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Abstract This paper gives sufficient conditions, which guarantee that a complex
n-dimensional manifold is analytically isomorphic to a n-dimensional complex torus
and a Kähler manifold. We discuss the relation with Hodge theory and an immediate
consequence is that a complex manifold will complete to abelian variety by adjoining
some divisors. Several examples are given.
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1 Introduction

Let D ⊂ M be a divisor on a compact complex manifold M . In other words, an
element of the form

D =
∑

niDi , ni ∈ Z,

whereDi are irreducible subvarieties of M . In particular a divisor on a curve is a finite
formal sum

∑
ni pi where pi are points of the curve and ni integers. For example,

one can associate a divisor to a meromorphic function f by taking pi zeros and poles
of f and ni the order of pi with a negative sign for the poles. We denote this divisor
( f ) and we have
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( f ) = (divisor of the zeros of f ) − (divisor of poles of f ).

We say that a divisor D is positive and we write D ≥ 0, if the integers ni involved in
the sum are positive. Define

L(D) = { f meromorphic on M : ( f ) + D ≥ 0},

i.e., a function f ∈ L(D) has at worst a ni -fold pole along Di . For example, if the
divisor D is positive, then L (D) is the set of holomorphic functions outside of D and
having at most poles along D.

Consider a basis (1, f1, . . . , fN ) of the space L (D) and the map

F : M −→ P
N (C), p �−→ [1 : f1(p) : · · · : fN (p)],

considered projectively. If F defines a smooth embedding of M into P
N (C), then by

Chow’s theorem (Griffiths and Harris 1978) (which states that any analytic subman-
ifold of a projective space is algebraic), it is equivalent to say that the variety M is
algebraic, i.e.,

M =
⋂

i

{
z ∈ P

N (C) : Pi (z) = 0
}

,

where Pi (z) are homogeneous polynomials.Moreover, a theorem ofKodaira (Griffiths
andHarris 1978) states that ifD ⊂ M is a positive divisor, then for k ∈ N, themapping
F defined by the functions of the space L (kD) embeds M into PN (C) where

N = dimL (kD) − 1.

Moreover, there exists a positive divisor if and only if M has a closed positive (1, 1)-
form such that the cohomology class [ω] ∈ H2(M,Z).

Now consider a n-dimensional complex torus

T n = C
n/L�, L� � H1

(
T n,Z

)
,

is the lattice generated by the 2n columns λ1, . . . , λ2n of the n × 2n period matrix
� = (λ1, . . . , λ2n). The torus T n is a smooth compact complexmanifold of dimension
n. A question arises: when a complex torus T n can be embedded into a projective
space and thus regarded as projective variety? The torus T n will be embedded into
projective space PN (C), if there exists on P

N (C) a closed positive (1, 1)-form with
integer cohomology class. This condition amounts to the Riemann conditions: there
is an entire matrix Q (intersection matrix) of order 2n antisymmetric such that

�Q�ᵀ = 0, i�Q�
ᵀ

> 0.

Under these conditions, one can choose a new basis for L� on Z of 2n column vectors
λ1, . . . , λ2n such that:
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Q =
(
0 �δ

−�δ 0

)
, � = (�δ, Z) ,

where

�δ =

⎛

⎜⎜⎜⎜⎝

δ1 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 δn

⎞

⎟⎟⎟⎟⎠
,

and δ1, . . . , δn ∈ N
∗, δ j | δ j+1, 1 ≤ j ≤ n − 1, are elementary divisors and Z is a

matrix satisfying Zᵀ = Z , ImZ > 0. The (1, 1)-form ω can then be expressed as

ω =
n∑

j=1

δ j dx j ∧ dxn+ j ,

where x1, . . . , x2n are coordinates on the base (λ1, . . . , λ2n) such that:

∫

λ j

dxk = δ jk .

There is then a positive line bundle L such that its Chern class c1(L) = [ω]; cor-
responding to the line bundle L there is a linear system of equivalent divisors D all
having c1(D) = [ω].

