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Abstract Circle packings are configurations of circles satisfying specified patterns
of tangency and have emerged as the foundation for a fairly comprehensive theory of
discrete analytic functions. Though many classical results found their counterpart in
circle packing, other concepts have not yet been transferred, particularly those which
require a linear structure. This paper puts circle packings in a framework of smooth
manifolds, providing access to linear structures in their tangent spaces. Since we are
especially interested in applications to boundary value problems (of Beurling and Rie-
mann–Hilbert type), we do not only investigate the manifolds of circle packings and
packing labels, but also manifolds formed by the centers of the boundary circles. The
approach is elementary and rests on a detailed analysis of the contact equations which
govern the tangency relation between neighboring circles.
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1 Introduction

During the last decades the theory of analytic functions found its discrete coun-
terpart in circle packing. These configurations of circles form a quantum complex
analysis—they mimic and approximate the behavior of classical analytic functions.
The whole topic was launched with a talk of William Thurston in 1985 on the occasion
of the proof of the Bieberbach conjecture. The book of Stephenson (2005) gives an
overview of the present theory and lists a wide range of interrelations between circle
packing and complex analysis. There are many open problems and some questions
have not yet even been posed, particularly those which are related to the linear structure
of analytic functions.

The aim of this paper is to describe circle packings in the framework of differ-
entiable manifolds. We expect that this approach will provide the basis for a deeper
understanding of circle packings and bring forth new aspects of the theory. In particular
it will be inevitable for subsequent investigations, among which we mention univa-
lence criteria, packings of specified regions, and discrete boundary value problems
of Beurling and Riemann–Hilbert type. More generally, manifolds provide computa-
tional mechanisms for the type of open-ended experiments that have characterized the
discrete theory to date.

We point out that the foundation of numerical methods is also one reason why we
favored an approach based on the contact equations against more abstract topologi-
cal concepts: As a useful side product we obtain the invertibility of certain matrices
involved in the numerical algorithms for solving discrete boundary value problems
[see Wegert and Bauer (2009); Wegert et al. (2011)].

The plan of the paper is as follows. In Sect. 2 we fix notations and summarize
some facts from circle packing; an illustration may aid the reader unfamiliar with the
topic. In Sect. 3 we introduce the manifolds D of circle packings and D∗ of packing
labels with fixed combinatorics, which are the fundamental objects of this paper. In
Sects. 4 and 5 we prove that D and D∗ are indeed differentiable submanifolds of
appropriately chosen ambient spaces, and we parametrize their components by global
charts. Since we are especially interested in describing circle packings by their bound-
ary elements, we study the corresponding manifolds C and C∗ of boundary centers
in Section 6. Although attention is restricted in this paper to Euclidean geometry, the
results generalize in straightforward fashion to hyperbolic and spherical geometry.

2 Definitions and notations

The study of circle packings in the context of conformal mapping was initiated by
Koebe (1936), but quickly dropped out of sight. The success of the topic started with
William Thurston’s conjecture in 1985 of a discrete version of the famous Riemann
Mapping Theorem via circle packing, which yields the continuous setting in the limit.
This is now known as the Rodin–Sullivan Theorem and was firstly proven in Rodin
and Sullivan (1987) two years after Thurston’s talk. Apparently, we had to wait for
the coming of the computer age to appreciate the beauty and mathematical richness
inherent in circle packing.
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The story starts with the observation that an analytic function maps infinitesimal
circles to infinitesimal circles. If a function F is analytic in a domain, then it maps any
circle c of small radius r centered at z to a curve F(c) which approximates the circle
of radius |F ′(z)| r centered at F(z). Essentially, in circle packing these infinitesimal
circles are replaced by real ones.

Each circle packing has a prescribed pattern of tangencies encoded in the under-
lying combinatorics which can be described in terms of simplicial complexes. The
underlying complex K of a circle packing is an abstract simplicial 2-complex which
is a triangulation of an oriented topological surface.

In the following we will assume that K is simply connected. If K is addition-
ally finite and with nonempty boundary, it is called a combinatorial closed disc.
Other possibilities include combinatorial spheres, combinatorial open discs, when
K is simply connected, infinite, and without boundary, and mixed cases when K
is simply connected, infinite, with non-empty boundary. However, in this paper we
shall exclusively study circle packings for combinatorial closed discs. We denote
the sets of vertices, edges and faces of K by V, E, F, respectively, and assume
that

V = {v1, . . . , vn}, E = {e1, . . . , ep}, F = { f1, . . . , fq}.

The edge adjacent to vi and v j is denoted by 〈vi , v j 〉, and faces are written as
〈vi , v j , vk〉,where the vertices vi , v j , vk are ordered according to their positive orien-
tation. We further suppose that K has m boundary vertices and assume that these are
v1, . . . , vm .

Since K is a combinatorial closed disc we have n +q = p +1 by Euler’s Theorem.
By counting the edges of K in two different ways we obtain that 3q = 2p − m, and
elimination of q leads to the fundamental relation

p = 3n − m − 3. (1)

Each vertex vi has an associated combinatorial flower 〈vi ; v′
1, v

′
2, . . . , v

′
k〉, which

consists of vi and all its neighbors. Usually we assume that v′
1, . . . , v

′
k are arranged in

positive order, so that 〈vi , v
′
j , v

′
j+1〉 ∈ F for j = 1, . . . , k −1. If also 〈vi , v

′
k, v

′
1〉 ∈ F

the flower is said to be closed, otherwise it is called open.
The standard geometries in which circle packings are studied are the complex plane,

C, with the Euclidean metric, the hyperbolic plane, D, with the Poincaré metric, and
the Riemann Sphere, P, with the spherical metric.

Definition 2.1 (Circle packing). Let G be one of the standard geometries, C,D, or P.
A collection P = {cv} of circles in G is a circle packing for a complex K , if it satisfies
the following:

(i) P has a circle cv associated with each vertex v of K .
(ii) Two circles cu, cv are externally tangent whenever 〈u, v〉 is an edge of K .

(iii) If 〈u, v, w〉 is a (positively oriented) face of K , then the centers of the circles
cu, cv, cw form a positively oriented triangle.
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Circles corresponding to the boundary or interior of K are termed boundary circles and
interior circles, respectively. A circle packing consisting of a circle with all boundary
circles tangent to it is called a flower.

