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Abstract A closed, convex set K inR2 with non-empty interior is called lattice-free
if the interior of K is disjoint with Z2. In this paper we study the relation between
the area and the lattice width of a planar lattice-free convex set in the general and
centrally symmetric case. A correspondence between lattice width on the one hand
and covering minima on the other, allows us to reformulate our results in terms of
covering minima introduced by Kannan and Lovász (Ann Math (2) 128(3):577–602,
1988). We obtain a sharp upper bound for the area for any given value of the lattice
width. The lattice-free convex sets satisfying the upper bound are characterized. Lower
bounds are studied as well. Parts of our results are applied in Averkov et al. (Maxi-
mal lattice-free polyhedra: finiteness and an explicit description in dimension three,
http://arxiv.org/abs/1010.1077, 2010) for cutting plane generation in mixed integer
linear optimization, which was the original inducement for this paper. We further rec-
tify a result of Kannan and Lovász (Ann Math (2) 128(3):577–602, 1988) with a new
proof.

Keywords Area · Convex set · Covering minimum · Inhomogeneous minimum ·
Lattice-free body · Lattice width

Mathematics Subject Classification (2010) Primary 52C05; Secondary 52A38 ·
52A40 · 52C15

G. Averkov (B)
Faculty of Mathematics, Institute of Mathematical Optimization, University of Magdeburg,
Universitätsplatz 2, 39106 Magdeburg, Germany
e-mail: averkov@ovgu.de

C. Wagner
Institute for Operations Research, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
e-mail: christian.wagner@ifor.math.ethz.ch

123

http://arxiv.org/abs/1010.1077


2 Beitr Algebra Geom (2012) 53:1–23

1 Introduction

This paper is devoted to the relation between the area and the lattice width (resp. the
area and the covering minima) of a lattice-free two-dimensional convex set. Let us
denote by K2 the class of closed, convex sets inR2 with non-empty interior. We call a
set K ∈ K2 lattice-free if the interior of K is disjoint withZ2. A convex set S is said to
be a strip if S = conv(l1∪l2), where l1 and l2 are distinct parallel lines. The Euclidean
distance between l1 and l2 is said to be the width of S. If the interior of S does not
contain integer points and the sets l1 ∩Z2, l2 ∩Z2 are affine images of Z, then we call
S a split since S splitsZ2 into two parts. Let K ∈ K2. If S = conv(l1 ∪l2) is a split and
l1
K and l2

K are distinct supporting lines of K parallel to l1 and l2, we define the strip
SK := conv(l1

K ∪ l2
K ). Then the lattice width w(K ) of K is defined as the minimum

of the ratio between the width of SK and the width of S among all splits S, for which
SK exists. In analytic terms, w(K ) := min

{
w(K , u) : u ∈ Z2\{o}} , where w(K , u)

is the width function defined by w(K , u) := max{u�x : x ∈ K }−min{u�x : x ∈ K }
for u ∈ R2.

With these notions our main contribution is the following: for a given lattice-free
set K ∈ K2 we present a list of inequalities which relate its area A(K ) to its lattice
width w(K ), see Theorems 2.2 and 2.4 below. The inequalities which give upper
bounds for A(K ) for a given w(K ), and the sets yielding equality in these inequalities
are characterized. For the case of centrally symmetric sets K ∈ K2 we even give the
complete list of inequalities, that is, the lower and upper bounds for A(K ) for a given
w(K ) and a characterization of all pairs (w(K ), A(K )) where equality is attained.

