

ORIGINAL PAPER

On centrally-extended maps on rings

H. E. Bell · M. N. Daif

Received: 24 October 2014 / Accepted: 24 February 2015 / Published online: 6 March 2015 \circledcirc The Managing Editors 2015

Abstract Let *R* be a ring with center *Z*. A map *D* of *R* (resp. *T* of *R*) is called a centrally-extended derivation (resp. a centrally-extended endomorphism) if for each $x, y \in R, D(x + y) - D(x) - D(y) \in Z$ and $D(xy) - D(x)y - xD(y) \in Z$ (resp. $T(x + y) - T(x) - T(y) \in Z$ and $T(xy) - T(x)T(y) \in Z$). We discuss existence of such maps which are not derivations or endomorphisms, we study their effect on *Z*, and we give some commutativity results.

Keywords Derivations · Epimorphisms · Centrally-extended derivations · Centrally-extended epimorphisms · Commutativity theorems

Mathematics Subject Classification 16W25 · 16U80 · 16N60

1 Introduction

Let *R* be a ring, not necessarily with 1, with center Z = Z(R). Let *N* be the set of nilpotent elements of *R*, and call *R* reduced if $N = \{0\}$. For each $x, y \in R$, denote by [x, y] the commutator xy - yx. If $S \subseteq R$, define $f : R \to R$ to be centralizing on *S* if $[x, f(x)] \in Z$ for all $x \in S$; and define *f* to be strong commutativity-preserving on *S* if [x, y] = [f(x), f(y)] for all $x, y \in S$.

H. E. Bell

M. N. Daif (🖂)

Department of Mathematics, Brock University, St. Catharines, ON L2S 3A1, Canada e-mail: hbell@brocku.ca

Department of Mathematics, Al-Azhar University, Nasr City, Cairo 11884, Egypt e-mail: nagydaif@yahoo.com

Define a map $D: R \to R$ to be a centrally-extended derivation (CE-derivation) if for each $x, y \in R$, $D(x + y) - D(x) - D(y) \in Z$ and $D(xy) - D(x)y - xD(y) \in Z$. Define a map $T: R \to R$ to be a centrally-extended endomorphism (CE-endomorphism) if for each $x, y \in R$, $T(x + y) - T(x) - T(y) \in Z$ and $T(xy) - T(x)T(y) \in Z$; and if T is also surjective, call it a CE-epimorphism. We present examples of CE-derivations and CE-endomorphisms and investigate when they are ordinary derivations or endomorphisms, we study their effect on Z, and we note applications to commutativity theorems.

2 Examples and existence theorems

Clearly, every derivation (resp. endomorphism) is a CE-derivation (resp. CEendomorphism). If *R* is commutative, every map $f: R \to R$ is both a CE-derivation and a CE-endomorphism; hence we cannot get interesting results in this case.

Example 2.1 Let *R* be any ring with $Z \neq \{0\}$. Choose $a \in Z \setminus \{0\}$ and define T(x) = a for all $x \in R$. Then $T(x + y) - T(x) - T(y) = -a \in Z$ and $T(xy) - T(x)T(y) = a - a^2 \in Z$, hence *T* is a CE-endomorphism. Since *T* is not additive, it is not an endomorphism.

Example 2.2 Let R be a ring with a nonzero central ideal I, and let f be any function from R into I.

- (a) Let *t* be any endomorphism of *R* and define T(x) = t(x) + f(x) for all $x \in R$. Then $T(x + y) - T(x) - T(y) = f(x + y) - f(x) - f(y) \in Z$ and $T(xy) - T(x)T(y) = f(xy) - f(x)t(y) - f(y)t(x) - f(x)f(y) \in Z$ for all $x, y \in R$, so *T* is a CE-endomorphism. If *f* is a nonzero constant function, *T* is not an endomorphism; and if we also take *t* to be the identity map, *T* is a CE-epimorphism which is not an epimorphism.
- (b) With *I* and *f* as above, let *d* be a derivation on *R* and define D(x) = d(x) + f(x) for all x ∈ R. Then D is easily shown to be a CE-derivation, which for appropriate choices of *f* is not a derivation.