A circle packing in which the circles have mutually disjoint interiors is said to be
univalent. It is called locally univalent if the neighbors of each interior circle wrap
once around it; circle packings which are not locally univalent contain one or more
branch points, i.e. interior circles whose chain of neighboring circles wraps more than
once around it. A precise definition is deferred to Sect. 3.

Maximal packings play a special role. For combinatorial closed discs the term max-
imal means that the packing is univalent and each boundary circle is internally tangent
to T = ∂D.

The maximal packings for a fixed complex K are essentially unique, that is unique
up to conformal automorphisms of the underlying space. The next theorem is the Dis-
crete Uniformization Theorem for combinatorial closed discs. For a proof we refer to
Chapters 6 and 8 of Stephenson (2005).

Theorem 2.2 (Maximal packings for combinatorial closed discs). For every combi-
natorial closed disc K there exists an essentially unique univalent circle packing PK

in the unit disc D such that every boundary circle is internally tangent to the unit
circle T.

If PK denotes a maximal packing for a complex K , then functions of the form f :
PK → P, can be considered as discrete counterparts of classical analytic functions
on the unit disc D. Figure 1 illustrates the maximal packing serving as domain on the
left. Two Euclidean packings on the right share the same combinatorics. The first is
univalent, and the discrete analytic function f : PK → P1 is a discrete analogue of
z �→ (z + 1.1)2. The second has one branch point and the discrete analytic function
g : PK → P2 is a discrete analogue of z �→ (z + 0.2)2. The boundary circles are
shown to help visualize the mapping behaviors.

While the holomorphic functions in D form a linear space O(D), their discrete
counterparts (circle packings) lack a linear structure. As a substitute we shall prove
that all circle packings for a fixed finite complex K form a differentiable manifold
and that every component of this manifold can be parameterized by a global chart. It
is the tangent bundle of this manifold which provides circle packings with a locally
linear structure useful both in the theory and the computation of circle packings.

3 Circle packings and packing labels

Throughout the paper K will always refer to a fixed combinatorial closed disc with
n vertices, p edges and q faces. With a circle packing P for K we associate the radii
r = (r1, . . . , rn) and the centers z = (z1, . . . , zn) of its circles. Thus the packing
can be considered as an element of the ambient space R

n+ × C
n . The subset of circle

packings (for the fixed combinatorial disc K ) in R
n+ × C

n is denoted by D.
A convenient description of D in R

n+ × C
n is based on the contact function, which

checks if the two circles adjacent to every edge of K are mutually tangent.
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Fig. 1 Discrete analytic functions f : z �→ (z + 1.1)2 and g : z �→ (z + 0.2)2

Definition 3.1 (Contact function). The contact function ω : R
n+×C

n →R
p is defined

by ω = (ω1, . . . , ωp), with components ωi given by

ωi (r, z) := (x j − xk)
2 + (y j − yk)

2 − (r j + rk)
2 for ei = 〈v j , vk〉 ∈ E . (2)

Here and in the following x j := Re z j and y j := Im z j denote the real and imaginary
part of z j , respectively.

Clearly, each circle packing (r, z) is a zero of ω. Conversely, each zero of ω cor-
responds to a configuration of circles in C satisfying (i) and (ii) in Definition 2.1, but
ω does not feel orientations, and hence condition (iii) may be violated. In order to
guarantee the correct orientation of the triples we consider the set

U := {
(r, z) ∈ R

n+ × C
n : 0 < �(zi ; z j , zk) < π for all 〈vi , v j , vk〉 ∈ F

}
, (3)

where �(zi ; z j , zk) denotes the oriented angle of the triple zi , z j , zk at zi ,

�(zi ; z j , zk) := arg
zk − zi

z j − zi
for zi 	= z j .

The location of the centers z1, . . . , zn of a circle packing in the plane implies D ⊂ U .
Moreover, letting

123



404 Beitr Algebra Geom (2012) 53:399–420

Z := {
(r, z) ∈ R

n+ × C
n : ω(r, z) = 0

}
(4)

we obtain that D = U ∩ Z .

Lemma 3.2 (Local characterization of D). There exists a neighborhood U of D in
R

n+ × C
n such that for (r, z) ∈ U the conditions (r, z) ∈ D and ω(r, z) = 0 are

equivalent.

It is important that there is another characterization of circle packings which mainly
works with the radii. To describe this approach we start with the projection

υ : R
n+ × C

n → R
n+, (r, z) �→ r

which forgets about the centers. In this context we refer to the elements of R
n+ as

labels and the elements of the image set D∗ := υ(D) of circle packings D are called
packing labels.

The reconstruction of a circle packing (r, z) from its packing label (radii) r accord-
ing to the combinatorics of K goes with the name layout. In particular, one starts by
placing one circle and an immediate (tangent) neighbor, a process with three degrees of
freedom. One then places the remaining circles in turn, with each placement requiring
that two contiguous neighbors already be in place. The following result ensures that
this process does not run into a dead end.

Theorem 3.3 (Monodromy theorem, Stephenson (2005), Theorem 5.4). For any
packing label r ∈ D∗ there exists a vector z ∈ C

n such that (r, z) ∈ D. The vec-
tor z is unique up to a plane rigid motion of C

n.

By a plane rigid motion of z ∈ C
n we understand a rigid motion of C which acts on

all components of z,

gξ,η,ρ : z �→ eiρz + (ξ + iη) · 1, 1 := (1, . . . , 1). (5)

In order to distinguish a special representative of all possible layouts we designate an
α-vertex vα of K and one of its neighbors vβ, and place the centers zα and zβ of the
corresponding circles at the origin and on the positive real line, respectively.

We refer to the result of this procedure as the standard layout, z = γ0(r). An arbi-
trary layout γξ,η,ρ(r) of r is then obtained by post-composing the standard layout with
a plane rigid motion gξ,η,ρ of C

n . The layout parameters ξ, η and ρ are related to the
centers of the α and β circles of the packing by

ξ + iη := zα, eiρ := zβ − zα
|zβ − zα| .

In order to find an intrinsic description of packing labels we consider the angle sums
of the triangles (faces) which meet at one vertex. For circle packings P = (r, z) ∈ D
we have two options to compute angle sums. The standard definition involves only
the labels (radii) ri , while an alternative makes use of the centers zi . Both definitions
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coincide on D but their extensions to the ambient space R
n+ × C

n fall apart. For the
second definition we further have to exclude the exceptional set

E := {(z1, . . . , zn) ∈ C
n : z j = zk for some 〈v j , vk〉 ∈ E}. (6)

Definition 3.4 (Angle sum maps). Let (r, z) ∈ R
n+×C

n . Then for vertices vi , v j , vk ∈
V the radial angle at vi from v j to vk is defined as

ϕ(vi ; v j , vk) := arccos

(
(ri + r j )

2 + (ri + rk)
2 − (r j + rk)

2

2(ri + r j )(ri + rk)

)
.

