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Abstract A Hilbert geometry is hyperbolic if and only if the perpendicular bisectors
or the altitudes of any trigon form a pencil. We also prove some interesting character-
izations of the ellipse.
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1 Introduction

Hilbert geometries, introduced by David Hilbert in 1899 (Hilbert 1971), are natural
generalizations of hyperbolic geometry, and hence the question immediately arises if
some properties of a Hilbert geometry are specific to the hyperbolic geometry.

For a recent survey on the results see Guo (2014).
To place our subject in a broader context we mention that it can also be consid-

ered as a so-called ellipsoid characterization problem in Euclidean space, which is
often treated as characterization of Euclidean spaces (inner product spaces) among
the normed spaces [see (Amir 1986) and (Martini et al. 2001; Martini and Swanepoel
2004)]. Further, the unitary imaginary unit sphere in generalized space-time model
(Horváth 2010, 2011) can also be considered as a Hilbert geometry.
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In this article we prove two results: the existence of a circumcenter in every trigon
(Theorem 5.1) or the existence of an orthocenter in every trigon (Theorem 5.2) renders
Hilbert geometry hyperbolic.Moreover,we also prove two characterizations of ellipses
in Sect. 4.

2 Preliminaries

Points ofRn are denoted as a, b, . . . ; the line through different points a andb is denoted
by ab, the open segment with endpoints a and b is denoted by ab. Non-degenerate
triangles are called trigons.

For given different points p and q in R
n , and points x, y ∈ pq one has the unique

linear combinations x = λ1p +μ1q, y = λ2p +μ2q which allows to define the cross
ratio

(p, q; x, y) = μ1λ2

λ1μ2
, (2.1)

of the points p, q, x and y, provided that λ1μ2 �= 0 [see (Busemann and Kelly 1953,
page 243)].

Definition 2.1 (Busemann and Kelly 1953, page 297) Let H ⊂ R
n (n ≥ 2) be an

open and convex set with boundary ∂H. The metric dH : H × H → R0≤ defined by

dH(x, y) =
{

1
2

∣∣ln |(p, q; x, y)|∣∣, if x �= y, where {p, q} = xy ∩ ∂H,

0, if x = y,
(2.2)

is called the Hilbert metric on H. The pair (H, dH) is called Hilbert geometry.

Note that as all the defining conditions of a Hilbert geometry (H, dH) is projective
invariant, two Hilbert geometries are isomorphic if there is a projective map between
their sets of points.

Further, the generalized Cayley–Klein model of the hyperbolic geometry Hn is, in
fact, a special kind of Hilbert geometry (E, dE ) given by an ellipsoid E .

Let a, b be different points in H. For any c ∈ H ∩ (ab\{b}) the hyperbolic ratio1
of the triple a, b, c is defined by

〈a, b; c〉H =
⎧⎨
⎩

− sinh dH(c,a)
sinh dH(b,c) , if c ∈ ab,

sinh dH(c,a)
sinh dH(b,c) , otherwise.

(2.3)

Perpendicularity ofH-lines, non-empty intersections of Euclidean lines withH, in
Hilbert geometry is defined in Busemann and Kelly (1953, pp. 119–121).2 It is based
on the notion of the foot of a point of H on an H-line.

1 The name ‘hyperbolic ratio’ comes from the hyperbolic sinus function in the definition.
2 In fact, it is defined for projective metrics.
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Let � be an H-line and let the point g ∈ H be outside of �. The point f ∈ � is the
�-foot of g, if dH(g, x) ≥ dH(g, f) for every x ∈ �.3

A line �′ intersecting the line � in a point f is said to be H-perpendicular to � if f
is an �-foot of g for every g ∈ �′\{f}. We denote this relation by �′ ⊥H �.4

It is proved in Busemann and Kelly (1953, (28.11)) that, if H is strictly convex,
then for any given point f ∈ H andH-line � there exists a uniqueH-line �′ such that it
goes through f and �′ ⊥H �. Moreover, the Euclidean line containing �′ is the one that
connects f and the intersection of those tangents of H that touch H at the points ∂�.

A set of lines is said to form a pencil if they have a common (maybe ideal) point.
This point is called the center of the pencil. We say that a set ofH-lines forms a pencil
with center c, if the corresponding euclidean lines form a pencil with center c.

