x0) and al+1 := δ(xl , g
−
k )

of those circles ∂Dj and ∂Dk which are upper neighbors of L and contain x0 and xl ,
respectively. The union J+

L := ⋃l+1
k=0 ak of these arcs is a curve which we call the

maximal crosscut in P with respect to L .
The maximal crosscut J+

L is composed from a finite number of circular (topologi-
cally closed) arcs ωi which are linked at the turning points ti of J

+
L , and every contact

point xk lies exactly on one arc ωi (see Fig. 8). If J
+
L is not a Jordan arc, G\J+

L may
consist of several connected components (see Fig. 8, right), one of them containing all
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disks associated with vertices v in V−
L . We call this component G−

L themaximal lower

domain for L with respect to P , and we set G+
L := G\G−

L . For the sake of brevity we
define ω := J+

L and � := G−
L .

Since the curve ω can have multiple points (see Fig. 8, right) there is no natural
ordering of the points on ω. However, considering ω as part of the boundary of �, we
can introduce an ordering of the terminal points q ∈ ω of open Jordan arcs γ (p, q)

in �. In order to describe this procedure we need the following result.

Lemma 6 For any combinatorial crosscut L the maximal lower domain � = G−
L is

simply connected and has a locally connected boundary.

Proof Let G−
0 be the lower domain with respect to the polygonal crosscut J0 in P .

Then G\J 0L consists of two simply connected domains G−
0 and G+

0 , respectively.
The maximal lower domain G−

L is constructed by glueing a finite number of simply
connected domains along straight line segments to G−

0 . Hence the assertion follows
from Lemma 5. 
�

The assertion of Lemma 6 guarantees that any (fixed) conformal mapping g : D →
� has a continuous extension to D, which we again denote by g (see Pommerenke
1992, Theorem 2.1). With respect to this mapping, we let σi ⊂ T denote the preimage
of the circular arcs ωi with i = 1, . . . , n. Then σ := ⋃n

i=1 σi is the preimage of the
maximal crosscut ω.

By the Prime End Theorem, the mapping g induces a bijection g∗ between T the
set of prime ends of �. We denote by ω∗ := g∗(σ ) the set of prime ends associated
with�, and, for i = 1, . . . , n, we let ω∗

i := g∗(σi ) be the subsets of ω∗ corresponding
to the arcs σi .

Note that the preimages σi of the circular arcs ωi are topologically closed subarcs
of T, and that the preimage T\σ of ∂�\ω is not empty. Therefore σi and σ j , and thus
ω∗
i and ω∗

j , are disjoint if |i − j | > 1, while their intersection contains exactly one

element if |i − j | = 1.
Further we see that the arcs σ1, σ2, . . . , σn (in this order) are arranged in clockwise

direction onT. It is therefore just natural to order the points on the arc σ (and hence on
each subarc σi ) also in clockwise direction. The mapping g∗ transplants this ordering
from σ to the set ω∗ of prime ends. If γ ∗

1 = g∗(s1) and γ ∗
2 = g∗(s2) are two prime

ends of ω∗, the notion γ ∗
1 ≤ γ ∗

2 refers to the ordering s1 ≤ s2 of the associated points
on σ .

Remark Every ωi without its endpoints is an open Jordan arc, so there is a one-to-
one correspondence between the interior points of ωi and σi . Let γ in � be an open
Jordan arc with terminal point q on ω, then the associated unique prime end γ ∗ in
ω∗ must lie in ω∗

i , whenever q is an interior point of ωi . Only if q is an endpoint of
ωi there is a chance that the prime end γ ∗ is not contained in ω∗

i , because now γ ∗
depends on how γ approaches q.
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4 Loners

So far we have studied properties of a single circle packing P which fills G. In the
next step we consider pairs (P,P ′) of packings which are subject to the assumptions
of Theorem 2.

Definition 4 A pair (P,P ′) of univalent circle packings for the complex K is said
to be admissible (for the crosscut L of K in G with alpha-vertex vα) if it satisfies the
following conditions:

(1) The packing P fills the bounded, simply connected domain G, and the packing
P ′ is contained in G (see Definition 2).

(2) For all vertices v ∈ U−
L (the lower neighbors of L) the disks D′

v are contained in
G−

L (the maximal lower domain of G for L with respect to P).
(3) The centers of the alpha-disks of P and P ′ coincide and lie in G+

L := G\G−
L .

Though it would be more precise to speak of an admissible sixtuple (K , L ,G,P,P ′,
vα), we shall use the term “admissible” generously, for instance saying that “L is an
admissible crosscut for (P,P ′)”.

Recall thatU+
L denotes the vertex set of those disks inP which lie in G+

L and touch
the crosscut (“upper neighbors of L”). In the next step we are going to explore the
interplay of the disks D′

v in P ′ and Dw in P for v,w ∈ U+
L .

Definition 5 Let (P,P ′) be an admissible pair of circle packings for the complex K
with crosscut L . A vertex v in U+

L is called a loner, if D′
v ∩ Dw = ∅ for all w ∈ U+

L
with w = v.

The concept of loners was introduced by Schramm (1991) in a similar but somewhat
different context. The main characteristic of a loner is the following.

Lemma 7 Let v in U+
L be a loner of the admissible pair (P,P ′) with complex K and

crosscut L. Then D′
v ∩ (G+

L \Dv) = ∅.
Proof Let u ∈ U−

L and w ∈ U+
L be neighbors of v, and let p and q be the contact

points of the disks D′
v with D

′
u and Dv with Dw, respectively. Clearly p = q, otherwise

D′
u had to intersect Dv or Dw, a contradiction to condition (2) of the admissible pair

(P,P ′).
Assume that p is a boundary point of Dv . Then ∂Dv and ∂D′

v have a common
tangent at p, otherwise D′

u had to intersect Dv , a contradiction to condition (2) of
the admissible pair (P,P ′). It follows that either D′

v\{p} ⊂ Dv or D′
v = Dv or

Dv\{p} ⊂ D′
v . The latter implies that q ∈ D′

v , hence D′
v ∩ Dw = ∅, which is

impossible since v is a loner. The other two cases imply the statement we want to
prove.

Assume that p is not a boundary point of Dv . Suppose that the assertion of Lemma 7
were false, i.e., there is some point r in D′

v which is also contained inG
+
L \Dv . Because

p lies in the maximal lower domain G−
L , and r lies in the upper domain G+

L , the
boundary of D′

v must intersect the maximal crosscut J+
L . Since the vertex v is a loner,

every such intersection pointmust lie in ∂Dv . If ∂D′
v∩∂Dv consists of exactly one point
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r1, then the boundary of D′
v is the union of δ[p, r1] and δ[r2, p], hence D′

v ∩G+
L = ∅,

a contradiction to r ∈ D′
v . If there is a second point r2 ∈ ∂D′

v ∩ ∂Dv with r1 = r2,
then we have ∂D′

v ∩ Dv = δ(r2, r1), hence r must be contained in Dv , a contradiction
to r ∈ G+

L \Dv . 
�

In Sect. 6 the property of loners described in Lemma 7 will allow us to move the
crosscut L through the packing, reducing in every step the number of disks in G+

L .
The next result is crucial for the applicability of this procedure.

Lemma 8 (Existence of loners) Every admissible pair (P,P ′) of circle packings with
crosscut L has a loner.

The proof is divided into several steps; the first part uses the geometry of disks, then
we employ some topology, and finally everything is reduced to pure combinatorics.
We start with some preparations.

Recall the definition of the contact points xk : If L = (e0, . . . , el) and ek = 〈u, v〉, for
some k ∈ {0, . . . , l}, then xk := Du ∩Dv . Using the same notation, the corresponding
contact points of disks in P ′ are given by yk := D′

u ∩ D′
v , where Y := {y0, . . . , yl} is

the set of all such contact points.
The contact points xk form an ordered set on the maximal crosscut ω := J+

L , which
is the upper boundary of the maximal lower domain � := G−

L . Since every xk lies
on exactly one arc ωi , the set X of contact points splits into classes Xi := {xk ∈ X :
xk ∈ ωi }, i = 1, . . . , n. The set Y of the contact points of P ′ is divided accordingly,
Yi := {yk ∈ Y : xk ∈ ωi } (the xk is no typo here). Like X , the set Y is endowed with
a natural ordering, we write y j < yk if j < k.