For pairwise distinct points zi , z j , zk ∈ C
n the vertex angle at vi is given by

ψ(vi ; v j , vk) := arccos

( |zi − z j |2 + |zi − zk |2 − |z j − zk |2
2|zi − z j ||zi − zk |

)
.

Let 〈vi ; v′
1, v

′
2, . . . , v

′
k〉 denote the combinatorial flower at vi ∈ V and set

�i (r, z) :=
l∑

j=1

ϕ(vi ; v′
j , v

′
j+1), �i (r, z) :=

l∑

j=1

ψ(vi ; v′
j , v

′
j+1), (7)

where l = k and rk+1 = r1 if the flower is closed, and l = k − 1 otherwise. Then the
radial angle sum map and the vertex angle sum map are

� := (�1, . . . , �n) : R
n+ × C

n �→ R
n+, � := (�1, . . . , �n) : R

n+ × (
C

n\E) �→ R
n .

In the following we shall frequently omit the irrelevant variables and simply write
�(r) and �(z). The angle sums at the interior vertices are of special importance and
we define the (radial and central) interior angle sum maps �̃ : R

n+ → R
n−m+ and

�̃ : C
n\E → R

n−m by

�̃i (r) := �m+i (r), �̃i (z) := �m+i (z), i = 1, . . . , n − m, (8)

respectively. The function �̃ gives the desired description of packing labels.

Lemma 3.5 (Packing labels and branching). A vector r ∈ R
n+ is a packing label if

and only if

�̃(r) = 2π (b + 1),

with a vector b ∈ Z
n−m+ of nonnegative integers and 1 := (1, . . . , 1) ∈ Z

n−m+ .

The vector b = (b1, . . . , bn−m) is called the branching of the packing label r and its
components b j are referred to as the branch orders at the corresponding inner vertices.
If all entries of b are zero, then the packing label is unbranched or locally univalent.
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The set of all packing labels with branching b is denoted by D∗
b, and Db := υ−1

(D∗
b

)

denotes the related set of circle packings.
It is not difficult to see that the number of non–empty sets D∗

b is finite. Somewhat
surprising, there is even a necessary and sufficient condition for D∗

b 	= ∅. To formulate
it we need the following definition.

Definition 3.6 (Branch structure). A vector b ∈ Z
n−m+ is said to be a branch structure

for K , if it satisfies the following condition:
If γ = {e1, e2, . . . , ek} is any simple closed edge path in K , and N denotes the sum
of the branch orders bi of all vertices in K which are interior to γ, then k > 2N + 2.

The next result is a combination of Theorem 11.5 and Theorem 11.6 in Stephenson
(2005) and belongs to the miracles of circle packing. It does not only answer the ques-
tion about the existence of packing labels with prescribed branching, but parametrizes
the sets D∗

b by their boundary labels.

Theorem 3.7 (Packing labels with specified branching). The set D∗
b of packing labels

with branching b is non-void if and only if b is a branch structure for K . In this case
each vector (r1, . . . , rm) ∈ R

m+ of boundary labels for K admits a unique extension
to a packing label r = (r1, . . . , rn) ∈ R

n+ in D∗
b.

It is useful to rephrase the result. For a given branch structure b the theorem shows
that there is a unique function

�∗
b : R

n+ → D∗
b, (r1, . . . , rm) �→ (r1, . . . , rn)

which extends an arbitrary boundary label (r1, . . . , rm) to a packing label with branch-
ing b. Denoting by �̃∗

b the projection of �∗
b onto its last n − m components, we obtain

that D∗
b is the graph of �̃∗

b . In the next section we shall prove that the functions �∗
b are

smooth.

4 The manifold of packing labels

Let us briefly fix some notations. If f : M → N is a differentiable map between
smooth manifolds the differential of f is denoted by d f : TM → TN and the differen-
tial of f at x ∈ M is dx f : Tx M → T f (x)N . We also use the notation d f (x) := dx f
and identify d f (x) with the Jacobian D f (x) if this is appropriate.

A parameter line on M is a mapping of an interval into M . The tangent vectors
along a parameter line ξ are denoted by ∂ξ .

Usually M and N are submanifolds of appropriate ambient Euclidean spaces which
are composed from several distinct subspaces. In this context integer subscripts indi-
cate components or coordinates of an object. If, for example the ambient space is
R

n × R
n, its elements are written as (x, y) with x = (x1, . . . , xn), y = (y1, . . . , yn).

In order to distinguish between vectors in the base space and tangent vectors we
write the latter as (dx, dy) with dx = (dx1, . . . , dxn), dy = (dy1, . . . , dyn). These
notations are convenient since they allow to keep track of the geometric meaning of
the variables. They are further motivated by the fact that the coordinates ξ j of a tangent
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vector ∂ξ in the standard basis xi are the values of the coordinate differential dx j on
∂ξ,

∂ξ  (ξ1, . . . , ξn) := (
dx1(∂ξ), . . . , dxn(∂ξ)

) ≡ (dx1, . . . , dxn).

The differential of a mapping f : x �→ y is then written as

dx f : (dx1, . . . , dxn) �→ D f · (dx1, . . . , dxn).

The following lemma is the key to the proof that D∗ is a smooth embedded m-dimen-
sional submanifold of R

n+.

Lemma 4.1 (Jacobian of the radial angle sum map). For any label r ∈ R
n+ the kernel

of the Jacobian D�(r) of the radial angle sum map � at r is one dimensional and
consists of the scalar multiples of r .

