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Abstract Let R be a ring with center Z . A map D of R (resp. T of R) is called a
centrally-extended derivation (resp. a centrally-extended endomorphism) if for each
x, y ∈ R, D(x + y) − D(x) − D(y) ∈ Z and D(xy) − D(x)y − xD(y) ∈ Z (resp.
T (x + y) − T (x) − T (y) ∈ Z and T (xy) − T (x)T (y) ∈ Z ). We discuss existence of
such maps which are not derivations or endomorphisms, we study their effect on Z ,
and we give some commutativity results.
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1 Introduction

Let R be a ring, not necessarily with 1, with center Z = Z(R). Let N be the set of
nilpotent elements of R, and call R reduced if N = {0}. For each x, y ∈ R, denote
by [x, y] the commutator xy − yx . If S ⊆ R, define f : R → R to be centralizing on
S if [x, f (x)] ∈ Z for all x ∈ S; and define f to be strong commutativity-preserving
on S if [x, y] = [ f (x), f (y)] for all x, y ∈ S.
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Define a map D : R → R to be a centrally-extended derivation (CE-derivation)
if for each x, y ∈ R, D(x + y) − D(x) − D(y) ∈ Z and D(xy) − D(x)y −
xD(y) ∈ Z . Define a map T : R → R to be a centrally-extended endomorphism
(CE-endomorphism) if for each x, y ∈ R, T (x + y) − T (x) − T (y) ∈ Z and
T (xy) − T (x)T (y) ∈ Z ; and if T is also surjective, call it a CE-epimorphism. We
present examples of CE-derivations and CE-endomorphisms and investigate when
they are ordinary derivations or endomorphisms, we study their effect on Z , and we
note applications to commutativity theorems.

2 Examples and existence theorems

Clearly, every derivation (resp. endomorphism) is a CE-derivation (resp. CE-
endomorphism). If R is commutative, every map f : R → R is both a CE-derivation
and a CE-endomorphism; hence we cannot get interesting results in this case.

Example 2.1 Let R be any ringwith Z �= {0}. Choose a ∈ Z\{0} and define T (x) = a
for all x ∈ R. Then T (x + y) − T (x) − T (y) = −a ∈ Z and T (xy) − T (x)T (y) =
a − a2 ∈ Z , hence T is a CE-endomorphism. Since T is not additive, it is not an
endomorphism.

Example 2.2 Let R be a ring with a nonzero central ideal I , and let f be any function
from R into I .

(a) Let t be any endomorphism of R and define T (x) = t (x) + f (x) for all x ∈ R.
Then T (x + y) − T (x) − T (y) = f (x + y) − f (x) − f (y) ∈ Z and T (xy) −
T (x)T (y) = f (xy) − f (x)t (y) − f (y)t (x) − f (x) f (y) ∈ Z for all x, y ∈ R,
so T is a CE-endomorphism. If f is a nonzero constant function, T is not an
endomorphism; and ifwe also take t to be the identitymap, T is aCE-epimorphism
which is not an epimorphism.

(b) With I and f as above, let d be a derivation on R and define D(x) = d(x)+ f (x)
for all x ∈ R. Then D is easily shown to be a CE-derivation, which for appropriate
choices of f is not a derivation.

Example 2.3 Let R1 be a commutative domain, R2 a noncommutative prime ring with
derivation d and R = R1 ⊕ R2. Define D : R → R by D((x, y)) = (g(x), d(y)),
where g : R1 → R1 is any map which is not a derivation. Then R is a semiprime ring
and D is a CE-derivation which is not a derivation. Moreover, R1 ⊕ {0} is a central
ideal of R.

It is no accident that nonzero central ideals play a prominent role in these examples,
as the following two theorems show.

Theorem 2.4 Let R be any ring with no nonzero central ideals. Then every CE-
derivation D on R is additive.