Our next aim is to construct a Jordan arc α which is contained in � and carries the
contact points yk in their natural order.

Lemma 9 If (P,P ′) is an admissible pair, then there exist oriented Jordan arcs αk

from yk−1 to yk such that α := ∪k=1,...lαk is a Jordan arc in � and α ∩ ω ⊂ Y .

D′
v ⊂ Ω

yk−1 yk

D′
w D′

u

D′
v

yk−1 yk

zk

D′
u D′

w

yk−1yk

yi−1 yi

z

Fig. 9 Construction of the Jordan arc α in Case 1 (left) and Case 2 (middle, right)
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Proof Let k ∈ {1, . . . , l}. In order to determine the arc αk of α which connects yk−1
with yk we remark that both points lie on the boundary of one and the same disk
D′

v ∈ P ′. We distinguish two cases:

Case 1 If v ∈ V−
L , then the disk D′

v is contained in �, and we choose the segment
αk := [yk−1, yk] (see Fig. 9, left).

Case 2 If v ∈ V+
L , then ek−1, ek and a third edge 〈u, w〉 of K form a face of K , and

the (neighboring) disks D′
u and D′

w are both contained in�. So we let zk := D′
u ∩ D′

w

and connect yk−1 with yk by [yk−1, zk] ∪ [zk, yk] ⊂ � (see Fig. 9, middle).
It is clear that all open segments (yk−1, yk), (yk−1, zk), (zk, yk) for k = 1, . . . , l

are pairwise disjoint, and that yk = z j . However, it is possible that two endpoints zk
and z j coincide for j = k, in which case the concatenation of the arcs αk is not a
Jordan arc.

If this happens, the point z := z j = zk is the contact point of two disks D′
u and D′

w

with u, w ∈ V−
L . A little thought shows that then z can neither lie on the boundary of

G nor on ω, and hence it must be an interior point of �. This allows one to resolve the
double point of α at z without destroying its other properties (see Fig. 9, right). 
�

In the next step we transform the existence of loners to a topological problem.
Technically this is much simpler when α and ω are disjoint. We consider this ‘regular
case’ in Sect. 4.1. The ‘critical case’, where intersections of α and ω are admitted, will
be treated in Sect. 4.2.

4.1 The regular case

Here we assume that α∩ω = ∅, which implies that all contact points yk (k = 0, . . . , l)
lie in the lower domain �.

We fix i ∈ {1, . . . , n} and denote by y−
i and y+

i the smallest and the largest member
of Yi with respect to the natural ordering of Y , respectively. Both points (which may
coincide), as well as all elements of Yi , lie on the same circle ∂D′

v , associated with a
vertex v = v(i) ∈ V .

Let δ′
i be the negatively oriented topologically closed subarc of ∂D′

v from y−
i to

y+
i . We consider the largest subarcs νi and πi of δ′

i which are contained in �\ω and
have initial points y−

i (for ηi ) and y+
i (for πi ), respectively (see Fig. 10).

Lemma 10 If there exists no loner, then the terminal points ν+
i and π+

i of νi and πi ,
respectively, lie on ω for i = 1, . . . , n.

Proof If one of the arcs νi or πi does not intersect ω, then both coincide with δ′
i . In

this case, the disk D′
v(i) is separated from G+

L by the union of the arcs α and δ′
i , which

implies that D′
v(i) cannot intersect any disk Dw with w ∈ U+

L , so that v(i) is a loner.

�

Since (with the exception of their endpoints) the circular arcs νi (i = 2, . . . , n)
and πi (i = 1, . . . , n − 1) lie in � and have terminal points ν+

i and π+
i on ω, they

define prime ends ν∗
i and π∗

i in ω∗.
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G+
L

ω

νi πiD′
v

y−
i y+

i

αi

Dv

δ′′
i π+

i

ωiν+
i

αi

νi πiD′
v

y−
i y+

i

Fig. 10 The arcs νi and πi and their intersection with the boundary of G+
L

Because the arcs ν1 and πn need not lie in�, a modified definition is needed for the
prime ends ν∗

1 and π∗
n . To do so, we replace ν1 and πn by slightly perturbed circular

arcs νε
1 and πε

n , respectively, which have the same endpoints as ν1 and πn , respectively,
and lie in � (with the exception of their endpoints). Then ν∗

1 and π∗
n are defined as

the prime ends associated with the terminal points of νε
1 and πε

n , respectively. Clearly
such arcs νε

1 and πε
n exist, and for all sufficiently small ε they define the same prime

ends ν∗
1 , π

∗
n ∈ ω∗, respectively.

Since the set of prime ends ω∗ is endowed with a natural ordering, we can compare
the prime ends ν∗

i and π∗
i .

Lemma 11 If (P,P ′) has no loner, the prime ends ν∗
i and π∗

i form an interlacing
sequence with respect to the prime end ordering of ω∗,

ν∗
1 ≤ π∗

1 ≤ ν∗
2 ≤ π∗

2 ≤ · · · ≤ ν∗
n ≤ π∗

n .

Proof Let y− := y0 and z− be the initial and terminal points of ν1, while y+ := yl
and z+ are the initial and terminal points of πn , respectively. We have z−, z+ ∈ ω due
to Lemma 10. Further, letω∗

0 be the set of all prime ends γ ∗ ofω∗ with ν∗
1 ≤ γ ∗ ≤ π∗

n ,
and denote the set of all corresponding points on ω by ω0. The set ω0 is a curve or
a single point. Together with the Jordan arcs ν1, α and πn it forms the boundary of a
simply connected domain �0 ⊂ � with locally connected boundary. Let �∗

0 be the
set of all prime ends associated with points on ∂�0. Because�0\ω0 is an open Jordan
arc, the points y−, y+ are associated with uniquely determined prime ends y∗−, y∗+ of
�0.

Contrary to this, the points z−, z+ may be associated with several prime ends of
�0. In order to explain which one we choose, let again νε

1, π
ε
n be small perturbations

(as explained above) of ν1, πn , respectively, so that both arcs are crosscuts in �0. We
define z∗− and z∗+ as the prime ends in ω∗ associated with the terminal points z− and
z+ of νε

1, π
ε
n , respectively.

We have n > 1, because otherwise a loner would exist. It follows that y− = y+, so
y∗− = y∗+. From α ∩ ω = ∅ we get z−, z+ /∈ {y−, y+}, hence z∗−, z∗+ /∈ {y∗−, y∗+}.
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ω

α

ν1

πn

y−

z−

y+

z+
z−

z+

y−

y+

Ω0ν1 νε
1

Q

Fig. 11 Construction of �0 and Q from ω, α and ν1, πn

If z∗− = z∗+ =: z∗, we directly get ω∗ ∩ �∗
0 = z∗. This implies ν∗

1 = π∗
1 = ν∗

2 =
· · · = π∗

n = z∗, so the lemma holds. (We consider this case here, though Lemma 12
shows, that it cannot occur).

If z∗− = z∗+, the prime ends y∗−, y∗+, z∗− and z∗+ are pairwise distinct and with respect
to the (cyclic) ordering of �0 we have y∗− < y∗+ < z∗− < z∗+ < y∗−. Therefore �0 can
be mapped conformally onto a rectangle Q (with appropriately chosen aspect ratio)
such that y∗−, y∗+, z∗− and z∗+ correspond to the four corners of Q (see Pommerenke
1992), which is depicted in Fig. 11.