Proof Suppose the assertion was not true, i.e., ker D�(r) contains a vector dr which
is not a scalar multiple of r . Then we can find a vertex vJ , such that

drJ

rJ
= max

{
dri

ri
: i = 1, . . . , n}

}
and

drJ

rJ
>

dr j

r j
(9)

for some neighbor v j of vJ in K . Let 〈vJ ; v1, v2, . . . , vk〉 denote the combinatorial
flower at vJ . Differentiating (7) shows that

D�J (r) dr =
l∑

i=1

dϕ(rJ ; ri , ri+1)(r) dr

=
l∑

i=1

√
rJ riri+1

rJ + ri + ri+1

(
1

rJ + ri

(
dri

ri
− drJ

rJ

)
+ 1

rJ + ri+1

(
dri+1

ri+1
− drJ

rJ

))
,

(10)

where l = k and rk+1 = r1 if the flower is closed, and l = k − 1 otherwise. Since
all radii are strictly positive, we must have D�J (r) dr < 0 by (9), contradicting the
assumption that D�(r) dr = 0. ��
Lemma 4.2 (Linearly independent rows of D�). For every r ∈ R

n+ any n − 1 rows
of the Jacobian D�(r) are linearly independent.

Proof Pick any vertex v j . To simplify notations we renumber the vertices such that its
combinatorial flower is given by 〈v j ; v1, v2, . . . , vk〉. A straightforward computation
using (10) yields that the derivatives of �i satisfy

−∂� j

∂r j
(r) =

l∑

i=1

√
r jri ri+1

r j + ri + ri+1

(
1

(r j + ri )r j
+ 1

(r j + ri+1)r j

)
=

k∑

i=1

∂�i

∂r j
(r),
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where l = k and rk+1 = r1 if the flower is closed, and l = k − 1 otherwise. Moreover,
we have (∂�i/∂r j )(r) = 0 if i 	= j and i > k. Thus the sum of the elements in
each column of D�(r) is zero, so that the vector (1, . . . , 1) belongs to the kernel of
(D�)�(r). By Lemma 4.1 we have

dim ker (D�)�(r) = dim ker D�(r) = 1,

which then implies that the kernel of (D�)�(r) is spanned by (1, . . . , 1). If n − 1
rows of D�(r) were linearly dependent, then the kernel of (D�)�(r) would con-
tain a nonzero vector (λ1, . . . , λn) with at least one entry λi equal zero, which is a
contradiction. ��
Recall that the interior radial angle sum map �̃ is the projection of � onto its last
n − m components. By Lemma 4.2 the Jacobian D�̃, which consists of the last n − m
rows of D�, has maximal rank.

Corollary 4.3 The map �̃ : R
n+ → R

n−m+ is a submersion.

Lemma 4.4 (Linearly independent columns of D�̃). For every r ∈ R
n+ the last n −m

columns of the Jacobian D�̃(r) are linearly independent.

Proof We use a similar approach as in Lemma 4.1. Suppose ker D�̃(r) contains a
nonzero vector dr satisfying dr1 = · · · = drm = 0. Without loss of generality we
may assume that at least one entry of dr is positive, otherwise consider −dr . Then we
can choose an interior vertex vJ with J > m such that (9) holds with some neighbor
v j of vJ in K . Using (10) leads to the contradiction D�̃J−m(r) dr = D�J (r) dr < 0.
Hence dr = 0 follows. ��
After these preparations the first main result follows immediately. Recall that D∗

b
denotes the set of all packing labels with prescribed branching b.

Theorem 4.5 (The manifold of packing labels). The set D∗ of packing labels is a
m-dimensional submanifold of R

n+. For every branch structure b the projection

π∗
b : D∗

b → R
m+, (r1, . . . , rn) �→ (r1, . . . , rm),

which assigns to P∗ ≡ (r1, . . . , rn) ∈ D∗ its boundary labels r1, . . . , rm is a diffeo-
morphism.

Proof The set D∗ is a finite union of D∗
b over all branch structures b for the complex

K . Since

D∗
b = �̃−1 (2π(b + 1)) , with 1 := (1, . . . , 1)

is the preimage of a point in R
n−m+ with respect to the submersion �̃, it is a smooth

closed submanifold of R
n+ and

TrD∗
b = ker D�̃(r) (11)
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(see Diedonné (1972), Theorem 16.8.8). Moreover, we already know that the inverse
of π∗

b ,

�∗
b : R

m+ → D∗
b, (r1, . . . , rm) �→ (r1, . . . , rn),

which extends a boundary label (r1, . . . , rm) ∈ R
+ to a packing label in D∗

b, is bijec-
tive, and Lemma 4.4 allows an application of the Implicit Function Theorem showing
its differentiability. ��
Corollary 4.6 (Parametrization of packing labels). The mapping π∗

b is a global chart
on D∗

b. Its inverse �∗
b is a regular parametrization of D∗

b and for every r ∈ D the
tangent vectors ∂r1, . . . , ∂rm to the parameter lines of r1, . . . , rm span the tangent
space TrD∗ at every point r ∈ D∗.

5 The manifold of circle packings

In this section we show that the circle packings D form a smooth m + 3–dimensional
submanifold of R

n+ × C
n . Every component Db can be parametrized by the boundary

radii r1, . . . , rm and three additional real parameters ξ, η, ρ associated with plane rigid
motions.

In fact we shall give two (almost) independent proofs based on Theorem 4.5. The
first (short) one uses the smoothness of the layout. The second proof gives the extra
information that the contact function ω has maximal rank, which is also of practical
importance in computations with circle packings.

Lemma 5.1 (Smoothness of layout). The standard layout γ0 : D∗ → C
n is a smooth

map.

Proof Obviously the centers of the α-circle and the β-circle depend smoothly on r .
Proceeding by induction we assume that two centers zi , z j depend smoothly on r and
show that the same holds for zk if the corresponding vertices vi , v j , vk form a face of
K . Differentiating the contact equations

ωi (xk, yk) := (xi − xk)
2 + (yi − yk)

2 − (ri + rk)
2 = 0,

ω j (xk, yk) := (x j − xk)
2 + (y j − yk)

2 − (r j + rk)
2 = 0

for the edges vivk and v jvk with respect to xk and yk yields the Jacobian

J =
[

2 (xk − xi ), 2 (yk − yi )

2 (xk − x j ), 2 (yk − y j )

]
.

This matrix is regular since the centers zi , z j , zk of a face are not collinear, and the
Implicit Function Theorem gives the desired result. ��
Recall that the general layout of a packing label P∗ ≡ r is the composition of the
standard layout with the plane rigid motion gξ,η,ρ introduced in (5). More precisely
we define
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γ : D∗ × C × T → R
n+ × C

n+, (r, ξ + iη, eiρ) �→ (
r, (gξ,η,ρ ◦ γ0)(r)

)
.