Thus the set of those lines that areH-perpendicular to an arbitrary fixed line � is a
pencil.

Based on the foregoing, one can speak about the

• H-perpendicular bisector of a segment ab, as the unique line through the midpoint
of ab, that isH-perpendicular to the line ab, and the

• H-altitude of a triangle 
abc, as a line through one of the vertices of 
abc, that
is H-perpendicular to the corresponding opposite edge of 
abc.

These definitions5 extend the respective notion of the perpendicular bisector of a
segment and the altitude of a triangle, as defined in hyperbolic geometry.

From now on, we assume that H is strictly convex and has C2 boundary.

3 Utilities

The useful notations uτ = (cos τ, sin τ) and u⊥
τ = (− sin τ, cos τ) are used all over

this article. Also the following technical lemmas and the notations will be used in
proving our main results.

Lemma 3.1 (Kozma and Kurusa 2014, Lemma 2.3) Let a, b and c be collinear points
in a Hilbert geometry H, and let ab ∩ ∂H = {p, q}, such that a separates p and b.
Set a Euclidean coordinate system on ab such that the coordinates of p and a are 0
and 1, respectively. Let q, b and c, with assumptions q > b > 1 and 0 < c < q, be
the coordinates of q, b and c, respectively, in this coordinate system. Then we have

|〈a, b; c〉H| = |c − b|
|c − 1|√b

√
1 + b − 1

q − b
. (3.1)

Lemma 3.2 (Busemann and Kelly 1953, Lemma 12.1, pp. 226) A bounded open
convex set H in R

n (n ≥ 2) is an ellipsoid if and only if every section of it by any
2-dimensional plane is an ellipse.

3 Observe that a point may have more �-foots in general.
4 Notice, that ⊥H is not necessarily a symmetric relation. In fact it is symmetric if and only if H is an
ellipse (Kelly and Paige 1952).
5 Notice that these notions could also be introduced by using ⊥H in the reverse order.
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Lemma 3.3 Let H be a convex body in the plane. Then

(i) there exists an ellipse E circumscribed around H with at least three different
contact points e1, e2, e3 lying in ∂H ∩ ∂E such that the closed triangle 
e1e2e3
contains the center c of E , and

(ii) ifH �≡ E , then these contact points can be chosen so that in every neighborhood
of one of them ∂H\∂E �= ∅.

Let t1, t2, t3 be the common support lines at e1, e2, e3, respectively. Then

(iii) c is in the interior of 
e1e2e3 if and only if t1, t2, t3 form a trigon with vertices
m1 = t2 ∩ t3, m2 = t3 ∩ t1 and m3 = t1 ∩ t2;

(iv) c is in one of the edges of
e1e2e3, say c ∈ e2e3, if and only if t1, t2, t3 form a half
strip with vertices m2 = t1 ∩ t3, m3 = t2 ∩ t1 and the ideal point m1 = t2 ∩ t3.

If b1, b2, b3 are the midpoints of the segments e2e3, e3e1 and e1e2, respectively, then

(v) the straight lines mibi (i = 1, 2, 3) meet in c.

Proof Take the unique minimal area ellipse E containing H and let the center c of E
be the origin o.

(i) By Gruber and Schuster (2005, Theorem 2 (ii)) there is an integer (5≥)m ≥ 3
such that there are contact points e1, . . . , em lying in ∂H ∩ ∂E such that a positive
linear combination of the contact points vanishes. This means that the origin is in
the convex hull of these contact points, hence a (closed) trigon of three of them, say

e1e2e3, also contains the origin.

(ii) Transform the configuration given in (i) with a linear affinityμ so thatD = μ(E)

is the unit disc centered to o. Let e′
i = μ(ei ) (i = 1, 2, 3) and H′ = μ(H).

By (i) the center o is in the trigon 
e′
1e′

2e′
3. Let εi ∈ (−π, π ] be such that e′

i = uεi

and let the support function of H′ be denoted by hH′ . Define αi := lim sup{α :
hH′([εi , εi + α]) = {1}} (i = 1, 2, 3). If αi is infinite, then H ≡ E , that is excluded.
Assume that αk = mini=1,2,3 αi for some k ∈ {1, 2, 3}. Set fi = μ−1(uεi+αk ) (i =
1, 2, 3). Then f1, f2, f3 are contact points of ∂H and ∂E , the trigon f1, f2, f3 contains
the center o, and in every neighborhood N of fk (∂H\∂E) ∩ N �= ∅.