Example 2.3 Let R_1 be a commutative domain, R_2 a noncommutative prime ring with derivation d and $R = R_1 \oplus R_2$. Define $D: R \to R$ by D((x, y)) = (g(x), d(y)), where $g: R_1 \to R_1$ is any map which is not a derivation. Then R is a semiprime ring and D is a CE-derivation which is not a derivation. Moreover, $R_1 \oplus \{0\}$ is a central ideal of R.

It is no accident that nonzero central ideals play a prominent role in these examples, as the following two theorems show.

Theorem 2.4 Let *R* be any ring with no nonzero central ideals. Then every CEderivation *D* on *R* is additive.

Proof Let x and y be fixed elements of R, and let

$$D(x + y) = D(x) + D(y) + a, \quad a \in \mathbb{Z}.$$
 (2.1)

For arbitrary $t \in R$, we have $b \in Z$ such that

$$D(t(x + y)) = tD(x + y) + D(t)(x + y) + b$$

= $t(D(x) + D(y) + a) + D(t)(x + y) + b$
= $tD(x) + tD(y) + D(t)x + D(t)y + ta + b.$ (2.2)

Calculating in a different way, we have

$$D(t(x + y)) = D(tx + ty)$$

= D(tx) + D(ty) + c
= tD(x) + D(t)x + b_1 + tD(y) + D(t)y + c_1 + c, (2.3)

where $b_1, c_1, c \in Z$.

Comparing (2.2) and (2.3) gives $ta + b = b_1 + c_1 + c$, hence Ra is a central ideal and therefore $Ra = \{0\}$. Thus, letting A(R) be the two-sided annihilator of R, we have $a \in A(R)$. But A(R) is a central ideal, so a = 0 and by (2.1) D(x+y) = D(x)+D(y).

Theorem 2.5 If *R* is a semiprime ring with no nonzero central ideals, then every *CE*-derivation *D* is a derivation.

Proof Let $x, y, t \in R$ be arbitrary elements. Then $D((xy)t) - xyD(t) - D(xy)t \in Z$ and $D(x(yt)) - xD(yt) - D(x)yt \in Z$. Subtracting, we get

$$-xyD(t) - D(xy)t + xD(yt) + D(x)yt \in Z.$$
 (2.4)

Let

$$D(xy) = xD(y) + D(x)y + z_1, \text{ and} D(yt) = yD(t) + D(y)t + z_2, \text{ where } z_1, z_2 \in Z.$$
(2.5)

Then from (2.4),

$$-xyD(t) - xD(y)t - D(x)yt - z_{1}t + xyD(t) + xD(y)t + xz_{2} + D(x)yt \in Z,$$

which reduces to

$$-z_1t + xz_2 \in Z. \tag{2.6}$$

Thus $[xz_2, t] = [x, t]z_2 = 0$. Replacing x by $xr, r \in R$, and recalling (2.5), we have

$$[x, t]R(D(yt) - yD(t) - D(y)t) = 0 \text{ for all } x, y, t \in R.$$
(2.7)

Let $\{P_{\alpha}|\alpha \in \Lambda\}$ be a family of prime ideals of R such that $\bigcap P_{\alpha} = \{0\}$, and let P denote a typical P_{α} . Let $\overline{R} = R/P$ and \overline{Z} the center of \overline{R} , and let $\overline{x} = x + P$ be a typical element of \overline{R} .