It is clear that gξ,η,ρ depends smoothly on the layout parameters ξ, η, ρ. The (tangent)
vectors ∂ξ, ∂η, ∂ρ to the parameter lines ξ, η and ρ of γ at r are

∂ξ = (0, 1), ∂η = (0, i 1), ∂ρ = (0, i eiρ γ0(r))

with 1 := (1, . . . , 1). They are linearly independent (as elements of R
n × R

n × R
n ≡

R
n×C

n) and belong to the subspace {0}×C
n, and hence we can lift the parametrization

�∗
b of D∗

b to a regular parametrization �b of Db:

�b : R
m × C × T →Db, (r1, . . . , rm, ξ + iη, eiρ) �→γ

(
�∗

b(r1, . . . , rm), ξ + iη, eiρ).

By virtue of Theorem 4.5 the mapping �b is a diffeomorphism. Denoting by πb its
inverse we summarize the results in the following theorem.

Theorem 5.2 (The manifold of circle packings). The set D of circle packings for a
combinatorial closed disc K is a smooth submanifold of R

n+ ×C
n of dimension m +3.

For every branch structure b for K the mapping

πb : Db → R
m+ × C × T, (r1, . . . , rn, z1, . . . , zn) �→ (r1, . . . , rm, ξ + iη, eiρ)

with ξ + iη := zα, eiρ := (zβ − zα)/(|zβ − zα|) is a diffeomorphism.

Corollary 5.3 (Parametrization of circle packings). For every branch structure b the
mapping πb : Db → R

m+ × C × T is a global chart on Db. Its inverse �b is a reg-
ular parametrization of Db and the tangent vectors ∂r1, . . . , ∂rm, ∂ρ, ∂ξ, ∂η to the
parameter lines of �b span the tangent space T(r,z)D at every point (r, z) of D.

For an alternative approach to Theorem 5.2 we show that the contact function ω has
maximal rank. The components of ω are given by (2) and differentiation leads to

dωi = 2(x j − xk)(dx j − dxk)+ 2(y j − yk)(dy j − dyk)− 2(r j + rk)(dr j + drk)

with (v j , vk) = ei ∈ E . Then the Jacobian Dω(r, z) of ω at (r, z) is a real matrix of
dimension p × 3n with the entries 2ωi j , where

ωi j :=
⎧
⎨

⎩

−(r j + rk) for ei = v jvk and 1 ≤ j ≤ n,
x j − xk for ei = v j−nvk and n + 1 ≤ j ≤ 2n,
y j − yk for ei = v j−2nvk and 2n + 1 ≤ j ≤ 3n

(12)

and ωi j := 0 otherwise. The submatrices Drω,Dzω, and Deω composed from the
first n columns, the last 2n columns and the last 3n − m columns of Dω are referred
to as the radial part, the central part, and the essential part of Dω, respectively.
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Lemma 5.4 (Rank and kernel of Dzω). Let (r, z) ∈ D with z = x + iy. Then the rank
of the central part Dzω(r, z) is 2n − 3 and

ker Dzω(r, z) = span {(1, 0), (0, 1), (−y, x)} (13)

Proof If (dx, dy) lies in the kernel of Dzω we have

(x j − xk)(dx j − dxk)+ (y j − yk)(dy j − dyk) = 0

for all ( j, k) ∈ E . Geometrically this means that for every edge v jvk ∈ E the lines
through iz j , izk and dz j , dzk are parallel. For any face 〈vi , v j , vk〉 ∈ F the triangles
formed by izi , iz j , izk and dzi , dz j , dzk must be similar with ratio

r(〈vi , v j , vk〉) := |zi − z j |
|dzi − dz j | .

Since the ratios corresponding to neighboring faces must be the same, and K is con-
nected, all ratios coincide. Hence the tuple dz := dx + i dy ∈ C

n is obtained from
iz ∈ C

n by dilation and translation, dz = iz dρ+(dξ + i dη) ·1 with dρ, dξ, dη ∈ R.
This yields (13), and dim ker Dzω(r, z) = 3 implies that rank Dzω(r, z) = 2n − 3.

��
The image of Dzω(r, z) equals the orthogonal complement of the kernel of
(Dzω(r, z))� and hence

dim
(

ker
(

Dzω(r, z)�
))

= p − rank (Dzω(r, z))) = p − (2n − 3) = n − m.

We point out that there is a basis of the kernel of (Dzω(r, z))� ,where every basis vec-
tor corresponds to an associated interior vertex and all entries are expressed explicitly
in geometric terms of the flower of that vertex. For details we refer to Chapter 4.4 of
Bauer (2009).

The next lemma is an auxiliary result about the central angle sum and will be needed
in the proof of Lemma 5.6.

Lemma 5.5 If (r, z) ∈ D, the function �̃ is locally constant at z.

Proof If (r, z) ∈ D, then the value �̃i (z) is equal to 2π(bi + 1), where bi is the
branching order of the packing label at the vertex vi+m . Geometrically, bi + 1 is the
winding number of the polygonal line formed by the chain of neighboring centers of
zi+m about zi+m . This line does not meet zi+m, and hence its winding number is stable
with respect to small perturbations of the centers z j . ��
Lemma 3.2 tells us that ω = 0 defines D locally as a submanifold of C

n × R
n+. This

alone does not guarantee that the kernel of Dω is the tangent space of D, but the
following lemma is a first step to prove this fact.

Lemma 5.6 (Kernel of differential of contact function). Let (r, z) ∈ D and
(dr, dx, dy) ∈ R

3n. Then (dr, dx, dy) ∈ ker Dω(r, z) implies that dr ∈ TrD∗.
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Proof Differentiating the function f (s, t, u) := arccos
(
(s + t − u)/(2

√
st)

)
yields

d f = t − u − s

2s
√

4su − (u + s − t)2
ds + s − t − u

2t
√

4tu − (t + u − s)2
dt

+ 1
√

4st − (s + t − u)2
du. (14)

Suppose we have s = a2, t = b2, u = c2, where a, b, c are the sides of a triangle.
Then the law of cosines implies

4st − (s + t − u)2 = 4a2b2 −
(

a2 + b2 − c2
)2 = 4a2b2 − (2ab cos γ )2 > 0.

Similarly, 4su − (u + s − t)2 > 0 and 4tu − (t + u − s)2 > 0 follows.
To shorten notation let h := (dr, dx, dy). From Dω(r, z) h = 0 we obtain for every

ei = v jvk ∈ E that

d
(
|z j − zk |2

)
(r, z)h = d

(
(x j − xk)

2 + (y j − yk)
2
)
(r, z)h

= 2(x j − xk)(dx j (r, z)h − dxk(r, z)h)+ 2(y j − yk)(dy j (r, z)h − dyk(r, z)h)

= 2(r j + rk)(dr j (r, z)h + drk(r, z)h) = d
(
(r j + rk)

2
)
(r, z)h.