Proof Let x and y be fixed elements of R, and let

D(x + y) = D(x) + D(y) + a, a ∈ Z . (2.1)
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For arbitrary t ∈ R, we have b ∈ Z such that

D(t (x + y)) = t D(x + y) + D(t)(x + y) + b

= t (D(x) + D(y) + a) + D(t)(x + y) + b

= t D(x) + t D(y) + D(t)x + D(t)y + ta + b. (2.2)

Calculating in a different way, we have

D(t (x + y)) = D(t x + t y)

= D(t x) + D(t y) + c

= t D(x) + D(t)x + b1 + t D(y) + D(t)y + c1 + c, (2.3)

where b1, c1, c ∈ Z .
Comparing (2.2) and (2.3) gives ta + b = b1 + c1 + c, hence Ra is a central ideal

and therefore Ra = {0}. Thus, letting A(R) be the two-sided annihilator of R, we have
a ∈ A(R). But A(R) is a central ideal, so a = 0 and by (2.1) D(x+y) = D(x)+D(y).

��
Theorem 2.5 If R is a semiprime ring with no nonzero central ideals, then every
CE-derivation D is a derivation.

Proof Let x, y, t ∈ R be arbitrary elements. Then D((xy)t)− xyD(t)− D(xy)t ∈ Z
and D(x(yt)) − xD(yt) − D(x)yt ∈ Z . Subtracting, we get

−xyD(t) − D(xy)t + xD(yt) + D(x)yt ∈ Z . (2.4)

Let

D(xy) = xD(y) + D(x)y + z1, and

D(yt) = yD(t) + D(y)t + z2, where z1, z2 ∈ Z . (2.5)

Then from (2.4),

−xyD(t) − xD(y)t − D(x)yt − z1t + xyD(t) + xD(y)t + xz2 + D(x)yt ∈ Z ,

which reduces to

−z1t + xz2 ∈ Z . (2.6)

Thus [xz2, t] = [x, t]z2 = 0. Replacing x by xr, r ∈ R, and recalling (2.5), we have

[x, t]R(D(yt) − yD(t) − D(y)t) = 0 for all x, y, t ∈ R. (2.7)

Let {Pα|α ∈ �} be a family of prime ideals of R such that
⋂

Pα = {0}, and let P
denote a typical Pα . Let R̄ = R/P and Z̄ the center of R̄, and let x̄ = x + P be a
typical element of R̄.
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Fix y and t above, and let x vary. Then z2 is fixed but z1 varieswith x . Now from (2.7)
wehave that either (i)[x, t] ∈ P for all x ∈ R or (i i)z2 = D(yt)−yD(t)−D(y)t ∈ P ,
hence t̄ ∈ Z̄ or z̄2 = 0̄. It follows from (2.6) that for each x ∈ R,−z̄1 t̄ + x̄ z̄2 ∈ Z̄ ,
so that if t̄ ∈ Z̄ , R̄z̄2 ⊆ Z̄ . On the other hand, if z̄2 = 0̄, it is certainly true that
R̄z̄2 ⊆ Z̄ . Thus, [r z2, u] ∈ P for all r, u ∈ R; and since

⋂
Pα = {0}, this gives the

result that Rz2 is a central ideal of R. As in the proof of Theorem 2.4, we conclude
that z2 = 0, i.e., D(yt) = yD(t) + D(y)t . Since D is additive by Theorem 2.4, our
proof is complete. ��

Combining Theorem 2.5 and Example 2.2(b) gives

Theorem 2.6 A semiprime ring R admits a CE-derivation which is not a derivation
if and only if R has a nonzero central ideal.

CE-epimorphisms are easily treated by the same methods, so we present our results
without proof.

Theorem 2.7 If R is a ring with no nonzero central ideals, every CE-epimorphism on
R is additive.

Theorem 2.8 If R is a semiprime ring with no nonzero central ideals, then every
CE-epimorphism is an epimorphism.

3 On the invariance problem for Z

We say that a map f : R → R preserves the subset S ⊆ R if f (S) ⊆ S. It is well
known that derivations and epimorphisms preserve Z , and the purpose of this section
is to study preservation of Z by CE-derivations and CE-epimorphisms.

The CE-derivations of Example 2.2(b) all preserve Z , and so do the CE-epimor-
phisms of Example 2.2(a) for which t is an epimorphism. However, there do exist CE-
derivations and CE-epimorphismswhich do not preserve Z , as the following examples
show.