The divisor D is called ample when a basis ( f0, . . . , fN ) of L(kD) embeds M
smoothly into P

N (C) for some k, via the map F , then kD is called very ample. A
complex algebraic torus T n is called an abelian variety. It is known that every positive
divisor D on an irreducible abelian variety is ample and thus some multiple of D
embeds M into PN (C). By a theorem of Lefschetz, any k ≥ 3 will work. The integers
δ j which provide the so-called polarization of the abelian variety M are then related
to the divisor as follows: dimL(D) = δ1 . . . δn .

Recall that a Kähler metric (Kähler form) is a hermitian metric (i.e., a 2-form of
type (1,1)) whose imaginary part is closed. A Kähler manifold is a complex manifold
equipped with a Kähler metric. Compact Kähler manifolds form a remarkable class of
complex analytic manifolds. We will consider the class of Kähler manifolds, focusing
on projective varieties. One reason is that they contain a lot of complex submanifolds
while Kähler manifolds do not have them in general. We can find non-Kähler compact
complexmanifolds (for example Hopf’s manifolds and Calabi–Eckmann’s manifolds)
but it is very difficult to build or to decide whether or not complex manifold is Kähler.
The complex analytic projective varieties are particular examples of compact Kähler
manifolds. Kodaira’s theorem can still be stated as follows: a compact complex man-
ifold admits a smooth embedding in P

N (C) if and only if it admits a Kähler metric
whose Kähler form is of integral class. Another interesting result for Kähler varieties
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was obtained by Moishezon (1967) and Hartshorne (1977): a compact Kähler mani-
fold of dimension n is projective if and only if it admits n algebraically independent
meromorphic functions.

The purpose of this work is the study of some fundamental properties of complex
geometry. The paper gives sufficient conditions, which guarantee that a complex n-
dimensionalmanifold is analytically isomorphic to a n-dimensional complex torus and
a Kähler manifold. Also, we discuss the relation with Hodge theory and an immediate
consequence is that a complex manifold will complete to abelian variety by adjoining
some divisors. Several important examples are given.

I wish to express my thanks to an anonymous referee for his valuable comments
and suggestions.

2 Some properties of complex varieties

The following proposition, which will be used later, is a consequence of the following
purely differential geometric fact: a compact and connected n-dimensional variety on
which there exist n vector fields which commute and are independent at every point
is diffeomorphic to an n-dimensional real torus.

Proposition 1 A compact (connected) complex n-dimensional variety M on which
there exist n holomorphic commuting vector fields X1, . . . , Xn which are independent
at every point is diffeomorphic to a complex torus Cn/L where L is a lattice in Cn.

Proof With every vector field X1, . . . , Xn , we associate a flow or one-parameter group
of diffeomorphisms

gt1, . . . , gtn : M −→ M, (t1, . . . , tn) ∈ C
n .

The latter commute i.e.,

gt1 ◦ · · · ◦ gtn (p) = gtn ◦ · · · ◦ gt1(p), p ∈ M,

since by hypothesis X1, . . . , Xn commute. It is therefore natural to consider the appli-
cation gt : M −→ M ,

gt = gt1 ◦ · · · ◦ gtn , t = (t1, . . . , tn) ∈ C
n .

Obviously

gt+s = gt ◦ gs, ∀t, s ∈ C
n .

By the same argument as in the Arnold–Liouville theorem (Arnold 1978), one defines
a holomorphic local diffeomorphism for a fixed origin p ∈ M :

G : Cn −→ M, t �−→ G(t) = gt p.
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To be precise, the point p moves along the trajectory of the first flow for time t1, along
the second flow for time t2, etc. Let U be a sufficiently small neighborhood of the
point 0 ∈ C

n and let V be a neighborhood of the point p ∈ M . The composition of
two holomorphic maps being holomorphic, we deduce that the resriction of G to U :

U −→ V, (t1, . . . , tn) �−→ gt1 ◦ · · · ◦ gtn (p),

is holomorphic. Moreover, as X1, . . . , Xn are independent at each point of M , then
the matrix

⎛

⎜⎝

∂
∂t1

gt1 ◦ · · · ◦ gtn (p)
...
∂

∂tn
gt1 ◦ · · · ◦ gtn (p)