Let vi , v j , vk be the vertices of a triangle in K . Plugging the last line into (14) gives

dϕ(vi ; v j , vk)(r, z)h = d f
(
(ri + r j )

2, (ri + rk)
2, (r j + rk)

2
)
(r, z)h

= ∂ f

∂s
(r, z)d

(
(ri +r j )

2
)
(r, z)h+ ∂ f

∂t
(r, z)d

(
(ri + rk)

2
)
(r, z)h

+∂ f

∂u
(r, z)d

(
(r j + rk)

2
)
(r, z)h

= ∂ f

∂s
(r, z)d

(
|zi −z j |2

)
(r, z)h+ ∂ f

∂t
(r, z)d

(
|zi − zk |2

)
(r, z)h

+∂ f

∂u
(r, z)d

(
|z j − zk |2

)
(r, z)h

= d f
(
|zi − z j |2, |zi − zk |2, |z j − zk |2

)
(r, z)h

= dψ(vi ; v j , vk)(r, z)h. (15)

Note that the partial derivatives ∂ f /∂s, ∂ f /∂t and ∂ f /∂u are well-defined at (r, z),
since |zi − z j | = ri + r j , |zi − zk | = ri + rk and |z j − zk | = r j + rk are the lengths
of sides of a triangle.

Finally, we pick an i ∈ {1, 2, . . . , n − m} and consider the combinatorial flower
〈vm+i ; v′

1, . . . , v
′
k〉 at vm+i . By virtue of (15) and Lemma 5.5 we obtain
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D�̃i (r)dr = D�m+i (r, z)h =
k∑

j=1

dϕ(vm+i ; v′
j , v

′
j+1)(r, z)h

=
k∑

j=1

dψ(vm+i ; v′
j , v

′
j+1)(r, z)h =D�m+i (r, z)h =D�̃i (z)(dx, dy)=0.

By (11) the kernel of D�̃(r) coincides with TrD∗, which completes the proof. ��
After these preparations it becomes fairly easy to show that the rank of Dω is maxi-
mal—it even suffices to consider its essential part.

Lemma 5.7 For (r, z) ∈ D the essential part Deω(r, z) of Dω(r, z) has rank
3n − m − 3.

Proof The essential part Deω(r, z) is a matrix of size p × 3n − m. In order to verify
that it has column rank 3n − m − 3 we pick any vector (dr, dx, dy) ∈ ker Dω(r, z)
with dr1 = . . . = drm = 0. Then we obtain from Lemma 5.6 that dr ∈ TrD∗.
By Corollary 4.6 this tangent space is spanned by the tangent vectors ∂r1, . . . , ∂rm

so that dr1 = . . . = drm = 0 implies dr = 0. It then follows that (0, dx, dy) ∈
ker Dω(r, z), i.e. (dx, dy) belongs to the kernel of Dzω(r, z), which has dimension
3 (see Lemma 5.4). Since this conclusion also works the other way around we obtain
dim ker Deω(r, z) = 3, which proves the claim. ��
The next result describes the manifold of circle packings locally as the zero set of the
contact function ω.

Theorem 5.8 (Circle packings via contact function). There exists a neighborhood U
of D in R

n × C
n such that

D = {(r, z) ∈ U : ω(r, z) = 0}

and ω : U → R
p is a submersion, i.e., dω has rank p.

Proof The Jacobian of ω has p rows and 3n columns and by (1) we have p = 3n −
m − 3. Thus Lemma 5.7 shows that the rank is maximal on D. This remains valid in a
neighborhood U of D, which can be chosen so small that the assertion of Lemma 3.2
holds. ��

Invoking a standard result we again obtain that D = U ∩ω−1(0) is a smooth closed
submanifold of R

n × C
n of dimension 3n − p, which is equal to m + 3.

In order to explore the relation between the manifolds of circle packings and pack-
ing labels a little further, we consider the three-dimensional Lie group G of rigid
motions of the plane R

2 ≡ C. The element g of G which acts as g : z �→ eiϕz + a
is represented as g = (eiϕ, a) ∈ T × C. In this representation the product of two
elements g = (eiϕ, a) and h = (eiψ, b) is

g h = (ei(ϕ+ψ), eiϕb + a).
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For g = (eiϕ, a) ∈ G the left translation of G on C
n is a plane rigid motion of z ∈ C

n,

z �→ eiϕz + a · 1.

It is not difficult to see that this action of G on C
n is smooth and proper. If we remove

the exceptional set E defined in (6), then C
n\E is G-stable and the action of G on

C
n\E is free. The same holds for two actions α and β of G on R

n+ × (Cn\E) and on
R

m+ × T × C, which are defined by

α : (g, r, z) �→ (
r, eiϕz + a · 1

)
,

β : (
g, r, eiρ, ξ + iη

) �→ (
r, ei(ρ+ϕ), eiϕ(ξ + iη)+ a

)
,

respectively, where g = (
eiϕ, a

)
. If (r, z) ∈ R

n × (Cn\E) is a circle packing, then
α(g, (r, z)) describes the packing rotated by the action of g. Consequently all com-
ponents Db are G-stable. The action β has a similar interpretation for the vector(
r, eiρ, ξ + iη

)
which consists of the boundary labels and (potential) layout parame-

ters. Then the diagram

Db ∼=
πb ��

αg

��

R
m+ × T × C

βg

��
Db ∼=

πb �� Rm+ × T × C

commutes, so that the mapping πb is a G-equivariant diffeomorphism between Db

and R
m+ × T × C. It induces a diffeomorphism π∗

b between the corresponding factor
spaces Db/G and (Rm+ ×T×C)/G with inverse �∗

b . The latter space is diffeomorphic
to R

m+ and hence to D∗
b . This confirms the intuitive understanding that the manifold of

packing labels can be interpreted as the orbit space of the manifold of circle packings
with respect to the group of plane rigid motions, D∗

b
∼= Db/G.

6 Boundary center manifolds

One purpose of this paper is to prepare the investigation of boundary value problems
for circle packings, which are discrete counterparts of the classical (linear and non-
linear) Riemann–Hilbert problems [see Wegert and Bauer (2009)]. The last section
is therefore devoted to manifolds formed by boundary values of circle packings and
packing labels.