🖉 Springer

Fix y and t above, and let x vary. Then z_2 is fixed but z_1 varies with x. Now from (2.7) we have that either $(i)[x, t] \in P$ for all $x \in R$ or $(ii)z_2 = D(yt) - yD(t) - D(y)t \in P$, hence $\overline{t} \in \overline{Z}$ or $\overline{z_2} = \overline{0}$. It follows from (2.6) that for each $x \in R$, $-\overline{z_1}\overline{t} + \overline{x}\overline{z_2} \in \overline{Z}$, so that if $\overline{t} \in \overline{Z}$, $\overline{R}\overline{z_2} \subseteq \overline{Z}$. On the other hand, if $\overline{z_2} = \overline{0}$, it is certainly true that $\overline{R}\overline{z_2} \subseteq \overline{Z}$. Thus, $[rz_2, u] \in P$ for all $r, u \in R$; and since $\bigcap P_{\alpha} = \{0\}$, this gives the result that Rz_2 is a central ideal of R. As in the proof of Theorem 2.4, we conclude that $z_2 = 0$, i.e., D(yt) = yD(t) + D(y)t. Since D is additive by Theorem 2.4, our proof is complete.

Combining Theorem 2.5 and Example 2.2(b) gives

Theorem 2.6 A semiprime ring R admits a CE-derivation which is not a derivation if and only if R has a nonzero central ideal.

CE-epimorphisms are easily treated by the same methods, so we present our results without proof.

Theorem 2.7 If *R* is a ring with no nonzero central ideals, every CE-epimorphism on *R* is additive.

Theorem 2.8 If *R* is a semiprime ring with no nonzero central ideals, then every *CE-epimorphism* is an epimorphism.

3 On the invariance problem for Z

We say that a map $f: R \to R$ preserves the subset $S \subseteq R$ if $f(S) \subseteq S$. It is well known that derivations and epimorphisms preserve Z, and the purpose of this section is to study preservation of Z by CE-derivations and CE-epimorphisms.

The CE-derivations of Example 2.2(b) all preserve Z, and so do the CE-epimorphisms of Example 2.2(a) for which t is an epimorphism. However, there do exist CEderivations and CE-epimorphisms which do not preserve Z, as the following examples show.

Example 3.1 We give an example of a CE-derivation D with $D(Z) \notin Z$. Let R_2 be a noncommutative ring with $R_2^2 \subseteq Z(R_2)$, for example a noncommutative ring with $R_2^3 = \{0\}$. Let R_1 be a zero ring with $(R_1, +) \cong (R_2, +)$ and let $f: (R_1, +) \rightarrow (R_2, +)$ be an isomorphism. Define R to be $R_1 \oplus R_2$, and let $D: R \rightarrow R$ be given by D((x, y)) = (0, f(x)). It is easily verified that D is a CE-derivation on R. Moreover $R_1 \oplus \{0\} \subseteq Z(R)$ and $D(R_1 \oplus \{0\}) \notin Z(R)$.

Example 3.2 Let R_1, R_2, f and R be as in Example 3.1. Define $T((x, y)) = (f^{-1}(y), f(x))$ for all $(x, y) \in R$. It is easy to show that T is a CE-endomorphism; moreover, T is surjective, since for any $(u, v) \in R$, $T(f^{-1}(v), f(u)) = (u, v)$. Thus, T is a CE-epimorphism. Again, $R_1 \oplus \{0\} \subseteq Z(R)$ and $T(R_1 \oplus \{0\}) \notin Z(R)$.

Theorem 3.3 Let R be a ring with $Z \cap N = \{0\}$. Then every CE-derivation D on R preserves Z.

Proof Let $z \in Z$ and $x \in R$. Then $D(zx) - D(z)x - zD(x) \in Z$ and $D(xz) - D(x)z - xD(z) \in Z$, and by subtracting we obtain

$$[x, D(z)] \in Z \quad \text{for all } x \in R. \tag{3.1}$$

Replacing x by xD(z) in (3.1) gives $[x, D(z)]D(z) \in Z$, so

$$[[x, D(z)]D(z), x] = 0 = [x, D(z)]^2 \text{ for all } x \in R.$$
(3.2)

Since $Z \cap N = \{0\}, (3.1)$ and (3.2) give [x, D(z)] = 0 for all $x \in R$, i.e., $D(z) \in Z$.