⎞

⎟⎠ ,

is invertible and by the local inversion theorem the mapping G is a local diffeo-
morphism. Note that G is surjective, i.e., for q ∈ M , there are t ∈ C

n such that
G(t) = gt p = q where p ∈ M . Indeed, it suffices to connect a point q ∈ M with p
by a curve, cover the curve by a finite number of the neighborhoods V and define t as
the sum of shifts ti corresponding to peices of the curve. Therefore, the mapping G
is surjective. On the other hand G is not injective because otherwise we would have a
bijection between M a compact and a non-compact Cn , which is absurd. To remedy
this problem, we will examine the set of pre-images of p ∈ M . The stationary group
of the point p is the set

L = {t ∈ C
n : G(t) = gt p = p},

of points t ∈ C
n for whichG(t) = p. It is nonempty, closed under addition, the inverse

of t is −t and thus a subgroup of Cn . It does not depend on p and its points lie in Cn

discretely. Indeed, if G(s) = p and G(t) = p, then G(s + t) = gsgt p = gs p = p
and g−1 p = g−t gt p = p. Therefore, L is a subgroup of Cn . If q = gr p and t ∈ L ,
then gtq = gt+r p = gr gt p = gr p = q. Therefore, L is a lattice ofCn (i.e., a discrete
subgroup of Cn which spans the real vector space R2n). By taking the quotient of Cn

by L , we obtain an injective mapping

C
n/L −→ M, [t] �−→ gt p,

and hence a diffeomorphism. Therefore, M is conformal to a complex torus Cn/L
as claimed. Note finally that the lattice L can be written as L = Ze1 ⊕ · · · ⊕ Zek ,
1 ≤ k ≤ n, where e1, . . . , en are linearly independent vectors. The proof of the
proposition is thus complete. ��

Recall that in dimension one, any complex torus is an abelian variety. In this case the
embedding is realized in a projective space of dimension two and we obtain models
C/L as a projective plane curves. It is easier in this case to work with Weierstrass
elliptic functions ℘ and ℘′.
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In what follows, we will focus on the case where the dimension of the variety is
greater than 1. Note that to show that M is to be the affine part of an abelian variety
(for example), a naive guess would be to take the natural compactification M of M by
projectiving the equations. Indeed, this can never work for a general reason: an abelian
variety M̃ of dimension bigger or equal than two is never a complete intersection, that
is it can never be described in some projective space P

m(C) by m-dim M̃ global
polynomial homogeneous equations. In other words, if M is to be the affine part of
an abelian variety, M must have a singularity somewhere along the locus at infinity
I = M ∩ {Z0 = 0}. When extended to P

m(C), affine varieties must be singular at
infinity, because abelian varieties are not simply-connected and therefore cannot be
projective complete intersections.

So from this result, if M is to be the affine part of an abelian variety, M must
have a singularity somewhere along the locus at infinity. The theory of resolution of
singularities of Hironaka (1964a, b) through the delicate procedure “blow-up, blow-
down” allows at least theoretically resolve these singularities. The following result
gives sufficient conditions for a complex manifold to be compact, connected, has an
embedding in a projective space and diffeomorphic to a complex torus. In particular,
we show that this is a Kähler manifold. We will show in the following some results
on varieties of Hodge (these are compact Kähler varieties whose cohomology class of
the Kähler form is a real multiple of a whole class) and that of abelian varieties whose
applications are immense and important (Adler and van Moerbeke 1989; Adler et al.
2004; Lesfari 1988, 2007, 2008, 2009). In practice and in higher dimensions these
problems are compounded considerably.

The idea of the proof we shall give here is closely related to the geometric spirit of
the (real) Arnold–Liouville theorem (Adler et al. 2004; Arnold 1978).

Theorem 2 Let Z = (Z0, Z1, . . . , Zn) ∈ P
n(C) and declare Z0 �= 0 to be affine

part. Let

M = M ∩ {Z0 �= 0},

be a smooth and irreducible variety and M its closure in Pn(C) defined by

M =
⋂

i

{Z ∈ P
n(C) : Pi (Z) = 0},

involving a large number of homogeneous polynomials Pi . Put M ≡ M ∪ D, i.e.,
D = M ∩ {Z0 = 0} and consider the map

f : M −→ P
N (C), Z �−→ f (Z).

Let

D = D1 ∪ · · · ∪ Dr ,
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where Di are some codimension-one subvarieties and

S ≡ f (D) = f (D1) ∪ · · · ∪ f (Dr ) ≡ S1 ∪ · · · ∪ Sr .