It should be noted that the concept of boundary values in circle packing is a little
ambiguous. The simplest and most straightforward approach uses the (Euclidean) cen-
ters of the boundary circles, but it is not clear if this is the best approach. Since we
lack anything better we use the following definition.

Definition 6.1 (Boundary values for circle packings). The boundary values of a cir-
cle packing P = (r, z) are the Euclidean centers z1, . . . , zm of its boundary circles.

123



Beitr Algebra Geom (2012) 53:399–420 415

The function

ζ : D → C
m with ζ(r, z) := (z1, . . . , zm).

is said to be the boundary center map. The subset of C
n which consists of all possible

boundary values is denoted by C, i.e. C := ζ(D), and Cb := ζ(Db) stands for the set
of boundary values of circle packings with branching b.

We will show that C is a m +3-dimensional real submanifold of C
m,which is done by

proving that the projection ζ has maximal rank and is injective on every component
Db.

If the number m of boundary circles is odd, the injectivity of ζ on Db is easy to see.
For given boundary centers, the equations |zi − zi+1| = ri + ri+1, with 1 ≤ i ≤ m
and indices running modulo m, form a linear system for the boundary radii. If m is
odd it has a unique solution and then Theorem 3.7 shows that there exists a unique
packing label in D∗

b . Thus two circle packings in Db with the same boundary values
can differ just by a rigid motion, and then they must coincide.

In order to prove that ζ is injective on Db in general, we need a different argument
which will make use of Lemma 11.11 in Stephenson (2005).

Lemma 6.2 (Maximum principle for circle packings). Consider two packing labels
r, r ′ ∈ D∗ such that r is not a scalar multiple of r ′. If �̃(r) ≤ �̃(r ′) holds compo-
nentwise, and if there exists an i ∈ {1, . . . , n} such that

r ′
i

ri
≥ r ′

j

r j
for 1 ≤ j ≤ n,

then necessarily i ∈ {1, . . . ,m}, i.e. r ′
j/r j cannot attain its maximum at an interior

vertex.

The assumption �̃(r) ≤ �̃(r ′) cannot be dropped, but if (r, z) is a univalent circle
packing we have �̃(r) = 0 and then it is automatically satisfied. Note that the ratio
r ′/r plays the role of the modulus of the derivative in the discrete analytic function
which maps the packing (r, z) to (r ′, z′).

The following lemma is an elementary result about monotonicity of angles in an
Euclidean triangle and can easily be verified.

Lemma 6.3 (Monotonicity of Euclidean angles). For any vi , v j , vk ∈ V the angle
ϕ(vi ; v j , vk) is strictly monotone increasing in r j and in rk .

The next result shows that circle packings with prescribed branching are uniquely
determined by their boundary centers.

Lemma 6.4 (Injectivity of ζ on components of D). For every branch structure b the
boundary center map ζ is injective on Db.

Proof Suppose there are two circle packings (r, z) and (r ′, z′) in Db satisfying
ζ(r, z) = ζ(r ′, z′). Then the corresponding packing labels r and r ′ in D∗

b must share
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the same angle sums at their boundary vertices. Since their angle sums at the interior
vertices coincide by assumption, we obtain

�i (r) = �i (r
′) for 1 ≤ i ≤ n. (16)

Assume that r ′ is not a scalar multiple of r . Applying Lemma 6.2 yields that r ′/r can
attain its maximum only on the boundary. Consequently, we can choose a boundary
vertex vJ such that

C := r ′
J

rJ
= max

{
r ′

i

ri
: i = 1, . . . , n

}
and

r ′
J

rJ
>

r ′
j

r j

for some neighbor v j of vJ in K . Then r ′ ≤ Cr holds componentwise with equality
at the J -th and strict inequality at the j-th component. Using the monotonicity result
from Lemma 6.3 leads to

�J (r
′) < �J (Cr) = �J (r),

contradicting (16). Therefore r ′ must be a scalar multiple of r . Let r ′ = λr with
λ ∈ R+. It follows that

|z1 − z2| = |z′
1 − z′

2| = r ′
1 + r ′

2 = λ(r1 + r2) = λ|z1 − z2|,

which implies λ = 1 and r = r ′. Hence the circle packings (r, z) and (r ′, z′) differ
just by a rigid motion of the plane. Since their boundary values coincide, we must
have z = z′. ��
Note that the proof of Lemma 6.4 only requires the weaker assumption that �̃(r) ≤
�̃(r ′). Thus ζ is actually injective on any set

Db1 ∪ Db2 ∪ Db3 ∪ · · ·

where b1 ≤ b2 ≤ b3 ≤ · · · is a componentwise monotone sequence. If ζ is indeed
injective on the whole manifold D of circle packings remains a challenging open
problem. The validation of the following conjecture is important for the existence of
a discrete counterpart to the Cauchy integral formula in circle packing.

Conjecture 6.5 The boundary center map ζ : D → C
m is injective.

For proving that the rank of dζ is maximal we shall apply arguments similar to those
used in Lemmas 5.5 and 5.6.

Lemma 6.6 (Local independence of boundary angle sum). Fix (r, z) ∈ D. Let
vi be a boundary vertex of K and denote its combinatorial (open) flower by
〈vi ; v′

1, v
′
2, . . . , v

′
k〉. Then the angle sum �i at vi is locally constant as a function

of z′
2, . . . , z′

k−1.
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Proof A little thought shows that the central angle sum �i at vi depends locally only
on the location of the boundary centers zi , z′

1, z′
k . ��

Lemma 6.7 (Kernel of differential of ω). Let (r, z) ∈ D and consider (dr, dx, dy) ∈
ker Dω(r, z). Then dx1 = · · · = dxm = dy1 = · · · = dym = 0 implies that dr = 0.

Proof From Lemma 5.6 and (11) we conclude that dr ∈ Tr (D∗) = ker D�̃(r),which
means that

D�i (r) dr = 0, i = m + 1, . . . , n.