All results obtained in this paper can be formulated in terms of an arbitrary lattice,
but for the sake of simplicity we use Z2. Let � be an arbitrary lattice in R2. We can
introduce the lattice width w(K ,�) of K with respect to � (for the precise definition
see Kannan and Lovász 1986, 1988). Then w(T (K ), T (�)) = w(K ,�) for every
linear transformation T in R2. Choosing T such that it maps � onto Z2 we obtain
w(T (K )) = w(T (K ),Z2) = w(T (K ), T (�)) = w(K ,�). Since A(T (K ))·det � =
A(K ), every inequality involving the area and the lattice width with respect to Z2 can
be transformed to an inequality involving the area, the lattice width with respect to
� and det �. For figures it is sometimes more convenient to use the lattice of regular
triangles, i.e., the lattice generated by the vectors (1, 0) and 1

2 (1,
√

3). For informa-
tion on lattices and convexity we refer to Gruber (2007) and Gruber and Lekkerkerker
(1987).

Our motivation for studying these relations was the application of our results for
a classification of three-dimensional lattice-free polyhedra having an integer point in
the relative interior of each facet, see Averkov et al. (2010). Such class of polyhedra
can be used in mixed integer linear programming for deriving cutting planes; see also
Schrijver (1986), Chapter 23 for background information on cutting plane theory.

The second covering minimum μ2(K ) of K ∈ K2 is defined as the minimal t ≥ 0
such that the sets t K + Z2 cover R2. The value μ2(K ) is also known under the name
of inhomogeneous minimum, see (Gruber and Lekkerkerker 1987, p. 98). It turns out
that some translate of K is lattice-free if and only if μ2(K ) ≥ 1. The first covering
minimum μ1(K ) is defined as the minimal t ≥ 0 such that every line in R2 intersects
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Fig. 1 Lattice-free triangle
(shaded) with lattice width
1 + 2√

3

t K +Z2. One can show that μ1(K )w(K ) = 1 for every K ∈ K2, see e.g. (Kannan and
Lovász 1988, Lemma 2.3). This leads to a correspondence between the lattice width
on the one hand and the covering minima on the other, provided that K is lattice-free.
The results we present in this paper can therefore be expressed as a relation between
the area and the covering minima of K , as well; see Corollaries 2.6 and 2.7. The
notions lattice width and covering minima were introduced by Kannan and Lovász
(1986, 1988) for an arbitrary dimension; see also the papers of Khinchin (1948) and
Fejes Tóth and Makai (1974) for the earlier related results.

The paper has the following structure. Our main results are stated in Sect. 2. Basic
notions and results which we shall need to prove our theorems are introduced in Sect. 3.
Section 4 presents formulas for the lattice width and area of triangles. Section 5 con-
tains the proofs for general planar lattice-free convex sets. The proofs for the centrally
symmetric planar lattice-free convex sets are given in Sect. 6.

2 Results

Throughout the paper, sequences with n elements are indexed modulo n. Affine trans-
formations preserving Z2 will be called unimodular.

For the plane it is easy to construct examples of lattice-free convex sets with a lattice
width of two; take for example conv{(0, 0), (2, 0), (0, 2)}. What may be surprising,
this value can be exceeded. This was noticed by Hurkens (1990), who also computed
the sharp upper bound for the lattice width of a lattice-free convex set.

Theorem 2.1 (Hurkens 1990, p. 122) Let K ∈ K2 be lattice-free. Then

w(K ) ≤ 1 + 2√
3
, (2.1)

with equality if and only if K is a triangle with vertices q0, q1, q2 such that, for every i,

the point pi := + 1√
3
qi+2

(
1 − 1√

3

)
qi+1 belongs to Z2 (see Fig. 1).

Theorem 2.2 states the relation between the area and the lattice width of arbitrary
lattice-free convex sets in the plane.

Theorem 2.2 Let K ∈ K2 be lattice-free with w := w(K ) and A := A(K ). Then

A ≤ ∞ for 0 < w ≤ 1, (2.2)
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Fig. 2 Pairs (w, A) satisfying
the inequalities of Theorem 2.2;
w0 = 1 + 2/

√
3, A0 is the area

of K with w(K ) = w0

(a) (b) (c)

Fig. 3 Examples of sets yielding equality in (2.3)–(2.2) (shaded)

A ≤ w2

2(w − 1)
for 1 < w ≤ 2, (2.3)

A ≤ 3w2

3w + 1 − √
1 + 6w − 3w2

for 2 < w ≤ 1 + 2√
3
, (2.4)

A ≥ 3

8
w2 for 0 < w ≤ 1 + 2√

3
(2.5)

(see Fig. 2). Furthermore, the following statements hold.