Assume that:

(i) f maps M smoothly and 1-1 onto f (M).
(ii) There exist n holomorphic vector fields X1, . . . , Xn on M which commute and

are independent at every point. One vector field, say Xk, 1 ≤ k ≤ n, extends
holomorphically to a neighborhood of Sk in PN (C).

(iii) For all p ∈ Sk , the integral curve f (t) ∈ P
N (C) of the vector field Xk through

f (0) = p ∈ Sk has the property that

{ f (t) : 0 <| t |< ε, t ∈ C} ⊂ f (M).

Then the variety M̃ = f (M) = f (M) is compact, connected and embeds
smoothly into PN (C) via f .

Proof Condition (iii) means that the orbits of Xk through Sk go immediately into the
affine part and in particular, the vector field Xk does not vanish on any point of Sk . A
crucial step is to show that the orbits running through Sk form a smooth variety 
p,
p ∈ Sk such that


p\Sk ⊆ M.

Let p ∈ Sk , ε > 0 small enough, gtXk
the flow generated by Xk on M and

{gtXk
: t ∈ C, 0 <| t |< ε},

the orbit going through the point p. The vector field Xk is holomorphic in the neigh-
borhood of any point p ∈ Sk and non-vanishing, by (ii) and (iii). Then the flow gtXk

can be straightened out after a holomorphic change of coordinates. Let H ⊂ P
N (C)

be a hyperplane transversal to the direction of the flow at p and let 
p be the surface
element formed by the divisor Sk and the orbits going through p. Consider the seg-
ment of S ′ ≡ H ∩ 
p and so locally, we have 
p = S ′ × C. We shall show that 
p

is smooth. Note that S ′ is smooth. Indeed, suppose that S ′ is singular at 0, then 
p

would be singular along the trajectory (t-axis) which goes immediately into the affine
f (M), by condition (iii). Hence, the affine part would be singular which is impossible
by condition (i). So, S′ is smooth and by the implicit function theorem, 
p is smooth
too. Consider now the map

M ⊂ P
n(C) −→ P

N (C), Z �−→ f (Z),

where Z = (Z0, Z1, . . . , Zn) ∈ P
n(C) and

M̃ = f (M) = f (M).
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Recall that the flow exists in a full neighborhood of p in P
N (C) and it has been

straightened out. Therefore, near p ∈ Sk , we have 
p = M̃ and 
p\Sk ⊆ M .
Otherwise, there would exist an element 
′

p ⊂ M̃ such that

{gtXk
: t ∈ C, 0 <| t |< ε} = (
p ∩ 
′

p)\p ⊂ M,

by condition (iii). In otherwords,
p∩
′
p=t-axis and henceM would be singular along

the t-axis which is impossible. Since the variety M is irreducible and since the generic
hyperplane section Hgen. of M̃ is also irreducible, all hyperplane sections are con-
nected and henceD is also connected. Now consider the graph G f ⊂ P

n(C)×P
N (C)

of the map f , which is irreducible together with M̃ . It follows from the irreducibility
of G f that a generic hyperplane section G f ∩ (Hgen. × P

N (C)) is irreducible, hence
the special hyperplane section G f ∩ ({Z0 = 0} × P

N (C)) is connected and therefore
the projection map

ProjPN (C)[G f ∩ ({Z0 = 0} × P
N (C))] = f (D) ≡ S,

is connected. Hence, the variety

M̃ = M ∪
⋃

p∈Sk


p = M ∪ Sk ⊆ P
N (C),

is compact, connected and admits an embedding into PN (C). ��
Corollary 3 Under the sameassumptions as the previous theorem, M̃ is diffeomorphic
to a n-dimensional complex torus. The vector fields X1, . . . , Xn extend holomorphi-
cally and remain independent on M̃.