Any of the arcs νi (i = 2, . . . , n) and πi (i = 1, . . . , n − 1) is mapped onto a
crosscut of Q which connects two opposite sides of this rectangle. Since these Jordan
arcs cannot cross each other in the interior of Q, the ordering of their initial points on
one side of Q is transplanted to the ordering of their terminal points on the opposite
side of Q. Translated back to �0, this implies that the ordering of the prime ends
ν∗
i and π∗

i is the same as the ordering of the initial points y−
i and y+

i of νi and πi ,
respectively, along the Jordan curve α. By construction, the latter points form an
interlacing sequence. 
�

Lemma 12 If both prime ends ν∗
i and π∗

i belong to ω∗
i , then the corresponding vertex

v(i) is a loner.

Proof Let v := v(i). It follows from ν∗
i , π∗

i ∈ ω∗
i that ν+

i , π+
i ∈ ωi ⊂ ∂Dv . If

π+
i = ν+

i , the positively oriented open subarc δ′′
i of P ′

v from π+
i to ν+

i lies in Dv .
If π+

i = ν+
i , we set δ′′

i := ∅. In both cases the union of αi , πi , δ
′′
i and νi is a Jordan

curve which does not intersect the disks Du with u ∈ U+
L and u = v. So either D′

v is
disjoint to all such disks Du , or one of the disks Du is contained in D′

v . In the latter
case the prime ends ν∗

i and π∗
i cannot both belong to the same set ω∗

i . 
�
Proof of Lemma 8 After these preparations we are ready to harvest the fruits: Assume
that (P,P ′) has no loner. Then, by Lemma 10, the endpoint ν+

i of the arc νi must lie
on ω and hence νi is associated with a prime end ν∗

i ∈ ω∗. If ν∗
i ∈ ω∗

k , we choose the
smallest such k and set l(i) := k. Similarly, we denote by r(i) the smallest number k
for which π∗

i ∈ ω∗
k .

Lemma 11 tells us that l(i) ≤ r(i) ≤ l(i + 1). In conjunction with Lemma 12 we
conclude that the first condition implies r(i) ≥ l(i) + 1. Starting with l(1) ≥ 1, we
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Dw

D′
v(i)

D′
u

y
ωj

νi πi
ν+

i

π+
i

zαε

D′
v(i)

Dw

D′
u

y
ωj

νi πiν+
i

π+
i

zαε

Fig. 12 Modification of α and definition of the arcs νi and πi for critical contact points y

get inductively that r(i) ≥ i + 1 for i = 1, . . . , n, ending up with the contradiction
r(n) ≥ n + 1. This proves Lemma 8 in the regular case. 
�

4.2 The critical case

The second case, where we admit that α ∩ ω = ∅, will be reduced to the regular case
by an appropriate deformation of the Jordan arc α.

Definition 6 A contact point y ∈ Y is called regular if y /∈ ω, otherwise it is said to
be critical.

If y ∈ Y is a critical contact point, then y ∈ α ∩ω = ∅, and hence y ∈ ω j for some
j . Since y = ∂D′

u ∩∂D′
v with some u ∈ U−

L and v = v(i) ∈ U+
L , we see that y cannot

be an endpoint of ω j (turning point of ω) – otherwise D′
u would not be contained in

�. Moreover, the circles ∂D′
u , ∂D

′
v , and ω j must be mutually tangent at y. The arc ω j

is a subset of the circle ∂Dw (with w = v( j) ∈ U+
L ). Hence either D

′
v ⊂ Dw (with

D′
v = Dw admitted) or Dw is a proper subset of D′

v .
In the next step we modify the Jordan arc α in a neighborhood of y and redefine

the arcs νi and πi (connecting y with ω) introduced in the regular case.
Let ε be a sufficiently small positive number. Denote by z the ε-shift of y in the

direction of the center of D′
u . Append to D′

v an equilateral open triangular domain T
with one vertex at z, two vertices on ∂D′

v , and symmetry axis through y and z (see
Fig. 12).

For y /∈ {y0, yl} let νi (and πi ) be the largest negatively (positively) oriented subarc
of ∂(D′

v ∪T )which has initial point z and is contained in�. For y ∈ {y0, yl} (and only
then) it can happen that y is a boundary point of G. Therefore we define νi := [z, y]
in the case y = y0, and πi := [y, z] in the case y = yl . The case y0 = yl can never
occur, because l ≥ 1.

Denote by ν+
i and π+

i the terminal points of νi and πi . Clearly, ν
+
i , π+

i ∈ ω, so let
ν∗
i , π∗

i ∈ ω∗ be their associated prime ends.
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We see, that the statement of Lemma 10 holds in the critical case, too.Moreover, for
the critical case, Lemma 11 can be proved in exactly the same way as for the regular
case, we just have to apply the adapted definitions of ν∗

i and π∗
i . All what is missing

is the following “critical” version of Lemma 12.

Lemma 13 Assume that ∂D′
v with v = v(i) ∈ U+

L contains a critical contact point
y ∈ Y ∩ ω. Then v is a loner if and only if ν∗

i and π∗
i belong to ω∗

i .

Proof We use the notations introduced above, with ε > 0 fixed and sufficiently small.
We distinguish two cases.
Case 1 Let D′

v ⊂ Dw (see Fig. 12, left). Then v is a loner if and only if w = v, and
this holds, if and only if j = i and ν∗

i , π∗
i ∈ ω∗

i .
Case 2 Let Dw ⊂ D′

v and Dw = D′
v (see Fig. 12, right). Then D′

v intersects at least
two “upper” disks (namely Dw and one of its neighbors), so that v is not a loner.
According to our construction, we have ν∗

i ≤ y∗ ≤ π∗
i (where y∗ ∈ ω∗

j is the prime
end corresponding to y and w = v( j)), but both equalities are never fulfilled at the
same time, and ν∗

i , π∗
i /∈ ω∗

j for w = v( j). Therefore ν∗
i ∈ ω∗

m and π∗
i ∈ ω∗

n with
m ≤ j ≤ n, but m < n, so the prime ends ν∗

i and π∗
i cannot both belong to the same

class ω∗
i . 
�

Remark If D′
v has several critical contact points y ∈ Y ∩ ω j with the same arc ω j ,

then D′
v must be tangent to Dw with w = v( j) at two different points. This implies

that D′
v = Dw, which explains why the criterion is independent of the choice of y.

After replacing all critical contact points yk by the shifted points zk , and modifying
the construction of the curve α accordingly, Lemma 8 can be proved completely the
same way as in the regular case.

In Sect. 5 we need the following generalization of Lemma 8. We point out that
v(i) = v( j) is allowed in assertion (i).

Lemma 14 Let Dv(i) = D′
v(i) and Dv( j) = D′

v( j) with 1 ≤ i ≤ j ≤ n. Then, in each
of the following cases (1)–(3), there exists a loner v(k) which is different from v(i)
and v( j), such that k satisfies the following conditions:

(1) if 1 ≤ i < j − 1 ≤ n − 1, then i < k < j ,
(2) if i > 1, then 1 ≤ k < i ,
(3) if j < n, then j < k ≤ n.

Proof The proof differs only slightly from the proof of Lemma 8. For example, in
order to prove (1) we need only replace the first inequality l(1) ≥ 1 by l(i +1) ≥ i +1
(which follows from Dv(i) = D′

v(i)) and, assuming that no loner v(k) with i < k < j
exists, proceed inductively for k = i + 1, . . . , j until we arrive at r( j) ≥ j + 1. The
last condition contradicts Dv( j) = D′

v( j).
If v(k) = v(i) or v(k) = v( j), we repeat the procedure, replacing i (in the first

case) or j (in the second case) by k, respectively. Iterating this a number of times,
if necessary, we eventually find a loner v(k) which is different from v(i) and v( j),
because for allm = 2, 3, . . . , n−1 we have v(m−1) = v(m) and v(m) = v(m+1).