I. Equality in (2.2) is attained if and only if K is unbounded and contained in a
split.

II. Equality in (2.3) is attained if and only if, up to unimodular transformations,
K = conv(I1 ∪ I2), where I1 is a translate of conv{(0, 0), (w, 0)}, I2 is a trans-
late of conv{(0, 0), (0, w

w−1 )}, and I1 ∩ I2 
= ∅ (see Fig. 3a).
III. Equality in (2.4) is attained if and only if K is a triangle with vertices q0, q1, q2

such that, for every i, the point pi := +λqi+2(1 − λ)qi+1 + λqi+2 belongs to
Z

2 for

λ := 3w + 1 − √
1 + 6w − 3w2

6w

(see Fig. 3b).
IV. If 0 < w ≤ 2, then equality in (2.2) is attained if and only if, up to unimod-

ular transformations, K is a translate of w
2 conv{(1, 0), (0, 1), (−1,−1)} (see

Fig. 3c).

The bound (2.2) is not sharp when 2 < w ≤ 1 + 2√
3
. To see why, we need a result

of Fejes Tóth and Makai (1974).
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Fig. 4 All pairs (w, A)

satisfying the inequalities of
Theorem 2.4

Theorem 2.3 (Fejes Tóth and Makai 1974) Let K ∈ K2 with w := w(K ) and A :=
A(K ). Then A ≥ 3

8w2 with equality if and only if, up to unimodular transformations,
K is a translate of w

2 conv{(1, 0), (0, 1), (−1,−1)}.

It is easy to see that w
2 conv{(1, 0), (0, 1), (−1,−1)} does not have a lattice-free

translate for w > 2. Thus, in view of Theorem 2.3, (2.2) is not sharp when 2 < w ≤
1 + 2√

3
. The problem to find the sharp lower bound in this case is still open.

A statement analogous to Theorem 2.2 can also be proved for the class of centrally
symmetric planar convex sets. We show the following theorem.

Theorem 2.4 Let K ∈ K2 be lattice-free and centrally symmetric with w := w(K )

and A := A(K ). Then

0 < w ≤ 2, (2.6)

A ≤ ∞ for 0 < w ≤ 1, (2.7)

A ≤ w2

2(w − 1)
for 1 < w ≤ 2, (2.8)

A ≥ 1

2
w2 for 0 < w ≤ 2 (2.9)

(see Fig. 4). Furthermore, the following statements hold.

I. The upper bound in (2.6) is attained if and only if, up to unimodular transfor-
mations,

K = conv{±(1, 0),±(0, 1)} +
(

1

2
,

1

2

)
.

II. Equality in (2.7) is attained if and only if K is unbounded and contained in a
split.

III. Equality in (2.8) is attained if and only if, up to unimodular transformations,

K = conv

{
±

(w

2
, 0

)
,±

(
0,

w

2(w − 1)

)}
+

(
1

2
,

1

2

)

(see Fig. 5a).
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(a) (b)

Fig. 5 Examples of sets yielding equality in (2.8) and (2.6) (shaded)

IV. Equality in (2.6) is attained if and only if, up to unimodular transformations,
K is a translate of

w

2
conv{±(1, α),±(0, 1)}

for some 0 ≤ α < 1 satisfying max{1 + α, 2 − α} ≥ w (see Fig. 5b).