Proof Let gti be the flow generated by Xi on M and let p1 ∈ M̃\M . For small ε > 0
and for all t1 ∈ C such that 0 < |t1| < ε, note that q ≡ gt1(p1) is well defined and
gt1(p1) ∈ f (M), using condition (iii) (Theorem 2). LetU (q) ⊆ M be a neighborhood
of q and let

gt2(p2) = g−t1 ◦ gt2 ◦ gt1(p2), ∀p2 ∈ U (p1) ≡ g−t1 (U (q)) ,

which is well defined since by commutativity one can see that the right hand side is
independent of t1:

g−(t1+ε) ◦ gt2 ◦ gt1+ε(p2) = g−(t1+ε) ◦ gt2 ◦ gt1 ◦ gε(p2),

= g−(t1+ε) ◦ gε ◦ gt2 ◦ gt1(p2),

= g−t1 ◦ gt2 ◦ gt1(p2).

Note that gt2(p2) is a holomorphic function of p2 and t2, because inU (p1) the function
gt1 is holomorphic and its image is away from S, i.e., in the affine, gt2 is holomorphic.
The same argument applies to gt3(p3), . . . , gtn (pn) where

gtn (pn) = g−tn−1 ◦ gtn ◦ gtn−1(pn), ∀pn ∈ U (pn−1) ≡ g−tn−1(U (q)).
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Thus X1, . . . , Xn have been holomorphically extended, remain independent and com-
muting on M̃ . Therefore, we can show along the same lines as in Proposition 1, that
M̃ is a complex torus Cn/ lattice. And that will be done, by considering the local
diffeomorphism

C
n −→ M̃, t = (t1, . . . , tn) �−→ gt p = gt1 ◦ · · · ◦ gtn (p),

for a fixed origin p ∈ f (M). The additive subgroup

L = {t ∈ C
n : gt p = p},

is a lattice ofCn (spanned by 2n vectors inCn , independent overR), henceCn/L −→
M̃ is a biholomorphic diffeomorphism. ��
Corollary 4 Under the same assumptions as the previous theorem, M̃ is a Kähler
variety.

Proof Let

ds2 =
n∑

k=1

dtk ⊗ dtk,

be a hermitian metric on the complex variety M̃ and let ω its fundamental (1, 1)-form.
We have

ω = −1

2
Im ds2 =

√−1

2

n∑

k=1

dtk ∧ dtk .

Sowe see thatω is closed and the metric ds2 is Kähler and consequently M̃ is a Kähler
variety. ��
Corollary 5 Under the same assumptions as the previous theorem, M̃ is a Hodge
variety. In particular, M is the affine part of an abelian variety M̃.

Proof On the Kähler variety M̃ are defined periods of ω. If these periods are integers
(possibly aftermultiplication by a number), we obtain a variety ofHodge.More specif-
ically, integrals

∫
γk

ω of the form ω (where γk are cycles in H2(M̃,Z)) determine the

periods ω. As they are integers, then M̃ is a Hodge variety. The variety M̃ is equipped
with n holomorphic vector fields, independent and commuting. From Theorem 2 and
Corollary 3, the variety M̃ is both a projective variety and a complex torus and hence
an abelian variety as a consequence of Chow theorem (Griffiths and Harris 1978).
Another proof is to use the result that we just show since every Hodge torus is abelian,
the converse is also true. Note also that by Moishezon’s theorem (Moishezon 1967;
Hartshorne 1977), a compact complex Kähler variety having as many independent
meromorphic functions as its dimension is an abelian variety. ��

A complex torus being a Kähler manifold, we deduce from Moishezon’s theorem
(Moishezon 1967; Hartshorne 1977) the following result:
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Corollary 6 A complex torus of dimension n is an abelian variety if and only if it
admits n independent meromorphic functions.

3 Examples

Example 7 The three quartic,

F1 = 1

2
z5 − z1z

2
2 + 1

2
z23 − 1

4
z21 − 2z42,

F2 = z25 − z21z5 + 4z1z2z3z4 − z21z
2
3 + 1

4
z41 − 4z22z

2
4,

F3 = z1z5 + z21z
2
2 − z24,

are invariants of the following system of five differential equations in the unknowns
z1, . . . , z5 ∈ C

5,

ż1 = 2z4,

ż2 = z3,

ż3 = z2(3z1 + 8z22),

ż4 = z21 + 4z1z
2
2 + z5,

ż5 = 2z1z4 + 4z22z4 − 2z1z2z3.