Example 3.1 We give an example of a CE-derivation D with D(Z) � Z . Let R2 be
a noncommutative ring with R2

2 ⊆ Z(R2), for example a noncommutative ring with
R3
2 = {0}. Let R1 be a zero ring with (R1,+) ∼= (R2,+) and let f : (R1,+) →

(R2,+) be an isomorphism. Define R to be R1 ⊕ R2, and let D : R → R be given by
D((x, y)) = (0, f (x)). It is easily verified that D is a CE-derivation on R. Moreover
R1 ⊕ {0} ⊆ Z(R) and D(R1 ⊕ {0}) � Z(R).

Example 3.2 Let R1, R2, f and R be as in Example 3.1. Define T ((x, y)) =
( f −1(y), f (x)) for all (x, y) ∈ R. It is easy to show that T is a CE-endomorphism;
moreover, T is surjective, since for any (u, v) ∈ R, T ( f −1(v), f (u)) = (u, v). Thus,
T is a CE-epimorphism. Again, R1 ⊕ {0} ⊆ Z(R) and T (R1 ⊕ {0}) � Z(R).

Theorem 3.3 Let R be a ring with Z ∩ N = {0}. Then every CE-derivation D on R
preserves Z.
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Proof Let z ∈ Z and x ∈ R. Then D(zx) − D(z)x − zD(x) ∈ Z and D(xz) −
D(x)z − xD(z) ∈ Z , and by subtracting we obtain

[x, D(z)] ∈ Z for all x ∈ R. (3.1)

Replacing x by xD(z) in (3.1) gives [x, D(z)]D(z) ∈ Z , so

[[x, D(z)]D(z), x] = 0 = [x, D(z)]2 for all x ∈ R. (3.2)

Since Z ∩ N = {0}, (3.1) and (3.2) give [x, D(z)] = 0 for all x ∈ R, i.e., D(z) ∈ Z .
��

Theorem 3.4 If R is a ring with Z ∩ N = {0}, then every CE-epimorphism on R
preserves Z.

Proof If z ∈ Z , T (zx) − T (z)T (x) ∈ Z and T (xz) − T (x)T (z) ∈ Z for all x ∈ R,
and by subtraction we get [T (x), T (z)] ∈ Z for all x ∈ R. Since T is surjective,
this yields [x, T (z)] ∈ Z for all x ∈ R. Proceeding as in the previous proof, we get
T (z) ∈ Z . ��
Corollary 3.5 If R is a semiprime ring, Z is preserved by every CE-derivation and
by every CE-epimorphism.

CE-derivations and CE-epimorphisms which preserve Z may also preserve subsets
of Z , in particular the set K (R), defined as {x ∈ Z |x R ⊆ Z}. It is easily shown that
K (R) is a central ideal containing all central ideals, i.e., the maximal central ideal.

Theorem 3.6 If D is a CE-derivation on a ring R which preserves Z(R), then D
preserves K (R).

Proof Let x ∈ K (R). Since K (R) ⊆ Z , D(x) ∈ Z . For arbitrary r ∈ R, D(xr) −
xD(r) − D(x)r ∈ Z ; and since D(xr) ∈ Z and xD(r) ∈ Z , D(x)r ∈ Z . Therefore
D(x) ∈ K (R). ��

A similar argument establishes the following theorem.

Theorem 3.7 If T is a CE-epimorphism on a ring R which preserves Z(R), then T
preserves K (R).

4 Commutativity results

We begin this section with a very easy result.

Theorem 4.1 Let R be a prime ring and D (resp. T ) be a CE-derivation (resp. a
CE-epimorphism). If D(0) �= 0 (resp. T (0) �= 0), then R is commutative.

Proof Wegive the proof for CE-derivations; the proof for CE-epimorphisms is similar.
Let D be a CE-derivation with D(0) �= 0. Since D(0 + 0) – D(0) – D(0) ∈ Z , we
have D(0) ∈ Z . Since D(0x) – D(0)x – 0D(x) ∈ Z , we now get D(0)x ∈ Z for all
x ∈ R. But Z contains no nonzero divisors of zero, hence x ∈ Z for all x ∈ R, i.e., R
is commutative. ��
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Theorems 2.6 and 2.8 enable us to replace derivations and epimorphisms by CE-
derivations and CE-epimorphisms in certain commutativity theorems. We give two
examples.