(iii) and (iv) are easy consequences of the strict convexity of the ellipse E .
(v) This readily follows if one transforms the ellipse into a circle by a linear affinity.

��
Lemma 3.4 For a small ε > 0 let r, p : (−ε, 0] → R

2 be twice differentiable convex
curves such that p(τ ) = p(τ )uτ and r(τ ) = r(τ )uτ , where p, r : (−ε, 0] → R+,
λ(τ) := r(τ )/p(τ ) takes its minimum value 1 at τ = 0, andmax(−δ,0] λ > 1 for every
δ ∈ (0, ε).

Let τn be a sequence in (−ε, 0] tending to 0 such that λ(τn) > 1 for every n ∈ N.
Then the tangent lines of r and p at r(τn) and p(τn), respectively, intersect each other
in a point m(τn) that tends to p(0) as τn → 0 so that it is on the same side of the line
0p(τn) as p(0) is.

Proof First we prove the statement with the assumption that λ takes its minimum
value 1 uniquely at τ = 0. This means that λ̇(0) = 0, λ̈(0) > 0 and we have to prove
that
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Fig. 1 The crossing of the
tangent lines

the tangent lines of r and p at r(τ ) and p(τ ), respectively, intersect
each other in a point m(τ ) that tends to p(0) as τ → 0 so that it
is on the same side of the line 0p(τ ) as p(0) is.

(3.2)

Since ṙ = λṗ + λ̇p, ṗ ‖ ṙ if and only if λ̇ = 0, therefore m(τ ) exists uniquely for
every τ �= 0 (see Fig. 1).

We clearly have

± |m − p| ṗ
|ṗ| + p = m = ±|m − r| ṙ

|ṙ| + r, (3.3)

that is ±|m − p||ṙ|ṗ + |ṙ||ṗ|p = ±|m − r||ṗ|ṙ + |ṗ||ṙ|r.
Since ṗ = ṗuτ + pu⊥

τ , ṙ = ṙuτ + ru⊥
τ and uτ ⊥ u⊥

τ , we obtain

|m − p||ṙ|p = |m − r||ṗ|r (3.4)

and

±|m − p||ṙ| ṗ + p|ṗ||ṙ| = ±|m − r||ṗ|ṙ + r |ṙ||ṗ|. (3.5)

Multiplying (3.5) by p then substituting (3.4) into the product results in

±|m − r||ṗ|r ṗ + p2|ṗ||ṙ| = ±|m − r||ṗ|pṙ + pr |ṙ||ṗ|,

hence

±|m − r| = p|ṙ|(r − p)

r ṗ − pṙ
= |ṙ|p2(λ − 1)

λp ṗ − p(λ̇p + λ ṗ)
= |ṙ|λ − 1

−λ̇
. (3.6)

This implies limτ→0 |m(τ ) − r(τ )| = 0 via l’Hôspital’s rule.
On the other hand, using (3.4) and putting (3.6) into (3.3) gives

λ(λ − 1)

−λ̇
ṗ + p = m = λ − 1

−λ̇
ṙ + r.

As λ ≥ 1, this implies that m is on the same side of 0r and 0p as m(0) = r(0) = p(0).
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Fig. 2 Construction for
Definition 4.1

This proves claim (3.2).
For the proof of the statement in the lemma we take the broken line q̄ with vertices

p(τn) and edges p(τn)p(τn+1). It is clearly convex and can easily be deformed into
a twice differentiable convex curve q so that q(τn) = p(τn), q̇(τn) = ṗ(τn) and
r(τ )/|q(τ )| takes its minimum value 1 uniquely at τ = 0. Using claim (3.2) for q and
r therefore immediately implies the lemma. ��

4 Characterizations of ellipses

The following configuration, construction, theorems, and the notations they introduce,
are used in the next sections, but are interesting on their own too.

Definition 4.1 If a strictly convex bodyH is given in the plane, and the points e1, e2, e3
are placed on its border ∂H, then the following configuration is defined (see Fig. 2).