Let M be the complex affine variety defined by

M =
3⋂

k=1

{z = (z1, . . . , z5) ∈ C
5 : Fk(z) = ck},

where c1, c2, c3 ∈ C. The main problem will be to complete M into a non singular
compact complex algebraic variety M̃ = M ∪ D in such a way that the vector fields
generated respectively by F1 and F2, extend holomorphically along a divisor D and
remain independent there. This is possible (for details see Lesfari 2007), M̃ is an
algebraic complex torus (an abelian variety).More precisely, the varietyM generically
is the affine part of an abelian surface M̃ . The reduced divisor at infinity M̃\M =
C1 + C−1, consists of two copies C1 and C−1 of the same genus 7 Riemann surface.

Example 8 Let B be the affine variety defined by

B =
2⋂

k=1

{z = (q1, q2, p1, p2) ∈ C
4 : Hk(z) = ck},

where c1, c2 ∈ C
2 and

H1 = 1

2
p21 − 3

2
q21q

2
2 + 1

2
p22 − 1

4
q41 − 2q42 ,

H2 = p41 − 6q21q
2
2 p

2
1 + q41q

4
2 − q41 p

2
1 + q61q

2
2 + 4q31q2 p1 p2 − q41 p

2
2 + 1

4
q81 ,
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are invariants of the following system

q̈1 = q1
(
q21 + 3q22

)
,

q̈2 = q2
(
3q21 + 8q22

)
.

We show that the invariant surface B can be completed as a cyclic double cover B of
the abelian surface M̃ (Example 1), ramified along the divisor C1 + C−1. Moreover, B
is smooth except at the point lying over the singularity (of type A3) of C1 + C−1 and
the resolution B̃ of B is a surface of general type with Euler characteristic X (B̃) = 1
and geometric genus pg(B̃) = 2 (for details see Lesfari 2007).

Example 9 Another system similar to that of Example 1 is defined by

F1 = 1

2
z5 + 2z1z

2
2 + 1

2
z23 + 1

2
az1 + 2az22 + 1

4
z21 + 4z42,

F2 = az1z2 + z21z2 + 4z1z
3
2 − z2z5 + z3z4,

F3 = z1z5 − 2z21z
2
2 − z24.

These three quartic are invariants of the following system of differential equations in
the unknowns z1, . . . , z5 ∈ C

5,

ż1 = 2z4,

ż2 = z3,

ż3 = −4az2 − 6z1z2 − 16z32,

ż4 = −az1 − z21 − 8z1z
2
2 + z5,

ż5 = −8z22z4 − 2az4 − 2z1z4 + 4z1z2z3,

where a is a constant. Let M be the complex affine variety defined by

M =
3⋂

k=1

{z = (z1, . . . , z5) ∈ C
5 : Fk(z) = ck},

where c1, c2, c3 ∈ C. This complex affine varietyM defined by putting these invariants
equal to generic constants, is a double cover of a Kummer surface defined by

p (z1, z2) z
2
5 + q (z1, z2) z5 + r (z1, z2) = 0,

where

p (z1, z2) = z22 + z1,

q (z1, z2) = 1

2
z31 + 2az1z

2
2 + az21 − 2c1z1 + 2c2z2 − c3,
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r (z1, z2) = −8c3z
4
2 +

(
a2 + 4c1

)
z21z

2
2 − 8c2z1z

3
2 − 2c2z

2
1z2 − 4c3z1z

2
2

−1

2
c3z

2
1 − 4ac3z

2
2 − 2ac2z1z2 − ac3z1 + c22 + 2c1c3.

The variety M generically is the affine part of an abelian surface M̃, more precisely
the jacobian of a genus 2 curve. The reduced divisor at infinity

M̃\M = H1 + H−1,

consists of two smooth isomorphic genus 2 curvesH±1 (for details see Lesfari 2008).