A useful tool in convex geometry is the concept of covering minima introduced
by Kannan and Lovász (1988). We will therefore give an alternative formulation of
our results in terms of covering minima. Let K ∈ K2. For j = 1, 2 the j-th covering
minimum is

μ j (K ) := inf{t ≥0 : each (2− j)-dimensional affine subspace ofR2 intersects t K +Z2}.

This definition implies 0 < μ1 ≤ μ2. We recall that μ1(K )w(K ) = 1. Further-
more, for t > 0, an appropriate translate of t K is lattice-free if and only if t ≤ μ2(K ).

Thus, Theorem 2.1 yields μ2(K ) ≤
(

1 + 2√
3

)
μ1(K ).

For centrally symmetric bodies, the lower bound in (2.6) was noticed by Makai
(1978). The upper bound in (2.6) is a consequence of a more general result due to
Kannan and Lovász (1988), Theorem 2.13. Unfortunately, the proof of Theorem 2.13
in Kannan and Lovász (1988) does not seem to be correct1, but implies the weaker
result 0 < w ≤ 3. Therefore, we prove the subsequent theorem.

Theorem 2.5 Let K ∈ K2 be centrally symmetric. Then μ2(K ) ≤ 2μ1(K ).

If K is lattice-free, and thus μ2(K ) ≥ 1, then together with the relation
μ1(K )w(K ) = 1, Theorem 2.5 implies w(K ) ≤ 2. The results stated in

1 In the proof of Theorem 2.13 in Kannan and Lovász (1988) one claims that the covering minima of centrally
symmetric convex bodies satisfy the inequalities μk+1 ≤ 2μk (see Kannan and Lovász 1988 for the expla-
nation of the notations). In the proof of Theorem 2.13, p. 588, l. 11, it is inferred that 2(α+β+λ1) ≤ 4(α+β).

However, one line before it is just shown that λ1 ≤ 2(α + β) and therefore the correct conclusion is
2(α + β + λ1) ≤ 6(α + β). Using the factor 6 instead of 4 in the rest of the proof results in the weaker
assertion μk+1 ≤ 3μk . To the best of our knowledge there is no revision or corrected version of this proof
which would yield the assertion μk+1 ≤ 2μk .
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Theorems 2.2 and 2.4 can also be expressed in terms of covering minima. In Cor-
ollary 2.6 the lower bound for A(K ) in terms of μ1(K ) and μ2(K ) goes back to
Fejes Tóth and Makai (1974) (see also Betke et al. 1993 for further inequalities). Our
results imply the sharp upper bounds for A(K ) in terms of μ1(K ) and μ2(K ).

Corollary 2.6 Let K ∈ K2 with A := A(K ), μ1 := μ1(K ) and μ2 := μ2(K ). Then

μ1 ≤ μ2 ≤
(

1 + 2√
3

)
μ1,

A ≤ ∞ for μ1 = μ2,

A ≤ 1
2μ1(μ2−μ1)

for μ1 < μ2 ≤ 2μ1,

A ≤ 3

μ1

(
3μ2+μ1−

√
μ2

1+6μ1μ2−3μ2
2

) for 2μ1 < μ2 ≤
(

1 + 2√
3

)
μ1,

A ≥ 3
8μ2

1
for μ1 ≤ μ2 ≤

(
1 + 2√

3

)
μ1.

The upper bounds for A are sharp, whereas the lower bound for A is sharp only
for μ1 ≤ μ2 ≤ 2μ1.

Corollary 2.7 Let K ∈ K2 be centrally symmetric with A := A(K ), μ1 := μ1(K )

and μ2 := μ2(K ). Then

μ1 ≤ μ2 ≤ 2μ1,

A ≤ ∞ for μ1 = μ2,

A ≤ 1
2μ1(μ2−μ1)

for μ1 < μ2 ≤ 2μ1,

A ≥ 1
2μ2

1
for μ1 ≤ μ2 ≤ 2μ1.

The above bounds are sharp.

For further inequalities between μ1(K ), μ2(K ) and A(K ) for the case K ∈ K2 we
refer to Schnell (1995).