�
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u
w

v

u′

w′v′

E−
L

E+
L

Fig. 13 The upper and the lower accompanying edges of a crosscut

5 Structure of upper neighbors

In this section we analyze the structure of the set of upper neighborsU+
L and its subset

of loners in more detail.
Two consecutive (non-oriented) edges e j−1 and e j of L = (e0, . . . , el) can be

represented as e j−1 = e(u, v) and e j = e(v,w). The third edge of the face f (u, v, w)

is considered as oriented from u tow, andwe set e0j := 〈u, w〉. The set of edges e0j splits
into two classes.We define E−

L as the set of those e0j where the face 〈u, v, w〉 is oriented
clockwise, whereas E+

L consists of those edges with counter-clockwise orientation
of 〈u, v, w〉, respectively. After renumbering the elements of E−

L and E+
L , without

changing their order, we get two sequences of oriented edges E−
L = {e−

1 , . . . , e−
p } and

E+
L = {e+

1 , . . . , e+
q } (with p + q = l), which are called the sequences of lower and

upper accompanying edges of the crosscut L , respectively.
Here are some basic properties of E−

L , E+
L , which follow quite easy from the defi-

nition of L (proofs are left as exercises). The oriented edges in E−
L ∪ E+

L are pairwise
disjoint; the corresponding non-oriented edges can appear at most twice, and either
both in E−

L or both in E+
L . Two consecutive edges e

±
j−1 and e

±
j are linked at a common

vertex. The vertex set of all edges in E+
L is precisely the set U+

L of upper neighbors
of L .

Figure 13 shows two examples. The involved crosscut on the rightmodels the fourth
generation of the Hilbert curve. With the exception of boundary edges, all edges in
E−
L (lighter color) and in E+

L (darker color) appear with both orientations (not shown
in the picture).

When we arrange the elements ofU+
L in the order they are met along the edge path

E+
L we get the sequence S+

L of upper accompanying vertices. A similar definition is
made for the sequence S−

L of lower accompanying vertices. The geometry of circle
packings causes some combinatorial obstructions for these sequences.
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ω

Du

Dv

ω

Dv

D′
v

δ′
yi−1

yi

yj

yj+1

α′
D′

u

Fig. 14 Illustrations to Lemmas 15 and 17

Lemma 15 The sequence S+
L of upper accompanying vertices cannot contain the

pattern (. . . , u, . . . , v, . . . , u, . . . , v, . . .) with u = v.

Proof If the sequence S+
L contains the pattern (. . . , u, . . . , v, . . . , u, . . .), the oriented

curve ω has three subarcs ωi , ω j , ωk with i < j < k such that ωi , ωk ⊂ ∂Du and
ω j ⊂ ∂Dv . But then ω cannot contain a subarc of ∂Dv\ω j (see Fig. 14, left), which
would be necessary to append another v to the sequence. 
�

Definition 7 A vertex v ∈ U+
L which appears only once in the sequence S+

L is called
simple, the other elements in U+

L are said to be multiple vertices.

If v is a multiple vertex in U+
L , there are sequences M := {e+

i , e+
i+1, . . . , e

+
j } ⊂ E+

L

of accompanying edges such that v is the initial vertex of e+
i , as well as the terminal

vertex of e+
j with i < j . Any such sequence is called a loop for v. We say that a loop

M meets a vertex u ∈ U+
L , if u is adjacent to an edge in M and u = v. The set of

vertices met by M is denoted by VM . A loop M also generates a sequence of vertices
UM = {v, v1, . . . , vm, v} when we arrange the elements of VM in the order they are
met along the edge path M .

Lemma 16 Every loop M of a multiple vertex v meets a simple vertex u.

Proof We consider the sequenceUM = {v, v1, . . . , vm, v} of vertices in VM , arranged
in the order as they are met by the edge path M . Let w denote the element of this
sequence with the earliest second appearance (this does not mean the first element
which appears twice). Since w cannot appear twice in direct succession, there exists
a vertex u in between the first two symbols w.

In order to show that u is a simple vertex, we remark that UM is a subsequence
of the sequence S+

L of upper accompanying vertices. By definition of w, there cannot
be a second u in S+

L between the two symbols w next to u, and by Lemma 15, the
sequence S+

L cannot contain a second u outside these two w’s. 
�
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Since loners are vertices in U+
L , it makes sense to speak of simple and multiple

loners.

Lemma 17 Let v be a multiple loner with D′
v = Dv . If u = v is a vertex which is met

by a loop of v, then u is a loner and D′
u ∩ Du = ∅.

Proof Let M be a loop of v withUM = {v, v1, . . . , vm, v}. Let i be the smallest index,
so that yi is a contact point of v1, and let j be the largest index, so that y j is a contact
point of vm . According to the ordering of Y and UM (as subsequences of S+

L ), yi−1
and y j+1 are contact points of D′

v . Let u ∈ {v1, . . . , vm} with u = v.
The disk D′

u is enclosed by the union of the subarc δ′ := δ[yi−1, y j+1] of D′
v

and the subarc α′ ⊂ α which connects the points yi−1 and y j+1 on α (see Fig. 14).
Since v is a loner with D′

v = Dv , it is clear that yi−1, y j+1 /∈ Dv , and hence either
D′

v ∩ Dv = ∅ or ∂D′
v ∩ ∂Dv consists of one or two points. In both cases δ′ does

not intersect Dv . Therefore the union α′ ∪ δ′ is contained in �, hence u is a loner. In
particular D′

u ∩ Du = ∅, which proves the last assertion. 
�
Combining Lemma 8, Lemma 14 (applied recursively), Lemma 16 and Lemma 17

(applied recursively), the essence of this section can be summarized in the following
lemma.

Lemma 18 Let (P,P ′) be an admissible pair of circle packings with crosscut L.

1. The pair (P,P ′) contains a simple loner v ∈ U+
L .

2. Every loop of a multiple loner v meets a simple loner u, and if D′
v = Dv then

D′
u = Du.

6 Proof of the main theorem

After all these preparationswe are eventually in a position to proveTheorem2.Tobegin
with, we use the concept of loners and combinatorial surgery to modify the crosscut
L . In every step of this procedure the number of vertices in V+

L is reduced. At the end
we get a special combinatorial structure which is called a slit. Roughly speaking, this
is a chain of vertices connecting the alpha-vertex with a boundary vertex. We shall
prove that the disks of both packings coincide along a slit.

Then a subdivision procedure generates a sequence of slits, such that any accessible
boundary vertex appears among their end points. So we get D′

v = Dv for all accessible
v ∈ ∂V , and finally a well-known theorem tells us that D′

v = Dv for all accessible
v ∈ V .

6.1 Combinatoric reduction

Let L be a combinatoric crosscut of the complex K . In this section we describe how
a simple vertex v ∈ U+

L can be “shifted” from V+
L to V−

L such that we get a new
crosscut L ′ with

∣∣V+
L ′

∣∣ <
∣∣V+

L

∣∣. Depending on the properties of v we distinguish three
cases.
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v

L

L′
v

L

L′ L′′
v

L

L′

Fig. 15 Modification of the crosscut L in Case 1 (left), Case 2 (middle) and Case 3(right)

Case 1 Let v ∈ U+
L be a simple interior vertex.

Case 2 Let v ∈ U+
L be a simple boundary vertex, and assume that neither the initial

nor the terminal edge of L are adjacent to v.
Case 3 Let v ∈ U+

L be a simple boundary vertex, and assume that either the initial or
the terminal edge of L are adjacent to v.

Remark The case where the initial and the terminal edge of L are adjacent to v cannot
appear. Indeed, otherwise either v is a multiple vertex (which is not considered) or all
edges adjacent to v must belong to L . The latter implies that v is the only vertex in
V+
L , which is not allowed.

Reduction of Type 1 In order to modify the crosscut L = (e0, e1, . . . , el) in Case 1,
we consider the flower B = B(v) of v. Since v is simple, the set of edges adjacent
to v consists of a subsequence S = (ei , . . . , e j ) (with 0 ≤ i ≤ j ≤ l) of L and
a complementary sequence, which we denote by S′ = (e′

1, . . . , e
′
k) (with k ≥ 1).

Replacing in L the sequence S by S′, we get a new edge sequence

L ′ = (
e0, . . . , ei−1, e

′
1, . . . , e

′
k, e j+1, . . . , el

)
.