Example 10 Let M be the variety defined by

M =
2⋂

k=1

{
z = (q1, q2, p1, p2) ∈ C

4, Hi (z) = ci
}

,

where

H1 = 1

2

(
p21 + p22 + Aq21 + Bq22

)
+ q21q2 + 6q32 ,

H2 = q41 + 4q21q
2
2 − 4p1 (p1q2 − p2q1) + 4Aq21q2 + (4A − B)

(
p21 + Aq21

)
,

are invaraints of the Hénon–Heiles system

q̇1 = p1,

q̇2 = p2,

ṗ1 = −Aq1 − 2q1q2,

ṗ2 = −Bq2 − q21 − 6q22 ,

A and B, are constant parameters. The affine surface M completes into an abelian
surface M̃ , by adjoining a curve D. The latter determined by an eight-order equation
is smooth, hyperelliptic and its genus is 3. More precisely, M̃ = C

2/Lattice ⊆
P
7(C), where the lattice is generated by the period matrix

(
2 0 a c
0 4 c b

)
, Im

(
a c
c b

)
> 0,

(a, b, c ∈ C) (for details see Lesfari 2009).

Example 11 In C6, let M be the affine variety defined by

M =
4⋂

k=1

{
z = (m1,m2,m3, γ1, γ2, γ3) ∈ C

6 : Hk(z) = ck
}

,
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where

H1 = 1

2

(
m2

1 + m2
2

)
+ m2

3 + 2γ1 = c1,

H2 = m1γ1 + m2γ2 + m3γ3 = c2,

H3 = γ 2
1 + γ 2

2 + γ 2
3 = c3 = 1,

H4 = 1

16

(
m2

2 + m2
1

)2 − 1

2

(
m2

1 − m2
2

)
γ1 + γ 2

1 + γ 2
2 − m1m2γ2 = c4.

are invariants for the Kowalewski’s top and ck ∈ C, 1 ≤ k ≤ 4. The invariant variety
M can be completed via the flow into complex algebraic tori C2/Lattice were the

lattice is spanned by the columns of the period matrix
(
1 0 a c
0 2 c b

)
, Im

(
a c
c b

)
> 0. Here,

the divisor D is a set of two isomorphic curves of genus 3, D = D1 + D−1. Each of
the curve D±1 is a 2-1 ramified cover of elliptic curves D0±1, ramified at four points.
Each divisor D±1 is ample and defines a polarization (1, 2), whereas the divisor D of
geometric genus 9 is very ample and defines a polarization (2, 4). More precisely, the
affine surface M defined by putting the four invariants of the Kowalewski flow equal
to generic constants, is the affine part of an abelian surface M̃ with

M̃\M = D = one genus 9 curve consisting of two genus 3

curves D±1 intersecting in four points. Each

D±1 is a double cover of an elliptic curve D0±1

ramified at four points.

Moreover, M̃ � C
2/Lattice admits an embedding in P

7(C) [for details see Lesfari
(1988)].

Example 12 Let αk, βk, γk ∈ C, 1 ≤ k ≤ 3, be given such that the αk are distinct,
non-zero and

det

⎛

⎝
α1 α2 α3
β1 β2 β3
γ1 γ2 γ3

⎞

⎠ �= 0.

Let

λ1 = β2 − β3

α2 − α3
, λ2 = β1 − β3

α1 − α3
, λ3 = β1 − β2

α1 − α2
, λ4 = β1

α1
, λ5 = β2

α2
, λ6 = β3

α3
,

μ1 = γ2 − γ3

α2 − α3
, μ2 = γ1 − γ3

α1 − α3
, μ3 = γ1 − γ2

α1 − α2
, μ4 = γ1

α1
, μ5 = γ2

α2
, μ6 = γ3

α3
.

In C6, let M be the affine variety defined by

M =
4⋂

k=1

{
z = (x1, . . . , x6) ∈ C

6 : Qk(x) = ck
}

,
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where

Q1 = z21 + z22 + · · · + z26,

Q2 = λ1z
2
1 + λ2z

2
2 + · · · + λ6z

2
6,

Q3 = μ1z
2
1 + μ2z

2
2 + · · · + μ6z

2
6,

Q4 = z1z4 + z2z5 + z3z6,

are invariants of the geodesic flow on SO(4) for a left invariant metric and ck ∈ C,
1 ≤ k ≤ 4. Then for ck’s in a Zariski-open subset of C4, M is an affine open piece
of an abelian surface M̃ . More precisely, M = M̃\D, where D is a curve of genus

9, or M̃ = C
2/ lattice ⊆ P

7(C), having period matrix
(
2 0 a c
0 4 c b

)
, Im

(
a c
c b

)
> 0,

(a, b, c ∈ C) (for details see Adler et al. 2004).
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