For every i = 1, 2, 3, �i denotes the line e jek , tHi denotes the tangent line of H at
the point ei , and fHi denotes the straight line through ei that forms a harmonic pencil
with the lines � j , �k, tHi , where {i, j, k} = {1, 2, 3}.
Theorem 4.2 Take a configuration given in Definition 4.1.6

(i) For any ellipse E the lines f E1 , f E2 , f E3 form a pencil.
(ii) If the lines fH1 , fH2 , fH3 form a pencil for any points e1, e2, e3 ∈ ∂H, thenH is

an ellipse.

Proof First note that not only keep projectivities the cross ratio, but takes any tangent
line of a curve into a tangent line of the image curve.

(i) Taking a suitable affinitywemay assume that ellipseH is a discD. The projective
group is three-transitive7 on every conic, hence we may assume that e1, e2, e3 forms
a regular triangle on the circle ∂D. Then, obviously, the lines f1, f2, f3 meet in the
center of C that proves statement (i) (see Fig. 3).

6 After this theorem was proved it turned out, that the dual of this statement is, via the theorems of
Menelaus and Ceva equivalent to Segre’s result in Segre (1955, §3) which, as noted in Kiss and Szőnyi
(2001, 6.15. Tétel), does not use the finiteness of the geometry but only the commutativity of the field; note
that following Kárteszi (1976, p. 133), the perspectivity of the circimscribed and inscribed triangle was
named as π -property in Kiss and Szőnyi (2001).
7 This is easy to prove by using conic involutions.
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Fig. 3 Transforming the ellipse E into a disc D and the triangle 
e1e2e3 into a regular one

Fig. 4 Introducing harmonic
pencils

(ii) The condition remains unchanged if the configuration is transformed by a pro-
jective map, therefore we may assume that the points e1, e2 and H are such that
e1 = (0, 1), e2 = (0,−1), e3 = (1, 0) and f = (

√
2 − 1, 0).

Then, the straight lines fH1 , fH2 and fH3 are determined and from the conditions
−1 = (�1, �2; tH3 , fH3 ) = (�2, �3; tH1 , fH1 ) = (�3, �1; tH2 , fH2 ), we get the equa-
tions y = 1, y = −1 and x = 1 for tH1 , tH2 and tH3 , respectively.

Now choose a general point h ∈ ∂H different from e1, e2, and let ∂Eh be the unique
ellipse through the points e1, e2, h with tangents tE1 := tH1 and tE2 := tH2 at e1 and e2,
respectively.

Let us introduce some new notations (see Fig. 4):

• tHh is the tangent of H at h;
• �i is the line hei for i = 1, 2; �3 is the line e1e2;
• fHi is the line through ei for i = 1, 2 such that −1 = (� j , �k; tHi , fHi ), where

{i, j, k} = {1, 2, 3};
• fHh is the line through h such that −1 = (�1, �2; tHh , fHh ).

We denote the analogous objects for the ellipse Eh in the same way except that the
superscript H is exchanged to E .

Since tE1 = tH1 and tE2 = tH2 we clearly have fHi = f Ei for i = 1, 2.
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As the lines f E1 , f E2 and f Eh form a pencil by (i), and fH1 , fH2 and fHh form a pencil
by the condition in (ii), we deduce that the lines fHh and f Eh intersect each other not
only in h, but also in fH1 ∩ fH2 = f E1 ∩ f E2 , hence they coincide.

Thus, we have tHh = tEh . So it makes sense to introduce the notations ti := tEi = tHi
for i = 1, 2 and th := tEh = tHh .

Let r : (−π, π ] → R+ be such that h(ϕ) = r(ϕ)uϕ is in ∂H, for every ϕ ∈
(−π, π ].

Then a tangent vector of ∂H at h(ϕ) is ḣ(ϕ) = ṙ(ϕ)uϕ + r(ϕ)u⊥
ϕ which is parallel

to the tangent of the unique ellipse ∂Eh(ϕ) (see Fig. 5).
The ellipse ∂Eh(ϕ) goes through the points e1, e2, h(ϕ) and it has tangents t1 and t2

at e1 and e2, respectively, therefore its equation is x2

a2
+ y2 = 1 for some a = a(h(ϕ)).