The reader can easily convince herself (see Fig. 15, left), that the sequence L ′ is a
crosscut for K with

∣∣V+
L ′

∣∣ <
∣∣V+

L

∣∣.
Reduction of Type 2 InCase 2 the flower of v is incomplete.Nevertheless, the edges in L
which are adjacent to v form again a sequence of consecutive edges in this incomplete
flower, because v is simple. However, the local modification of L in a neighborhood of
v described above does not result in a crosscut L ′, since the complementary sequence
S′ = S′

1 ∪ S′
2 consists of exactly two connected components S′

1 = (e′
1, . . . , e

′
k) and

S′
2 = (e′′

1 , . . . , e
′′
m) (see Fig. 15, middle). Replacing in L the sequence S by S′

1 or S
′
2,

we get a new edge sequence L ′ or L ′′, respectively, with

L ′ = (
e0, . . . , ei−1, e

′
1, . . . , e

′
k

)
, L ′′ = (

e′′
1 , . . . , e

′′
m, e j+1, . . . , el

)
.

Both sequences L ′ and L ′′ are new crosscuts of K , but only one (L ′, say) contains
vα among its upper vertices, so we choose this one as the new crosscut. Clearly∣∣V+

L ′
∣∣ <

∣∣V+
L

∣∣.
Reduction of Type 3 If either the initial or the terminal edge of L are adjacent to v, then
the Type 1 reduction applied to the incomplete flower of v results in an admissible
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crosscut L ′, which has one vertex (namely v) less in V+
L ′ than in V+

L (see Fig. 15,
right).

Remark No matter which type of reduction we used, the sets U−
L and U−

L ′ of lower
neighbors before and after the reduction, respectively, always fulfill U−

L ′ \U−
L = {v}.

In order to not lose the normalization, we will only reduce vertices different from
vα . This leads to a situation where none of the above reductions can be applied, namely
when vα is the only simple vertex inU+

L . This special casewill be explored in Sect. 6.2.

6.2 Slits

The next definition and the following lemma describe the situationwhen all but exactly
one vertex of U+

L are multiple.

Definition 8 A combinatoric slit of the complex K (V, E, F) is a sequence S =
(v1, v2, . . . , vs) of vertices in V which satisfies the following conditions (1)–(4):

(1) The vertices of S are pairwise different, v j = vk if 1 ≤ j < k ≤ s.
(2) For j = 1, . . . , s − 1, the edges e j := e(v j , v j+1) belong to E .
(3) For j = 1, . . . , s, the vertices v j−1 and v j+1 are the only neighbors of v j in K

which belong to S (where v0 := ∅ and vs+1 := ∅).
(4) The vertex v1 is a boundary vertex, and v j are interior vertices for j = 2, . . . , s.

The vertices v1 and vs are referred to as the initial vertex and the terminal vertex of
S, respectively. The sequence ES := (e1, . . . , es−1) [see (2)] is said to be the edge
sequence of S. Note that all e j are interior edges.

Lemma 19 Assume that the interior vertex v is the only simple vertex in U+
L .

Then the sequence of upper accompanying vertices S+
L has the symmetric form

(v1, . . . , vs−1, v, vs−1, . . . , v1) and S = (v1, . . . , vs−1, v) is a slit.

Proof Bydefinition of amultiple vertex, any vertex inU+
L except vmust appear at least

twice in the sequence S+
L . If there are vertices which show up twice at a position left

of v, we choose one, say u, whose appearances have minimal distance in the sequence
S+
L = (. . . , u, . . . , u, . . . , v, . . .). Since neighboring vertices of S+

L must be different,
there exists w = u such that S+

L = (. . . , u, . . . , w, . . . , u, . . . , v, . . .). Because v is
assumed to be simple and w is a multiple vertex, we have w = v and w must appear
again at another place in S+

L . By Lemma 15 this can only happen in between the two
occurrences of u, which is in conflict with the minimal distance property of u.

Similarly, the assumption that there exists a vertex which appears in S+
L twice at a

position right of v leads to a contradiction. Hence, with the only exception of v, any
vertex of UL appears in S+

L exactly once on either side of v. Applying Lemma 15
again, we see that the ordering of the vertices left of v must be reverse to the ordering
on the right of v, so that S+

L has the symmetric form claimed in the lemma.
Moreover we have shown that v1, . . . , vs−1, v are pairwise different, which is con-

dition (1) of Definition 8. The second condition (2) is trivial.
In order to verify condition (4), it remains to show that v j is an interior vertex for

j = 2, . . . , s − 1, because v1 is obviously a boundary vertex, while vs := v is an
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Fig. 16 Illustrations for the proof of Lemma 19

interior vertex, by assumption. Assume v j is a boundary vertex. The flower of v j is
incomplete and it is clear that v j−1 and v j+1 are neighbors of v j . On the one hand,
since (v j−1, v j , v j+1) is a subsequence of S

+
L , the crosscut L must look locally like

shown in Fig. 16 left. On the other hand, the subsequence (v j+1, v j , v j−1) of S
+
L forces

L to look locally like depicted in the middle of Fig. 16, a contradiction. Hence v j must
be an interior vertex and its flower must look qualitatively like shown in Fig. 16 right.

To verify condition (3) let j ∈ {2, . . . , s − 1} be fixed. Looking at the behavior of
the crosscut L in the flower of v j , it becomes clear that any edge e(v j−1, v j+1) (with
the convention vs := v) belonging to E must be contained in L twice, a contradiction.
Furthermore, all other neighbors of v j belong to V−

L and hence not to V+
L ⊃ S+

L . A
similar result can be derived by looking at the local behavior of L in the flower of
v and the incomplete flower of v1, now using the subsequences (vs−1, vs, vs−1) and
(v1, v2, . . . , v2, v1) of S

+
L , respectively. 
�

The following lemma explains why we are interested in slits.

Lemma 20 Let (P,P ′) be an admissible pair of circle packings for the complex K
with crosscut L and alpha-vertex vα . Then there exists a slit S = (v1, . . . , vs, vα) ⊂
V+
L with terminal vertex vα such that D′

v = Dv for all v ∈ S.

Proof To begin with, we invoke Lemma 18, which tells us that the pair (P,P ′) has a
simple loner vλ. The idea is to use the reduction procedures of the last section to shift
vλ from V+

L to V−
L which results in a new crosscut L ′.

Aswe remarked earlier, the one and only lower neighbor of L ′ which has not already
been a lower neighbor of L is the simple loner vλ. Therefore Lemma 7 guarantees
that L ′ is admissible for (P,P ′). In order to find the appropriate type of reduction we
distinguish the following cases:

Case 1 There exists a simple interior loner vλ different from the alpha-vertex vα .
Case 2 There exists a simple boundary loner vλ.
Case 3 The only simple loner vλ is the alpha-vertex vα .

In Case 1 we apply the reduction of Type 1, while in Case 2 either the reduction of
Type 2 or Type 3 can be applied, respectively, depending on whether vλ is adjacent
to the initial or the terminal edge of L , or not. In any case we get a new combinatoric
crosscut L ′ of K . Applying the reduction in Cases 1 and 2 recursively as long as
possible, the number of vertices in V+

L decays in every step at least by one, so that we
eventually arrive at Case 3.
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v1
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E+
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Fig. 17 Left and right neighboring edges of vertices v = v1, v j , vs in a slit S

Since the disks D′
α and Dα have the same centers, we either have one of the strict

inclusions D′
α ⊂ Dα , Dα ⊂ D′

α or D′
α = Dα . The first case cannot occur, since

otherwise all neighboring disks of D′
α would intersect Dα , a contradiction for those

disks associated with a vertex in U−
L . The second case clearly implies that vα is an

intruder. So the alpha-vertex vα is a loner if and only if D′
α = Dα . This implies, by

Lemma 14, that there exists another loner vμ. Since vα is the only simple loner, vμ

must be a multiple loner. If D′
μ = Dμ, then according to Lemma 18 (1), the vertex set

VM of any loop M of vμ contains a simple loner, i.e., M meets vα . Because D′
α = Dα ,

assertion (2) of this lemma tells us that D′
μ = Dμ.