Theorem 3.4 If R is a ring with $Z \cap N = \{0\}$, then every CE-epimorphism on R preserves Z.

Proof If $z \in Z$, $T(zx) - T(z)T(x) \in Z$ and $T(xz) - T(x)T(z) \in Z$ for all $x \in R$, and by subtraction we get $[T(x), T(z)] \in Z$ for all $x \in R$. Since *T* is surjective, this yields $[x, T(z)] \in Z$ for all $x \in R$. Proceeding as in the previous proof, we get $T(z) \in Z$.

Corollary 3.5 If *R* is a semiprime ring, *Z* is preserved by every CE-derivation and by every CE-epimorphism.

CE-derivations and CE-epimorphisms which preserve Z may also preserve subsets of Z, in particular the set K(R), defined as $\{x \in Z | xR \subseteq Z\}$. It is easily shown that K(R) is a central ideal containing all central ideals, i.e., the maximal central ideal.

Theorem 3.6 If D is a CE-derivation on a ring R which preserves Z(R), then D preserves K(R).

Proof Let $x \in K(R)$. Since $K(R) \subseteq Z$, $D(x) \in Z$. For arbitrary $r \in R$, $D(xr) - xD(r) - D(x)r \in Z$; and since $D(xr) \in Z$ and $xD(r) \in Z$, $D(x)r \in Z$. Therefore $D(x) \in K(R)$.

A similar argument establishes the following theorem.

Theorem 3.7 If T is a CE-epimorphism on a ring R which preserves Z(R), then T preserves K(R).

4 Commutativity results

We begin this section with a very easy result.

Theorem 4.1 Let R be a prime ring and D (resp. T) be a CE-derivation (resp. a CE-epimorphism). If $D(0) \neq 0$ (resp. $T(0) \neq 0$), then R is commutative.

Proof We give the proof for CE-derivations; the proof for CE-epimorphisms is similar. Let *D* be a CE-derivation with $D(0) \neq 0$. Since $D(0 + 0) - D(0) - D(0) \in Z$, we have $D(0) \in Z$. Since $D(0x) - D(0)x - 0D(x) \in Z$, we now get $D(0)x \in Z$ for all $x \in R$. But *Z* contains no nonzero divisors of zero, hence $x \in Z$ for all $x \in R$, i.e., *R* is commutative. Theorems 2.6 and 2.8 enable us to replace derivations and epimorphisms by CEderivations and CE-epimorphisms in certain commutativity theorems. We give two examples.

Theorem 4.2 Let R be a prime ring and U a nonzero ideal of R. If R admits a nonidentity CE-epimorphism T which is strong-commutativity preserving on U, then Ris commutative.

Proof If *T* is an epimorphism, *R* is commutative by Bell and Daif (1994), Corollary 2. If *T* is not an epimorphism, by Theorem 2.8 *R* contains a nonzero central ideal—a condition well known to imply commutativity in a prime ring. \Box

Theorem 4.3 Let *R* be a semiprime ring and *U* a nonzero left ideal of *R*. If *R* admits a CE-derivation which is nonzero on *U* and centralizing on *U*, then *R* contains a nonzero central ideal.

Proof By Theorem 2.6, *R* has a nonzero central ideal or *D* is a derivation; and if *D* is a derivation, our theorem reduces to Bell and Martindale (1987), Theorem 3. \Box

In general, commutativity theorems with hypotheses involving CE-derivations or CE-epimorphisms seem harder to prove than those with hypotheses involving derivations or epimorphisms. However, there are some possibilities. We conclude with an example, which is a partial generalization of the result that a semiprime ring R must be commutative if it admits a derivation d such that [x, y] = [d(y), d(x)] for all $x, y \in R$. (See Ali and Huang 2012, Theorem 3.3; Liu 2013, Corollary 1.3.)