3 Preliminaries

We consider the elements ofR2 to be column vectors. The transposition is denoted by
( · )� and the origin by o. By aff, conv, bd and int we denote the affine hull, the convex
hull, the boundary and the interior, respectively. The maximum norm is denoted by
‖ · ‖∞. Remember that a set K ∈ K2 is said to be lattice-free if the interior of K is
disjoint with Z2. A lattice-free set K ∈ K2 is said to be maximal lattice-free if K is
not properly contained in a lattice-free set from K2. The following fact is known.
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(a) (b) (c) (d) (e)

Fig. 6 All types of maximal lattice-free sets in K2

Proposition 3.1 Every lattice-free K ∈ K2 is contained in a maximal lattice-free
H ∈ K2.

Proof For a closed convex set U ⊆ R
2 and a point x ∈ R2 we denote by c(U, x) the

topological closure of the convex hull of U ∪ {x}.
Let (zn)∞n=1 be the sequence of all elements of Q2. We define U0 := K and for

every n ∈ N we set Un := c(Un−1, zn) if c(Un−1, zn) is lattice-free, and Un := Un−1
otherwise. Let H be the topological closure of

⋃∞
n=0 Un . Since Un−1 ⊆ Un for every

n ∈ N it holds K ⊆ H. By construction, H is a closed convex set with non-empty
interior, i.e., H ∈ K2. In addition, H is lattice-free: assume y is an integer point in
the interior of H. Then there exists some j ∈ N such that y is in the interior of U j and
thus, U j is not lattice-free. This contradicts the construction of U j . Let us show that
H is maximal lattice-free. Assume the opposite and let L ∈ K2 be lattice-free such
that H � L . Then L\H contains rational points which occur in the sequence (zn)

∞
n=1.

Let zk ∈ L\H be such a rational point. Since Uk−1 ⊆ H ⊆ L and zk ∈ L , we have
c(Uk−1, zk) ⊆ L . Thus, c(Uk−1, zk) is lattice-free and, by definition of Uk, we have
Uk = c(Uk−1, zk). The latter implies zk ∈ H, a contradiction to the choice of zk . ��

We point out that the above proof is not constructive. For a constructive, but lengthy
proof we refer to Basu et al. (2010).

A classification of planar maximal lattice-free convex sets was noticed by Lovász
(1989). The refined classification which is given below can be found in Dey and Wolsey
(2008).

Proposition 3.2 (Dey and Wolsey 2008; Lovász 1989) Let K ∈ K2 be maximal
lattice-free. Then K is either a split or a triangle or a quadrilateral and the relative
interior of each facet of K contains at least one integer point. In particular, K is one
of the following sets (see Fig. 6).

I. A split {(x1, x2) ∈ R2 : b ≤ a1x1 + a2x2 ≤ b + 1} where a1 and a2 are coprime
integers and b is an integer.

II. A triangle with at least one integer point in the relative interior of each of its
edges, which in turn is either
(a) a type 1 triangle, i.e., a triangle with integer vertices and exactly one integer

point in the relative interior of each edge, or
(b) a type 2 triangle, i.e., a triangle with at least one fractional vertex v, exactly

one integer point in the relative interior of the two edges incident to v and
at least two integer points on the third edge, or

(c) a type 3 triangle, i.e., a triangle with exactly three integer points on the
boundary, one in the relative interior of each edge.
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III. A quadrilateral containing exactly one integer point in the relative interior of
each of its edges.

Theorems 2.2 and 2.4 will be proved for maximal lattice-free convex sets first. Once
this is established we show that this implies their validity for lattice-free convex sets
which are not maximal as well.