Applying Lemmas 14 and 18 repeatedly in this manner, we see that all vertices in
U+

L \{vα}must bemultiple loners and hence that D′
v = Dv for all v ∈ U+

L . Furthermore
vα is the only simple vertex inU+

L , so, by Lemma 19, we just constructed a slit S ⊂ V+
L

with terminal vertex vα . 
�
In the next step we are going to construct crosscuts from slits. To begin with, we

introduce some more notations.
Let S = (v1, . . . , vs) be a slit. For any vertex v in S we define the subsets E−

S (v)

and E+
S (v) of E(v) as follows. For v = v1, the (boundary) vertex v1 has two adjacent

boundary edges e−
1 and e+

1 in E(v1), such that e−
1 is the predecessor of e+

1 in the
chain of boundary edges. The meaning of the inequalities in the following definitions
is explained in the second paragraph on complexes in Section 2. For the initial vertex
v1 we set (see Fig. 17, left)

E−
S (v1) := {

e ∈ E(v1) : e(v1, v2) < e ≤ e−
1

}
,

E+
S (v1) := {

e ∈ E(v1) : e+
1 ≤ e < e(v1, v2)

}
.

If v = v j , with j = 2, . . . s − 1, we define (Fig. 17, middle)

E−
S (v j ) := {

e ∈ E(v j ) : e(v j , v j+1) < e < e(v j−1, v j )
}
,

E+
S (v j ) := {

e ∈ E(v j ) : e(v j−1, v j ) < e < e(v j , v j+1)
}
,

and for the terminal vertex vs of S we let (see Fig. 17, right)

E−
S (vs) = E+

S (vs) := {e ∈ E(vs) : e(vs−1, vs) < e < e(vs−1, vs)} .
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Fig. 18 Constructing crosscuts from one slit (left) and two slits (middle, right)

The edges in

E−
S := ∪s−1

j=1E
−
S (v j ) and E+

S := ∪s−1
j=1E

+
S (v j )

are called the left and the right neighbors of S, respectively. Note that condition (3)
in Definition 8 guarantees that every edge e which is a neighbor of a slit S has exactly
one adjacent vertex in S.

Lemma 21 If S = (v1, . . . , vs, v) is a slit in K , then there exists a combinatoric cross-
cut L such that v ∈ S+

L , and S−
L = (v1, . . . , vs−1, vs, vs−1, . . . , v1) is the sequence

of lower accompanying vertices of L.

Proof Walking along the slit S from v1 to vs and back to v1, we build the crosscut L
from the concatenation of the edge sequences

E−
S (v1), . . . , E

−
S (vs), e(vs, v), E+

S (vs), . . . , E
+
S (v1).

It is easy to see that all edges in L are pairwise different, so that L satisfies condition
(1) of Definition 3. Condition (2) can easily be verified and (4) is obvious. In order
to prove (3) we assume that three edges of L would form a face of K . Since these
edges are neighbors of S, exactly one vertex of every edge must belong to S, which is
impossible.

The construction also guarantees that the sequence S−
L of lower accompanying

edges of L has the desired form and that v belongs to S+
L (see, for example, Fig. 18,

left). 
�
Acrosscut L can also be constructed from joining two slits S1 and S2 with a common

terminal vertex v. This procedure is somewhat more complicated, in particular when
the “right side” of S1 is close to the “left side” of S2. In those cases we cannot join the
cuts at their common terminal vertex v, since then the resulting edge sequence L would
contain some edges more than once. Instead we modify the procedure by linking S1
and S2 at some appropriately chosen vertex u in S2 or S1 which has a neighbor in S1 or
S2, respectively. Figure 18 (middle, right) illustrates the result, showing an associated
circle packing and the related maximal crosscuts.
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Lemma 22 Let S1 = (v1, . . . , vt , v) and S2 = (w1, . . . , ws, v) be slits in K with
S1 ∩ S2 = {v}. Assume further that E+

S1
(v1) ∩ E−

S2
(w1) = ∅. Then there exists a

combinatoric crosscut L and a vertex u ∈ (S1 ∪ S2) ∩U+
L such that

S−
L = (

w1, w2, . . . , wσ , u1, . . . , uk, vτ , vτ−1, . . . , v1
)
, 1 ≤ τ ≤ t, 1 ≤ σ ≤ s,

(1)
where

(
wσ , u1, . . . , uk, vτ

)
is a (positively oriented) chain of neighbors of u.

Note that the condition E+
S1

(v1)∩ E−
S2

(w1) = ∅ does not exclude that v1 and w1 share
an edge. Loosely speaking, it means that there is no such edge connecting the “plus
side” of S1 and the “minus side” of S2;

Proof We set vt+1 := v and ws+1 := v. Let i be the smallest number in {1, ..., t + 1}
for which E+

S1
(vi ) contains an edge e(vi , w) with w ∈ S2. Then let j be the smallest

number in {1, ..., s + 1} for which E−
S2

(w j ) contains an edge e(w j , vi ). If i = 1 and
j = s + 1 we set τ := i − 1, σ := j and u := vi . If i = 1 but j = s + 1, then
i = t must hold (otherwise v would have more then one neighbor in S1), and we set
τ := t , σ := s and u := v. If i = 1 we set τ := 1, σ := j − 1 and u := w j . In the
last case we have j > 1, since otherwise i = j = 1 would contradict the assumption
E+
S1

(v1) ∩ E−
S2

(w1) = ∅.
In every case 1 ≤ τ ≤ t and 1 ≤ σ ≤ s hold, and u is well defined. We now build

L as the concatenation of the edge sequences

E−
S2

(w1), . . . , E
−
S2

(wσ ), E∗(u), E+
S1

(vτ ), . . . , E
+
S1

(v1),

where E∗(u) = (
e(u, wσ ), e(u, u1), . . . , e(u, uk), e(u, vτ )

)
is the negatively oriented

chain of edges in the set {e′ ∈ E(v) : e(u, wσ ) ≤ e′ ≤ e(u, vτ )}.
Because S1, S2 are slits, all edges in the “E+

S1
-part” and in the “E−

S2
-part” of L are

pairwise different. Furthermore, it cannot happen that such an edge is contained in
both parts (according to the definition of u), or that it belongs to E∗(u) (by definition
of E∗(u)). Hence, L satisfies condition (1) of the crosscut definition.

Condition (2) can easily be verified and (4) is trivial. In order to prove (3) we
assume that three edges of L form a face of K . By definition of u, the sequence
(w1, w2, . . . , wσ , u, vτ , . . . , v2, v1) divides K into two parts K1, K2. All edges of the
“E+

S1
-part” and of the “E−

S2
-part” have exactly one vertex lying in S01∪S02 and one in K1,

so three of them can never form a face of K . All edges of E∗(u)\{e(u, vτ ), e(u, wσ )}
have exactly one vertex lying in S01 ∪ S02 and one in K2, so again three of them can
never form a face of K . The only remaining edges are e(u, vτ ), e(u, wσ ), but two
edges cannot form a face, and a combination of edges from more than one of the three
distinguished edge types can clearly never form a face. Hence, L is a crosscut with
u ∈ (S1 ∪ S2) ∩U+

L , and S−
L has the form (1). 
�

The operation described in the proof is well defined by the slits S1 and S2, and will
be referred to as reflected concatenation S1 � S2 of S1 with S2. It delivers a crosscut
L , a vertex u, and the reduced slits S01 , S

0
2 . Note that the reflected concatenation is not

commutative.
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6.3 Subdivision by disk chains

Let vβ be an arbitrary accessible boundary vertex. In this section we describe an
approach which allows us to apply Lemma 20 recursively, until we find a slit S with
initial vertex vβ such that D′

v = Dv for all v ∈ S, so especially D′
vβ

= Dvβ . During

this procedure we construct a sequence of crosscuts L j such that V
+
L j

contains vβ and

the number of elements in V+
L j

is strictly decreasing for increasing j . This procedure
will be crucial for proving the following lemma, and finally Theorem 2.