Putting the coordinate of h(ϕ) into this equation we get

1 = r2(ϕ)

(
cos2 ϕ

a2
+ sin2 ϕ

)
, that is, a2 = r2(ϕ) cos2 ϕ

1 − r2(ϕ) sin2 ϕ
. (4.1)

On the other hand, the slope of the tangent of the ellipse at (x, y) is dy
dx = −x

ya2
which

at the point h(ϕ) is

ṙ(ϕ) sin ϕ + r(ϕ) cosϕ

ṙ(ϕ) cosϕ − r(ϕ) sin ϕ
= dy

dx
= −x

ya2
= − cosϕ

a2 sin ϕ
.

This implies

ṙ(ϕ)

r(ϕ)
= (1 − a2) sin ϕ cosϕ

a2 sin2 ϕ + cos2 ϕ
=

(
1 − r2(ϕ) cos2 ϕ

1−r2(ϕ) sin2 ϕ

)
sin ϕ cosϕ

r2(ϕ) cos2 ϕ

1−r2(ϕ) sin2 ϕ
sin2 ϕ + cos2 ϕ

= (1 − r2(ϕ)) tan ϕ.

At every ϕ, where r(ϕ) �= 1, this gives

ṙ(ϕ)

r(ϕ)(1 − r2(ϕ))
= tan ϕ

Fig. 5 Parametrization of ∂H
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which, by integration, yields

−1

2
ln

|1 − r2(ϕ)|
r2(ϕ)

= − ln | cosϕ| + c0

for a constant c0. An equivalent reformulation of this is

r(ϕ) = 1√
1 ± c1 cos2 ϕ

,

where c1 is a constant. Substituting this into (4.1), a2(1± c1) = 1 follows, hence a is
the same constant for all ellipses ∂Eh(ϕ), which are therefore a fixed ellipse ∂E . This
means that ∂H is a subset of ∂E having equation (1 ± c1) · x2 + y2 = 1.

However, ∂H contains the point e3 = (1, 0) too, hence c1 = 0 and therefore ∂H is
the unit circle centered at the origin. This proves statement (ii). ��
Definition 4.3 Take a configuration according to Definition 4.1. We construct a set
of geometric object in the following way: Chose a point xi close to ei on the open
segment σi = e jek for every i = 1, 2, 3, where { j, k} = {1, 2, 3}\{i}.

Let the lines e2x3, e3x1 and e1x2 be denoted by �′
1, �

′
2, �

′
3, respectively.

Take the points v1 = �′
2 ∩ �′

3, v2 = �′
3 ∩ �′

1, v3 = �′
1 ∩ �′

2, and denote the open
segments v2v3, v3v1 and v1v2, by σ ′

1, σ
′
2 and σ ′

3, respectively.
Further, we take the points xt1 = t1 ∩ �′

2, xt2 = t2 ∩ �′
3, xt3 = t3 ∩ �′

1, and xH1 =
∂H ∩ (�′

2\{e3}), xH2 = ∂H ∩ (�′
3\{e1}), xH3 = ∂H ∩ (�′

1\{e2}). These points of
intersection do exist if xi are chosen close enough to ei (i = 1, 2, 3) (see Fig. 6).

Finally, let the magnitude of the angles � x2e1e2, � x3e2e3, � x1e3e1 be denoted by
ξ1, ξ2, ξ3, respectively, that of the angles � xt1e1e2, � xt2e2e3, � xt3e3e1 be denoted by

Fig. 6 A construction for the triple asymptotic H-triangle
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α1, α2, α3, respectively, and that of the angles � e3e1e2, � e1e2e3, � e2e3e1 be denoted
by β1, β2, β3, respectively.

Theorem 4.4 Take a construction according to Definition 4.3. For every i = 1, 2, 3
denote the Euclidean midpoint of the segment σi by bi and the H-midpoint of the
segment σ ′

i by bHi
The lines fH1 , fH2 , fH3 form a pencil if and only if the points x1, x2 and x3 can be

chosen for any ε, δ > 0 so that

|bH1 − b1| + |bH2 − b2| + |bH3 − b3| < ε,

|x1 − e1| + |x2 − e2| + |x3 − e3| < δ.