For K ∈ K2, the support function of K is defined by h(K , u) := sup{u�x : x ∈ K }.
Remember that the width function of K is w(K , u) = h(K , u) + h(K ,−u), where
u ∈ R2, and the lattice width of K is the value w(K ) = min{w(K , u) : u ∈ Z2\{o}}.
Note that the lattice width is invariant with respect to unimodular transformations.
Bounded elements of K2 are referred to as convex bodies. If K ∈ K2 is a convex
body, then DK := {x − y : x, y ∈ K } is said to be the difference body of K . It is
well known that h(DK , u) = w(K , u) for every u ∈ R

2. If K is a convex body
symmetric in the origin, then the Minkowski functional ‖ · ‖K of K is defined by
‖u‖K := min{λ ≥ 0 : u ∈ λK }, where u ∈ R

2. For a convex body K containing
the origin in the interior the set K ∗ := {u ∈ R2 : h(K , u) ≤ 1} is a convex body as
well and is referred to as the polar body of K . One has h(K , u) = ‖u‖K ∗ for every
u ∈ R2. The following formula, in slightly different terms, can be found in (Kannan
and Lovász 1988, Lemma 2.3):

w(K ) = sup{α > 0 : (α(DK )∗) ∩ Z2 = {o}}. (3.1)

A collection of convex sets X from K2 is said to tile R2 if the interiors of the
elements of X are pairwise disjoint and the union of X yields R2 (see also Schulte
1993, Section 4.1 for information on lattice tilings).

The two-dimensional version of Minkowski’s first fundamental theorem (see Gruber
2007, Theorem 22.1) states that if K ∈ K2 is symmetric in the origin and
int K ∩Z2 = {o}, then A(K ) ≤ 4. Furthermore, if A(K ) = 4, then the sets 1

2 K +z with
z ∈ Z2 tile R2. Mahler’s inequality (see Mahler 1939) states that A(K )A(K ∗) ≥ 8
for convex bodies K ∈ K2 symmetric in the origin, with equality if and only if K is
a parallelogram. The following proposition is easy to show.

Proposition 3.3 Let P be a parallelogram symmetric in the origin and such that
its translates P + z with z ∈ Z2 tile R2. Then, up to unimodular transformations,
P = 1

2 conv{±(−α − 1, 1),±(−α + 1, 1)} for some 0 ≤ α < 1.

Proposition 3.3 is a special case of a result of Hajós (1941), §§1,2, see also Gruber
and Lekkerkerker (1987), p. 174.

4 Auxiliary results on triangles

An essential part of the proofs of our main results is concerned with analytical rep-
resentations of the lattice width and the area of various types of maximal lattice-free
polygons. In particular, we shall need formulas for the lattice width of triangles.

We start the section by presenting well-known facts about barycentric coordinates.

123



10 Beitr Algebra Geom (2012) 53:1–23

Lemma 4.1 Let q0, q1, q2 be affinely independent points in R2 and let p, p0, p1, p2
be points in R2 which are represented in the form

p =
2∑

j=0

x j q j and pi =
2∑

j=0

xi, j q j ,

where

1 =
2∑

j=0

x j and 1 =
2∑

j=0

xi, j ,

and x j , xi, j ∈ R for i, j = 0, 1, 2. We define l j := aff({q0, q1, q2}\{q j }) for j =
0, 1, 2. Then the following statements hold.

I. The points p and q j lie in the same open halfplane determined by l j if and only
if x j > 0.

II. The value |x j | is the ratio of the distance from p to l j and the distance from q j

to l j .

III. The areas of Q := conv{q0, q1, q2} and P := conv{p0, p1, p2} are related by

A(P) = ∣
∣ det(xi, j )i, j=0,...,2

∣
∣A(Q).

The values x0, x1, x2 associated to a point p in Lemma 4.1 are said to be the
barycentric coordinates of p with respect to the triangle conv{q0, q1, q2}, see Coxeter
(1989), Sect. 13.7.