Lemma 23 Let (P,P ′) be an admissible pair with complex K , interior alpha vertex
vα and crosscut L. Then D′

v = Dv for all accessible boundary vertices v ∈ ∂V ∗.

Proof To begin with, let S0 = (v1, . . . , vs, vα) be a slit according to Lemma 20. Let
vβ be an accessible boundary vertex. If v1 = vβ then D′

β = Dβ and we are done. So
let us assume that vβ /∈ S0.

By Lemma 21 there exists a crosscut L1 such that S−
L1

= (v1, . . . , vs−1, vs, vs−1,

. . . , v1) and vα ∈ S+
L1
. Applying Lemma 20 again, but nowwith respect to the crosscut

L1, we get another slit S1 = (w1, . . . , wt , vα) ⊂ V+
L1
, such that D′

v = Dv for all
v ∈ S1. If w1 = vβ then D′

β = Dβ and we are done. So suppose that vβ /∈ S1.
The three boundary vertices v1, w1 and vβ are pairwise different, and we assume,

without loss of generality, that they are oriented such thatw1 < vβ < v1. This ensures
that E+

S1
(v1) ∩ E−

S0
(w1) = ∅, because otherwise vβ could be either accessible or a

boundary vertex, but not both. Since, except vα , all vertices of S0 belong to V−
L1
, we

have S0∩ S1 = {vα}. Consequently, by Lemma 22, the reflected concatenation S0� S1
of S0 with S1 is well defined. It delivers a crosscut L2, a vertex vα2 , and reduced slits
S−
2 ⊂ S0, S

+
2 ⊂ S1 with common terminal vertex vα2 . Since E+

S1
(v1) ∩ E−

S2
(w1) = ∅

(see above), by Lemma 22 the vertex vα2 belongs to S1 or S2 and the setU
−
L2

of lower
neighbors of L2 consists solely of elements of S0 ∪ S1 and of (lower) neighbors of
vα2 . Since D

′
v = Dv for all v ∈ S0 ∪ S1, this implies that L2 is an admissible crosscut

for (P,P ′). Moreover, the order of S0 and S1 in the reflected concatenation has been
chosen such that vβ belongs to V+

L2
.

The general step of the procedure is as follows. Assume that we already have an
admissible crosscut L j , the alpha vertex vα j , and the reduced slits S−

j and S+
j , such

that vβ ∈ V+
L j

(see Fig. 19, left). Denoting by v−
j and v+

j the initial vertices of S−
j and

S+
j , respectively, we may assume that v−

j < vβ < v+
j , which will again be essential

to ensure the special condition of Lemma 22.
Applying Lemma 20, we get a new slit S j ⊂ V+

L j
, such that S−

j , S j and S+
j are

pairwise disjoint, except at their common terminal vertex vα j , and D′
v = Dv for all

v ∈ S j (see Fig. 19, middle).
If vβ ∈ S j we are done. Otherwise we either have v−

j < vβ < v j or v j < vβ < v+
j .

In the first case we build the reflected concatenation S−
j � S j , in the second case we

form S j � S+
j . The result is a new crosscut L j+1, a corresponding alpha-vertex vα j+1 ,

and reduced slits S−
j+1, S

+
j+1 (see Fig. 19, right).
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S+
j

Dαj

S−
j

LjLj

S+
j+1

S−
j+1

Dαj+1

Lj+1

Lj+1

Fig. 19 Construction of the crosscut L j+1 from L j

It follows directly from the construction of the reflected concatenation that
vα j+1 , vβ ∈ V+

L j+1
. Moreover, vα j+1 ∈ S−

j , and hence D′
α j+1

= Dα j+1 . To see that

L j+1 is admissible for the pair (P,P ′) it remains to prove that D′
v ⊂ G−

L j+1
for all

v ∈ U−
L j+1

.

By Lemma 22 the setU−
L j+1

of lower neighbors of L j+1 consists solely of elements

of S−
j ∪ S+

j and of (lower) neighbors of vα j+1 . Since D′
v = Dv for all v ∈ S−

j ∪ S+
j ∪

{vα j+1}, and Dv ⊂ G−
L j+1

for all v ∈ U−
L j+1

, the assertion follows.

The number of elements in V+
L j

is strictly decreasing in every step, and hence the
procedure must come to end. This can only happen if vβ ∈ S j∗ for some j∗ ∈ N.
Because D′

v = Dv for all v ∈ S j with j ≤ j∗, we have shown D′
vβ

= Dvβ . 
�
Now the proof of Theroem 2 is near to its end. By Lemma 1 the kernel K ∗ is a

strongly connected complex with vertex set V ∗. Since we have shown that D′
v = Dv

for all boundary vertices v ∈ ∂V ∗ of K ∗, and every boundary vertex of K ∗ is also a
boundary vertex of K (that is ∂V ∗ = V ∗ ∩ ∂V ), Theorem 11.6 in Stephenson (2005)
(on the uniqueness of a locally univalent packing with presribed combinatorics and
given radii of boundary disks) tells us that D′

v = Dv for all v ∈ V ∗, which is the
assertion of Theorem 2.

7 Concluding remarks

All proofs in this paper work with (simple) geometric or combinatoric arguments,
alone in the very last step we had recourse to a theorem established in the literature.
For purists wemention that even this could have been avoided, at the expense of adding
a few pages to this rather longish text.

Theorem 2 can be interpreted as a uniqueness result for (the range packing of)
discrete conformal mappings. Here is a simple version:

Theorem 3 Suppose that two univalent packingsP andP ′ for K fill G. If D′
α and Dα

have the same center, and if D′
β ⊂ Dβ for some boundary vertex vβ , then D′

v = Dv

for all vertices v ∈ V ∗.

The proof follows immediately fromTheorem2 applied to themaximal crosscutwhich
separates the disk Dβ from the rest of the packingP (see the leftmost image of Fig. 20).
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Dα

D′
β

Dβ

Dα

Dβ

D′
β

Dα

Dβ

D′
α

D′
β

Fig. 20 Applications of Theorem 2 to discrete conformal mapping

The condition D′
β ⊂ Dβ can even be relaxed, it suffices to require that D′

β lies in the
lower domain G− with respect to this crosscut (see the second image of Fig. 20). Note
that both figures show the packing P and a single disk D′

β of P ′ in G−.
We point out that the condition D′

β ⊂ G− is always satisfied (possibly after
exchanging the roles of P and P ′), if the packings are normalized so that D′

β and
Dβ touch the boundary ∂G in a generalized sense at the same regular point (or, more
generally, at the same regular prime end). Without explaining these concepts here
(see Wegert and Krieg 2014), we mention that a point which lies on a smooth subarc
of ∂G is always regular, while a point at a re-entrant corner fails to be regular. The
two pictures on the right of Fig. 20 illustrate that uniqueness of domain-filling circle
packings may be violated in that case. Both displayed packings P and P ′ fill a Jordan
domain G, Dα and D′

α have the same center, and Dβ and D′
β touch ∂G at the same

point. While this type of normalization implies uniqueness of classical conformal
mappings, the corresponding circle packings P and P ′ are completely different.

We further mention that for domain-filling circle packings P and P ′ the assertions
of Theorems 2 and 3 can be strengthened to D′

v = Dv for all v ∈ V , using the results
of our forthcoming paper (Krieg and Wegert 2015).

In the general setting of Theorem 2, a complete description of which disks are
uniquely determined by a crosscut seems not to be known. Figure 21 shows some
examples. The accessible disks are depicted in darker colors, the alpha-disk is the
darkest one. By Theorem 2 these disks are uniquely determined (rigid) by the crosscut,
but the rigid part also comprises the non-accessible disks shown in brighter color.