Proof Since dH(v j , bHi ) = dH(bHi , vk), where {i, j, k} = {1, 2, 3}, (2.2) implies
(e j , xHk ; v j , bHi ) = (e j , xHk ; bHi , vk), hence

1 = (e j , xHk ; v j , bHi )

(e j , xHk ; bHi , vk)
= (e j , xHk , v j )/(e j , xHk , bHi )

(e j , xHk ; bHi )/(e j , xHk , vk)

= (e j , xHk , vk)(e j , xHk , v j )

(e j , xHk ; bHi )2
= |e j − vk ||e j − v j |

|xHk − vk ||xHk − v j |
1

(e j , xHk ; bHi )2
(4.2)

From now on, assume that ξi → 0 for every i = 1, 2, 3. Then xHk → ek , hence

the affine midpoint of e jxHk converges to bi , and therefore bHi → bi if and only if
(e j , xHk ; bHi ) → 1.

As we have
|e j−vk |
|xHk −v j | → 1, (4.2) implies the asymptotic equation

(e j , xHk ; bHi )2 ∼ |e j − v j |
|xHk − vk |

which, in the light of the previous reasoning, means that

bHi → bi if and only if |e j − v j | ∼ |xHk − vk |. (4.3)

Using the law of sines (see Fig. 7) we obtain

|xHk − vk |
|e j − v j | = |xtk − e j | − |vk − e j | − |xHk − xtk |

|ei − e j | sin ξi/ sin(β j − ξ j + ξi )

=
|e j−ek |

sin(βk+αk+ξ j )
sin(βk + αk) − |e j−ek |

sin(βk−ξk+ξ j )
sin(βk − ξk) − |xHk − xtk |

|ei−e j |
sin(β j−ξ j+ξi )

sin ξi

= sin(β j − ξ j + ξi )

sin ξi

|e j − ek |
|ei − e j |

×
(

sin(βk + αk)

sin(βk + αk + ξ j )
− sin(βk − ξk)

sin(βk − ξk + ξ j )
− |xHk − xtk |

|e j − ek |

)
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Fig. 7 The construction with the midpoints

= sin(β j − ξ j + ξi )

sin ξi

|σi |
|σk |

×
(

tan(βk + αk)

sin ξ j + cos ξ j tan(βk + αk)
− tan(βk − ξk)

sin ξ j + cos ξ j tan(βk − ξk)
− |xHk − xtk |

|e j − ek |

)

= sin(β j − ξ j + ξi )

sin ξi

|σi |
|σk |

×
(

sin ξ j (tan(βk + αk) − tan(βk − ξk))

(sin ξ j + cos ξ j tan(βk + αk))(sin ξ j + cos ξ j tan(βk − ξk))
− |xHk − xtk |

|e j − ek |

)

= sin ξ j

sin ξi

|σi |
|σk |

×
(

sin(β j − ξ j + ξi )(tan(βk + αk) − tan(βk − ξk))

(sin ξ j + cos ξ j tan(βk + αk))(sin ξ j + cos ξ j tan(βk − ξk))

− sin(β j − ξ j + ξi )|xHk − xtk |
|e j − ek | sin ξ j

)

∼ sin ξ j

sin ξi

|σi |
|σk |

sin β j (tan(βk + αk) − tan βk)

tan(βk + αk) tan βk
= sin ξ j

sin ξi

|σi |
|σk |

sin β j sin αk

sin(βk + αk) sin βk
.

Putting this into (4.3) results in

bH1 → bi ⇐⇒ sin ξ1

sin ξ2
∼ |σ1|

|σ3|
sin β2 sin α3

sin(β3 + α3) sin β3
,

bH2 → b2 ⇐⇒ sin ξ2

sin ξ3
∼ |σ2|

|σ1|
sin β3 sin α1

sin(β1 + α1) sin β1
,

bH3 → b3 ⇐⇒ sin ξ3

sin ξ1
∼ |σ3|

|σ2|
sin β1 sin α2

sin(β2 + α2) sin β2
.