Lemma 4.2 Let P := conv{p0, p1, p2} such that p0, p1, p2 ∈ Z2 are the only inte-
ger points in P. Let Q := conv{q0, q1, q2} be a triangle whose vertices are given by
the barycentric coordinates with respect to P, that is, by a 3 × 3-matrix B such that

⎛

⎜
⎜
⎝

q�
0 1

q�
1 1

q�
2 1

⎞

⎟
⎟
⎠ = B

⎛

⎜
⎜
⎝

p�
0 1

p�
1 1

p�
2 1

⎞

⎟
⎟
⎠ .

Then

w(Q) = min{‖DBz‖∞ : z ∈ Z3 and the coordinates of z are not all equal},
(4.1)

where

D :=
⎛

⎝
−1 1 0
0 −1 1
1 0 −1

⎞

⎠.
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Furthermore, if pi := (1 − xi )qi+1 + xi qi+2 with i = 0, 1, 2 and 0 < xi < 1 (that
is, Q is circumscribed about P), then

w(Q) =
min

{
max

i=0,1,2
|xi yi + (1 − xi+1)yi+1| : y ∈ Z3\{o}, y0 + y1 + y2 = 0

}

x0x1x2 + (1 − x0)(1 − x1)(1 − x2)

(4.2)

and

A(Q) = 1

2(x0x1x2 + (1 − x0)(1 − x1)(1 − x2))
. (4.3)

Proof For u ∈ Z2 we have

w(Q, u) = max
{
|q�

i u − q�
j u| : 0 ≤ i < j ≤ 2

}

=

∥
∥
∥
∥
∥
∥
∥

D

⎛

⎜
⎝

q�
0

q�
1

q�
2

⎞

⎟
⎠ u

∥
∥
∥
∥
∥
∥
∥∞

=

∥
∥
∥
∥
∥
∥
∥
∥

D

⎛

⎜
⎜
⎝

q�
0 1

q�
1 1

q�
2 1

⎞

⎟
⎟
⎠

(
u
k

)
∥
∥
∥
∥
∥
∥
∥
∥∞

=

∥
∥
∥
∥
∥
∥
∥
∥

DB

⎛

⎜
⎜
⎝

p�
0 1

p�
1 1

p�
2 1

⎞

⎟
⎟
⎠

(
u
k

)
∥
∥
∥
∥
∥
∥
∥
∥∞

= ‖DBz‖∞ ,

where k ∈ Z is arbitrary and

z :=

⎛

⎜
⎜
⎝

p�
0 1

p�
1 1

p�
2 1

⎞

⎟
⎟
⎠

(
u
k

)
=

⎛

⎜
⎜
⎝

p�
0 u + k

p�
1 u + k

p�
2 u + k

⎞

⎟
⎟
⎠.

Clearly, z ∈ Z3. Since the vector z is the product of a unimodular matrix and an
integer vector, it follows that u = o if and only if the coordinates of z are all equal.
This shows (4.1).

Let us show (4.2). We have

⎛

⎜
⎜
⎝

p�
0 1

p�
1 1

p�
2 1

⎞

⎟
⎟
⎠ = X

⎛

⎜
⎜
⎝

q�
0 1

q�
1 1

q�
2 1

⎞

⎟
⎟
⎠ , where X := B−1 =

⎛

⎝
0 1 − x0 x0
x1 0 1 − x1

1 − x2 x2 0

⎞

⎠.
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Since X is the matrix of barycentric coordinates of the vertices of P with respect
to Q, B is the matrix of barycentric coordinates of the vertices of Q with respect to P.

Direct computations yield

det X = x0x1x2 + (1 − x0)(1 − x1)(1 − x2) > 0,

B = 1

det X

⎛

⎝
−(1 − x1)x2 x0x2 (1 − x0)(1 − x1)

(1 − x1)(1 − x2) −(1 − x2)x0 x0x1
x1x2 (1 − x0)(1 − x2) −(1 − x0)x1

⎞

⎠,

DB = 1

det X

⎛

⎝
1 − x1 −x0 x0 + x1 − 1

x1 + x2 − 1 1 − x2 −x1
−x2 x0 + x2 − 1 1 − x0

⎞

⎠.