The example on the right is of special interest: a short crosscut separates only one
non-accessible disk Dβ from the alpha-disk. Here the theorem yields rigidity for the
dark (blue) disks, while it says nothing about the disks depicted in lighter colors.
This is somewhat counterintuitive, since the bright disks separate the dark disks from
the crosscut, so that the latter seem to have no relation to the cut at all. However, a
little thought shows that in fact all colored disks in the upper domain are rigid. It is a
challenging problem to precisely describe the set of all rigid disks in a circle packing
with crosscut.
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Fig. 21 Rigid configurations of disks in a packing with crosscut

Isn’t it wonderful that simple circles can form such fascinating structures?

Glossary

�, S1 � S2 reflected concatenation of slit S1 with slit S2
〈u, v, w〉 oriented face of K with vertices u,v and w

〈u, v〉 oriented edge of K from vertex u to vertex v

αi , α special Jordan arcs connecting y−
i and y+

i , and their concatenation
B(v) the flower of the vertex v, a subcomplex of K
c(u, v) contact point of the disks Du and Dv , c(u, v) = Du ∩ Dv

c−
k , c+

k contact points of boundary disk Dk with Dk−1 and Dk+1, respectively
D union of all disks in P
D∗ carrier of P
Dk, D′

k boundary disks in P and P ′, respectively
Dv, D′

v disks in P and P ′, respectively
∂ boundary operator, applied to various objects
δ(p, q) positively oriented open circular arc from p to q on ∂D
δ[p, q] positively oriented closed circular arc from p to q on ∂D
δ(c−

k , c+
k ) exterior boundary arc of Dk

δ(c+
k , c−

k ) interior boundary arc of Dk

δk smallest subarc of δ[c−
k , c+

k ] which contains Gk

ES the edge sequence of the slit S
E the set of edges of the complex K
∂E boundary edges of the complex K
E(v) the (cyclically ordered) sequence of edges adjacent to v ∈ V
E±
L (v) sequences of upper and lower accompanying edges of the crosscut L

E±
S (v) sequences of edges adjacent to a vertex v in a slit S

E±
S sequences of left and right neighbor edges of slit S, respectively

e(u, v) non-oriented edge between vertices u and v

e j edges in a crosscut, L = (e0, e1, . . . , el)
e−
j , e

+
j lower and upper accompanying edges of the crosscut L , respectively

ηk, η segments connecting the centers of Dk and Dk+1 and their concatena-
tion

F set of faces of the complex K
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f (u, v, w) non-oriented face with vertices u, v and w

G a bounded simply connected domain in C
G−

L ,G+
L lower and upper domains of G with maximal crosscut J+

L , G−
L = �

Gk set of contact points of Dk with ∂G, Gk := Dk ∩ ∂G
g−
k , g+

k first and the last contact point of Dk with ∂G
Ik boundary interstice between Dk and Dk+1
I (u, v, w) interstice between the disks Du, Dv and Dw

J 0L polygonal (geometric) crosscut in G for (combinatoric) crosscut L in
K

J+
L maximal ‘crosscut’, the upper boundary of the lower domainG−

L , J
+
L =

ω

K simplicial 2-complex, combinatorial disk, finite triangulation, K (V,

E, F)

K ∗ kernel of K , largest sub-complex of K with vertex set V ∗
L combinatorial crosscut, sequence of edges in K
l(i) smallest label k of prime end set ω∗

k associated with νi
M , M(μ) loop of a multiple loner vμ, a sequence of edges
νi , πi negatively and positively oriented arcs on ∂D from y−

i , y+
i toω, respec-

tively
ν+
i , π+

i terminal points of the arcs νi , πi , respectively
ν∗
i , π∗

i prime ends of � associated with νi , πi , respectively
� lower subdomain of G with respect to a maximal crosscut, � = G−

L
ω upper boundary of lower domain �, concatenation of the ωi , maximal

crosscut
ω∗ prime ends of � associated with ω

ωi circular subarcs of ω in between its turning points
ω∗
i classes of prime ends associated with the arcs ωi

P a univalent circle packing for K filling G
P ′ a univalent circle packing for K in G
r(i) largest label k of prime end set ω∗

k associated with πi

S combinatoric slit, a sequence of vertices
S−
L , S

+
L sequences of lower and upper accompanying vertices of L , respectively

ti turning points of the upper boundary ω, cusps of �

U−
L , U

+
L sets of lower and upper neighbors of L , respectively,U−

L ⊂ V−
L ,U+

L ⊂
V+
L

UM sequence of the vertices in VM for a loop M
V vertex set of the complex K
V ∗ the set of all accessible vertices of K
∂V boundary vertices of the complex K
V−
L , V+

L lower and upper vertices of K with crosscut L , respectively, subsets of
V

VM set of all vertices met by a loop M
vα alpha vertex of K , a distinguished interior vertex
v(i) vertex of the disk which contains the circular arc ωi , v(i) ∈ U+

L
xk, X contact points of upper with lower disks in P , the set of all xk
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Xi sets of contact points xk on ωi , Xi ⊂ X
y−, y+ initial point and terminal point of α, respectively
yk,Y contact points of upper with lower disks in P ′, the set of all yk
y−
i , y+

i minimal and maximal element of Yi , respectively
Yi sets of contact points yk with xk ∈ ωi , Yi ⊂ Y
z−, z+ terminal points of ν1 and πn , respectively
zk shifted contact points when yk is critical

Acknowledgments We would like to thank the referee for reading this long manuscript with great care
and making valuable comments and suggestions. We also thank Beate Uhl and the Springer Correction
Team for their constructive collaboration in resolving some issues concerning page referencing.

References

Bauer, D., Stephenson, K., Wegert, E.: Circle packings as differentiable manifolds. Contrib. Algebra Geom.
53, 399–420 (2012)

Beardon, A.F., Stephenson, K.: The uniformization theorem for circle packings. Indiana Univ. Math. J. 39,
1383–1425 (1990)

Golusin, G.M.: Geometrische Funktionentheorie. Dt. Verl. d. Wissenschaften, Berlin (1957)
He, Z.-X., Schramm, O.: On the convergence of circle packings to the Riemann map. Invent. Math. 125,

285–305 (1996)
Henle, M.: A combinatorial introduction to topology. Dover Publ. (1979)
Koebe, P.: Kontaktprobleme der konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl.

88, Leipzig 1936: 141–164
Krieg, D., Wegert, E.: Domain-filling circle packings (2015) (in preparation)
Pommerenke, Ch.: Boundary behaviour of conformal maps. Springer, Berlin (1992)
Rodin, B.: Schwarz’s lemma for circle packings. Invent. Math. 89, 271–289 (1987)
Rodin, B., Sullivan, D.: The convergence of circle packings to the Riemann Mapping. J. Differ. Geom. 89,

349–360 (1987)
Schramm, O.: Combinatorically prescribed packings and applications to conformal and quasiconformal

maps. Ph.D. thesis., Princeton (1990)
Schramm, O.: Existence and uniqueness of packings with specified combinatorics. Israel J. of Math. 73,

321–341 (1991)
Stephenson, K.: Introduction to circle packing. Cambridge Univ. Press, Cambridge (2005)
Thurston, W.: The finite Riemann mapping theorem. In: Invited talk in the International Symposium at

Purdue University on the occasion of the proof of the Bieberbach conjecture (1985)
Wegert, E., Krieg, D.: Incircles of trilaterals. Contrib. Algebra Geom. 55, 277–287 (2014)
Wegert, E., Roth, O., Kraus, D.: On Beurling’s boundary value problem in circle packing. Complex Var.

Elliptic Equ. 57, 397–410 (2012)

123


	Rigidity of circle packings with crosscuts
	Abstract
	1 Introduction
	2 Circle packings
	3 Crosscuts
	4 Loners
	4.1 The regular case
	4.2 The critical case

	5 Structure of upper neighbors
	6 Proof of the main theorem
	6.1 Combinatoric reduction
	6.2 Slits
	6.3 Subdivision by disk chains

	7 Concluding remarks
	Acknowledgments
	References