Having arbitrary ξ2 → 0, ξ1 → 0 and ξ3 → 0 can be so chosen, that the first two
of these asymptotic equations are satisfied, and the fulfillment of the third one then
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depends exactly on their product. Such angles ξ1, ξ2, ξ3 can be chosen therefore if and
only if

sin α1 sin α2 sin α3 = sin(β1 + α1) sin(β2 + α2) sin(β3 + α3). (4.4)

Denote themagnitude of the angles � fH1 �2, � fH2 �3, � fH3 �1 byψ1,ψ2,ψ3, respec-
tively, and the angles � fH1 �3, � fH2 �1, � fH3 �2 by φ1, φ2, φ3, respectively (see Fig. 7).
We clearly have ψi + φi = βi for every i = 1, 2, 3.

Observe that

−1 = (�3, �2; t1, fH1 ) = − sin α1/sin(β1 + α1)

sin φ1/sinψ1
,

−1 = (�1, �3; t2, fH2 ) = − sin α2/sin(β2 + α2)

sin φ2/sinψ2
,

−1 = (�2, �1; t3, fH3 ) = − sin α3/sin(β3 + α3)

sin φ3/sinψ3
,

hence (4.4) is equivalent to

1 = sin φ1

sinψ1

sin φ2

sinψ2

sin φ3

sinψ3
.

Let fHi ∩ σi = fi for every i = 1, 2, 3. Then the law of sines gives

(e1, e2; f3) = |σ2|
|σ1|

sin φ3

sinψ3
, (e2, e3; f1) = |σ3|

|σ2|
sin φ1

sinψ1
, and (e3, e1; f2) = |σ1|

|σ3|
sin φ2

sinψ2
.

By Ceva’s theorem the product of these ratios equals to 1 if and only if the lines
fH1 , fH2 and fH3 form a pencil. This proves the theorem. ��

5 Circumcenter and orthocenter in Hilbert geometry

Existence of the circumcenter of a trigon, the common point of the three perpendicular
bisectors, is a well known property in Euclidean plane. It can be formulated also for
the hyperbolic planeMartin (1975, p. 350): In hyperbolic geometry the perpendicular
bisectors of any trigon form a pencil.

Theorem 5.1 If theH-perpendicular bisectors of any trigon in the Hilbert geometry
H form a pencil, then (H, dH) is the hyperbolic geometry.

Proof We need to show that H is an ellipsoid. By Lemma 3.2 we only need to work
in the plane, therefore from now on in this proof H is in a plane P .

Suppose that H is not an ellipse. We shall have to arrive at a contradiction.
By (i) of Lemma 3.3 there exists an ellipse E circumscribed aroundH with at least

three different contact points e1, e2, e3 lying in ∂H ∩ ∂E such that the closed triangle

e1e2e3 contains the origin.

Suppose we have the configuration described in (iv) of Lemma 3.3.
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Choose a plane P ′ such that one of its open halfspace S contains t1 and E . Now
choose a point P out of P ′ ∪ P ∪ S. Let π be the perspective projection of P into
P ′ through the point P . This projection π clearly maps the configuration in P into a
configuration in P ′ that is described in (iii) of Lemma 3.3. Thus, since the statement
of the theorem is of projective nature, it is enough to validate it for configurations
described in (iii) of Lemma 3.3.

Take a construction defined by Definition 4.3 (see Fig. 8), and let ε = |x1 − e1| +
|x2 − e2| + |x3 − e3|.

By (v) of Lemma 3.3 the straight lines mibi (i = 1, 2, 3) meet in the center o of
the ellipse E , which is in the interior of the trigon 
e1e2e3, therefore the center o of
the ellipse E is in the interior of the trigon 
v1v2v3 too, if ε is small enough, which
we assume from now on.

According to Lemma 3.1 the lines �′
1, �

′
2, �

′
3 contain the points

e2 ≺ v2 ≺ bH1 � bE1 ≺ v3 ≺ x3 ≺ xH3 � xE3 ,

e3 ≺ v3 ≺ bH2 � bE2 ≺ v1 ≺ x1 ≺ xH1 � xE1 ,

e1 ≺ v1 ≺ bH3 � bE3 ≺ v2 ≺ x2 ≺ xH2 � xE2 ,

(5.1)

respectively, in the given order (see Fig. 8).
Take the tangent lines tHi and tEi ofH and E at the points xHi and xEi , respectively,

for every i ∈ {1, 2, 3}. Let mH
1 = tH2 ∩ t3, mH

2 = tH3 ∩ t1, mH
3 = tH1 ∩ t2, and

mE
1 = tE2 ∩ t3, mE

2 = tE3 ∩ t1 and mE
3 = tE1 ∩ t2 (see Fig. 8).