Theorem 4.2 Let R be a prime ring and U a nonzero ideal of R. If R admits a non-
identity CE-epimorphism T which is strong-commutativity preserving on U, then R
is commutative.

Proof If T is an epimorphism, R is commutative by Bell and Daif (1994), Corollary 2.
If T is not an epimorphism, by Theorem 2.8 R contains a nonzero central ideal—a
condition well known to imply commutativity in a prime ring. ��
Theorem 4.3 Let R be a semiprime ring and U a nonzero left ideal of R. If R admits
a CE-derivation which is nonzero on U and centralizing on U, then R contains a
nonzero central ideal.

Proof By Theorem 2.6, R has a nonzero central ideal or D is a derivation; and if D is
a derivation, our theorem reduces to Bell and Martindale (1987), Theorem 3. ��

In general, commutativity theorems with hypotheses involving CE-derivations or
CE-epimorphisms seem harder to prove than those with hypotheses involving deriva-
tions or epimorphisms. However, there are some possibilities. We conclude with an
example, which is a partial generalization of the result that a semiprime ring R must
be commutative if it admits a derivation d such that [x, y] = [d(y), d(x)] for all
x, y ∈ R. (See Ali and Huang 2012, Theorem 3.3; Liu 2013, Corollary 1.3.)

Theorem 4.4 Let R be a semiprime ring and D a CE-derivation on R such that
[x, y] = [D(y), D(x)] for all x, y ∈ R. If R is reduced or D is centralizing on R,
then R is commutative.

Proof We are assuming

[x, y] = [D(y), D(x)] for all x, y ∈ R. (4.1)

Replacing x by xy in (4.1) and using (4.1), we obtain

D(x)[y, D(y)] + [x, D(y)]D(y) = 0 for all x, y ∈ R; (4.2)

and replacing x by yx in (4.1), we get

D(y)[D(y), x] + [D(y), y]D(x) = 0 for all x, y ∈ R. (4.3)

Taking x = D(y) in (4.2) and (4.3), we have for all y ∈ R

D2(y)[y, D(y)] = [y, D(y)]D2(y) = 0 = [D2(y), [y, D(y)]]. (4.4)

We now replace x by xw in (4.2), thereby obtaining z1 ∈ Z such that (D(x)w +
xD(w) + z1)[y, D(y)] + [xw, D(y)]D(y) = 0, i.e., D(x)w[y, D(y)] + xD(w)

123



Beitr Algebra Geom (2016) 57:129–136 135

[y, D(y)] + z1[y, D(y)] + x[w, D(y)]D(y) + [x, D(y)]wD(y) = 0; and applying
(4.2), we get

D(x)w[y, D(y)] + z1[y, D(y)] + [x, D(y)]wD(y) = 0. (4.5)

Taking x = D(y), we get z2 ∈ Z such that

D2(y)w[y, D(y)] + z2[y, D(y)] = 0. (4.6)

It follows that

[D2(y)w[y, D(y)], [y, D(y)]] = 0 for all y, w ∈ R,

which reduces for all y, w ∈ R to

[D2(y)w, [y, D(y)]][y, D(y)] = 0, or

D2(y)[w, [y, D(y)]][y, D(y)] + [D2(y), [y, D(y)]]w[y, D(y)] = 0.

Using (4.4), we now get

D2(y)w[y, D(y)]2 = 0 for all y, w ∈ R. (4.7)

From this equation we obtain

[D2(y), D(y)]w[y, D(y)]2 = 0 for all y, w ∈ R,

which by (4.1) is

[y, D(y)]w[y, D(y)]2 = 0 for all y, w ∈ R;

and invoking semiprimeness of R, we conclude that

[y, D(y)]2 = 0 for all y ∈ R. (4.8)

If R is reduced, it is obvious that [y, D(y)] = 0; and if D is centralizing on R,
[y, D(y)] = 0 because [y, D(y)] ∈ Z ∩ N . Thus,

[y, D(y)] = 0 for all y ∈ R. (4.9)

It follows from (4.5) and (4.9) that [x, D(y)]w[x, D(y)] = 0 for all x, y, w ∈ R,
hence D(R) ⊆ Z and therefore R is commutative by (4.1). ��
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