In order to prove that D�i (r) dr also vanishes for i = 1, . . . ,m we denote by
〈vi ; v′

1, v
′
2, . . . , v

′
k〉 the combinatorial open flower of the boundary vertex vi . Since

(dr, dx, dy) ∈ ker Dω(r, z) we can apply (15) and obtain

D�i (r) dr = D�i (r, z)(dr, dx, dy) =
k−1∑

j=1

dϕ(vi ; v′
j , v

′
j+1)(r, z)(dr, dx, dy)

=
k−1∑

j=1

dψ(vi ; v′
j , v

′
j+1)(r, z)(dr, dx, dy) = D�i (r, z)(dr, dx, dy)

=
(
∂�i

∂xi
(z) dxi + ∂�i

∂yi
(z) dyi

)
+

k∑

j=1

(
∂�i

∂x ′
j
(z) dx ′

j + ∂�i

∂y′
j
(z) dy′

j

)

.

(17)

Since �i is locally independent of z′
2, . . . , z′

k−1 by Lemma 6.6, we must have

∂�i

∂x ′
j
(z) = ∂�i

∂y′
j
(z) = 0

for 1 < j < k. The (remaining) vertices vi , v
′
1, v

′
k belong to the boundary of K and

consequently dxi = dyi = dx ′
1 = dy′

1 = dx ′
k = dy′

k = 0 by assumption. Substituting
this into (17) results in D�i (r) dr = 0 for 1 ≤ i ≤ m.

Once we have dr ∈ ker D�(r), Lemma 4.1 tells us that dr = λ r with λ ∈ R.
Finally, let ei = 〈v jvk〉 be a boundary edge of K . Then we get

λ(r j + rk)
2 = (r j + rk)(dr j + drk)

= (x j − xk)(dx j − dxk)+ (y j − yk)(dy j − dyk).

and dx j = dxk = dy j = dyk = 0 leads to λ(r j + rk)
2 = 0. Since r j , rk > 0, we

obtain λ = 0, which completes the proof. ��
Theorem 6.8 (Properties of boundary center map). The boundary center map ζ :
D → C

m is injective on each component Db and dζ has maximal rank at every
(r, z) ∈ D, i.e. rank Dζ(r, z) = m + 3.

123



418 Beitr Algebra Geom (2012) 53:399–420

Proof It only remains to show that dζ has maximal rank. This is equivalent to the
injectivity of the projection

T(r,z)D → R
2m, (dr, dx, dy) �→ (dx1, . . . , dxm, dy1, . . . , dym)

at each (r, z) ∈ D. So we take (dx, dy, dr) in T(r,z)D ≡ ker Dω(r, z) and assume that
dx1 = · · · = dxm = dy1 = · · · = dym = 0. Then Lemma 6.7 implies dr = 0 and
thus (dx, dy) belongs to the kernel of the central part Dzω(dr, dz) of the Jacobian
Dω(r, z). From Lemma 5.4 we now infer that

dz := dx + i dy = dρ · iz + (dξ + i dη) · 1

with dρ, dξ, dη ∈ R. Since dz1 = · · · = dzm = 0, it follows that dρ = dξ = dη =
0, and finally dx = dy = dr = 0. ��
Corollary 6.9 (Parametrization of boundary centers). For every branch structure b
the set Cb := ζ

(Db
)

is a differentiable submanifold of C
m of dimension m + 3, the

mapping

ζ ◦ �b : R
m+ × T × C → Cb

is a regular parametrization, and the tangent vectors ∂r1, . . . , ∂rm, ∂ξ, ∂η, ∂ρ ∈ C
m

to the parameter lines of ζ ◦ �b span the tangent space of Cb.

A challenging problem is an intrinsic characterization of the tangent space TPC at
a packing P as subspace of the ambient space C

m from geometric properties of the
packing P .

We finally consider boundary values of packing labels, which are equivalence clas-
ses [z1, . . . , zm] of points (z1, . . . , zm) in C

m with respect to the Lie group G of plane
rigid motions.

Most of the results follow from the previous considerations for boundary values of
circle packings. Similar to the definition of the exceptional set E we set

Ẽ := {(z1, . . . , zm) ∈ C
m : z j = zk for some 〈v j , vk〉 ∈ E}. (18)

The action α induces an action α̃ of G on C
m\Ẽ which is smooth, proper and free, and

factorization of C
m\Ẽ with respect to G yields the orbit manifold C

m∗ := (Cm\Ẽ) /G
with a smooth projection

π∗ : C
m\Ẽ → C

m∗ .

With the standard layout mapping γ0 we now introduce the boundary center map for
packing labels,

ζ ∗ : D∗ → C
m∗ , r �→ (π∗ ◦ ζ )(r, ◦γ0(r)),
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and define the boundary value(s) of a packing label r ∈ D∗ as the equivalence class
[z1, . . . , zm] := ζ ∗(r). The set C∗

b := ζ ∗(D∗
b) then consists of boundary values of

packing labels with branching b. The diagram

R
n+ × (Cn\E) ζ ��

αg

��

C
m\Ẽ
α̃g

��
R

n+ × (Cn\E) ζ �� Cm\Ẽ

commutes and Cb is G-stable. For (r, z) ∈ Db we obtain

(π∗ ◦ α̃)(G, ζ(r, z)
) = (π∗ ◦ α̃)(G, ζ(r, γ0(r))

) = π∗
(
ζ(r, γ0(r))

) = ζ ∗(r).

Therefore the equivalence classes of G in Cb are the elements of C∗
b and we have the

factorization C∗
b = Cb/G.

Theorem 6.10 (Boundary center map for packing labels). The boundary center map
ζ ∗ : D∗ → C

m∗ is injective on each component D∗
b and has maximal rank at every

(r, z) ∈ D∗.

Proof The actions α̃ and β of G on Cb and R
m+ × T × C are smooth, proper and free.

Since the diagram

R
m+ × T × C ∼=

ζ◦�b ��

βg

��

Cb

α̃g

��
R

m+ × T × C ∼=
ζ◦�b �� Cb

commutes for each g ∈ G, the mapping ζ ◦ �b is a G-equivariant diffeomorphism,
and the induced map (ζ ◦ �b)

∗ ≡ ζ ∗ ◦ �∗
b is a diffeomorphism as well,

R
m+ ∼= R

m+ × T × C

G ∼=
ζ ∗◦�∗

b �� Cb

G
= C∗

b .

Thus ζ ∗ must be injective on D∗
b with maximal rank. ��

Theorem 6.11 (Boundary centers of packing labels). For each branch structure b the
set C∗

b is a smooth real submanifold of C
m∗ with dimension m and the mapping

�∗
b : R

m+ → C∗
b , r �→ [z1, . . . , zm] := (π∗ ◦ ζ )(�b(r, 1, 0)

)

is a diffeomorphism.
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