According to Lemma 3.4, the tangents t1, t2, t3 contain the points

m2 ≺ e1 ≺ m3 ≺ mE
3 � mH

3 , m3 ≺ e2 ≺ m1 ≺ mE
1 � mH

1 ,

m1 ≺ e3 ≺ m2 ≺ mE
2 � mH

2 ,
(5.2)

in the given order, respectively (see Fig. 8).

Fig. 8 Constructions of circumcenters inH and E
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Notice, that for well-chosen x1, x2, x3 we have xHi �= xEi for some i ∈ {1, 2, 3},
say xH1 �= xE1 , and then we also have mE

3 �= mH
3 and bE2 �= bH2 by (ii) of Lemma 3.3.

While the triangle 
v1v2v3 is in IntH ∩ Int E , letting ε tend to 0, it tends to the
triangle 
e1e2e3 in Euclidean meaning, hence Lemma 3.4 implies

mH
i → mi and mE

i → mi for every i ∈ {1, 2, 3}. (5.3)

On the other hand, for well-chosen x1, x2, x3, Theorems 4.2 and 4.4 imply that

bEi → bi and bHi → bi for every i ∈ {1, 2, 3} (5.4)

as ε → 0.
By (5.3) and (5.4) the hyperbolic circumcenter c of the triangle 
v1v2v3 tends to

the center o of E as ε → 0, and therefore the circumcenter c is in the interior of the
triangle 
v1v2v3 if ε is small enough.

Suppose that the triangle
v1v2v3 has also anH-circumcenter, say c′. By (5.3) and
(5.4) theH-circumcenter c′ tends also to the center o of E as ε → 0, hence it is in the
interior of the triangle 
v1v2v3 if ε is small enough.

On account of (5.1) and (5.2), for every i ∈ {1, 2, 3} the closed segments mH
i bHi

and mE
i bEi have k(i) ≥ 1 points in common, which is on the same side of �′

i as mi

is. By the notice after the relations (5.1) and (5.2), we may assume that k(2) = 1 and
k(3) = 1.

This implies that c′ is in the left open half plane of the lines mE
i bEi directed from

mE
i to bEi for every i ∈ {2, 3} and it is in the left closed half plane of the lines mE

1 bE1
directed from mE

1 to bE1 .
This contradicts the fact that the intersection of these half planes are empty, therefore

the supposition of the existence of c′ was wrong, and the theorem is proved. ��
Existence of the orthocenter of a trigon, the common point of the three altitudes,

is well known in Euclidean plane. It is also known for the hyperbolic plane Ivanov
(2011, Theorem 3): In hyperbolic geometry the altitudes of any trigon form a pencil.

Theorem 5.2 If the altitudes of any trigon in a Hilbert geometry H form a pencil,
then (H, dH) is the hyperbolic geometry.

Proof Following the proof of Theorem 5.1 we have the very same construction of the
tangents and points, but without the midpoints for now (see Fig. 9).

According to (5.3), the intersection a of the hyperbolic altitudes vimE
i (i = 1, 2, 3)

of the triangle 
v1v2v3 tends to the center o of E as ε → 0, and therefore a is in the
interior of the triangle 
v1v2v3 if ε is small enough.

Suppose that the H-altitudes vimH
i (i = 1, 2, 3) of the triangle 
v1v2v3 also

intersect in a point a′.
By (5.3) the point a′ also tends to the center o of E as ε → 0, hence it is in the

interior of the triangle 
v1v2v3 if ε is small enough.
On account of relations (5.2), vi = vimH

i ∩ vimE
i for every i ∈ {1, 2, 3}, and

therefore a′ is in the left open half plane of the lines vimE
i directed from vi to mE

i for
every i ∈ {1, 2, 3}.
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Fig. 9 A triangle with altitudes intersecting in inner points

This contradicts the fact that the intersection of these halfplanes are empty, therefore
the supposition of the existence of a′ was wrong, and the theorem is proved. ��
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