Theorem 4.4 Let R be a semiprime ring and D a CE-derivation on R such that [x, y] = [D(y), D(x)] for all $x, y \in R$. If R is reduced or D is centralizing on R, then R is commutative.

Proof We are assuming

$$[x, y] = [D(y), D(x)] \text{ for all } x, y \in R.$$
 (4.1)

Replacing x by xy in (4.1) and using (4.1), we obtain

$$D(x)[y, D(y)] + [x, D(y)]D(y) = 0 \text{ for all } x, y \in R;$$
(4.2)

and replacing x by yx in (4.1), we get

$$D(y)[D(y), x] + [D(y), y]D(x) = 0 \text{ for all } x, y \in R.$$
(4.3)

Taking x = D(y) in (4.2) and (4.3), we have for all $y \in R$

$$D^{2}(y)[y, D(y)] = [y, D(y)]D^{2}(y) = 0 = [D^{2}(y), [y, D(y)]].$$
(4.4)

We now replace x by xw in (4.2), thereby obtaining $z_1 \in Z$ such that $(D(x)w + xD(w) + z_1)[y, D(y)] + [xw, D(y)]D(y) = 0$, i.e., D(x)w[y, D(y)] + xD(w)

 $[y, D(y)] + z_1[y, D(y)] + x[w, D(y)]D(y) + [x, D(y)]wD(y) = 0$; and applying (4.2), we get

$$D(x)w[y, D(y)] + z_1[y, D(y)] + [x, D(y)]wD(y) = 0.$$
(4.5)

Taking x = D(y), we get $z_2 \in Z$ such that

$$D^{2}(y)w[y, D(y)] + z_{2}[y, D(y)] = 0.$$
(4.6)

It follows that

$$[D^{2}(y)w[y, D(y)], [y, D(y)]] = 0$$
 for all $y, w \in R$,

which reduces for all $y, w \in R$ to

$$[D^{2}(y)w, [y, D(y)]][y, D(y)] = 0, \text{ or}$$
$$D^{2}(y)[w, [y, D(y)]][y, D(y)] + [D^{2}(y), [y, D(y)]]w[y, D(y)] = 0.$$

Using (4.4), we now get

$$D^{2}(y)w[y, D(y)]^{2} = 0$$
 for all $y, w \in R$. (4.7)

From this equation we obtain

$$[D^{2}(y), D(y)]w[y, D(y)]^{2} = 0$$
 for all $y, w \in R$,

which by (4.1) is

$$[y, D(y)]w[y, D(y)]^2 = 0 \text{ for all } y, w \in R;$$

and invoking semiprimeness of R, we conclude that

$$[y, D(y)]^2 = 0$$
 for all $y \in R$. (4.8)

If *R* is reduced, it is obvious that [y, D(y)] = 0; and if *D* is centralizing on *R*, [y, D(y)] = 0 because $[y, D(y)] \in Z \cap N$. Thus,

$$[y, D(y)] = 0 \quad \text{for all } y \in R. \tag{4.9}$$

It follows from (4.5) and (4.9) that [x, D(y)]w[x, D(y)] = 0 for all $x, y, w \in R$, hence $D(R) \subseteq Z$ and therefore *R* is commutative by (4.1).

Deringer

References

- Ali, S., Huang, S.: On derivations in semiprime rings. Algebras Represent. Theory **15**(6), 1023–1033 (2012)
- Bell, H.E., Daif, M.N.: On commutativity and strong commutativity-preserving maps. Can. Math. Bull. 37(4), 443–447 (1994)
- Bell, H.E., Martindale, W.S.: Centralizing mappings of semiprime rings. Can. Math. Bull. **30**(1), 92–101 (1987)
- Liu, C.-K.: On skew derivations in semiprime rings. Algebras Represent. Theory 16(6), 1561–1576 (2013)