We employ the latter matrix relation and obtain for every z ∈ Z3 the following:

DBz = 1

det X

⎛

⎝
z2 − z1 z2 − z0 0 z0 − z2

0 z0 − z2 z0 − z1 z1 − z0
z1 − z2 0 z1 − z0 z2 − z1

⎞

⎠

⎛

⎜
⎜
⎝

x0
x1
x2
1

⎞

⎟
⎟
⎠ .

By the change of variables

y :=
⎛

⎝
z2 − z1
z0 − z2
z1 − z0

⎞

⎠ (4.4)

the latter amounts to

DBz = 1

det X

⎛

⎝
y0 −y1 0 y1
0 y1 −y2 y2

−y0 0 y2 y0

⎞

⎠

⎛

⎜
⎜
⎝

x0
x1
x2
1

⎞

⎟
⎟
⎠

= 1

det X

⎛

⎝
x0 y0 + (1 − x1)y1
x1 y1 + (1 − x2)y2
x2 y2 + (1 − x0)y0

⎞

⎠.

Clearly, y0 + y1 + y2 = 0 and, if the coordinates of z are not all equal, we have
y 
= o. Conversely, for an arbitrary y ∈ Z3\{o} with y0 + y1 + y2 = 0, we can easily
find an appropriate z ∈ Z3 satisfying (4.4). Thus, employing (4.1) and the previous
derivation we arrive at

w(Q) = 1

det X
min

{
max {|xi yi + (1 − xi+1)yi+1| : i = 0, 1, 2}y ∈ Z3\{o},

y0 + y1 + y2 = 0
}
.

Equation (4.3) is a straightforward consequence of Lemma 4.1.III. ��

123



Beitr Algebra Geom (2012) 53:1–23 13

Fig. 7 Points pi , qi , ri ,

i ∈ {0, 1, 2}, as in the proof of
Lemma 5.1

5 Proofs for arbitrary bodies

In order to prove Theorem 2.2 it is convenient to show the statement only for maximal
lattice-free convex sets, instead of lattice-free ones. This is possible since every lattice-
free convex set is contained in a maximal lattice-free convex set, see Proposition 3.1.

Lemma 5.1 characterizes, in analytic terms, maximal lattice-free triangles of type
3 and their lattice width.

Lemma 5.1 Let P := conv{p0, p1, p2} such that p0, p1, p2 ∈ Z2 are the only inte-
ger points in P. Let Q := conv{q0, q1, q2} be a triangle circumscribed about P so
that pi := (1 − xi )qi+1 + xi qi+2 for i = 0, 1, 2 and 0 < xi < 1 (see also Fig. 7).
Then the following statements hold.

I. Q is a maximal lattice-free triangle of type 3 if and only if
(a) xi + x j > 1 for all 0 ≤ i < j ≤ 2 or
(b) xi + x j < 1 for all 0 ≤ i < j ≤ 2.

II. If (a) holds, then the lattice width of Q is given by

w(Q) = min{x0, x1, x2}
x0x1x2 + (1 − x0)(1 − x1)(1 − x2)

.

III. If (a) holds, then w(Q) ≤ 1+ 2√
3

with equality if and only if x0 = x1 = x2 = 1√
3
.

Proof Assume that Q is a lattice-free triangle of type 3. By Hi we denote the closed
halfplane with qi+1, qi+2 ∈ bd Hi and qi ∈ Hi . We also introduce the points
ri := −pi + pi+1+ pi+2 ∈ Z2. By construction, pi is the midpoint of conv{ri+1, ri+2}.
Because of the latter property, and since pi ∈ bd Hi , we have ri+1 ∈ Hi or ri+2 ∈ Hi .

For i ∈ {0, 1, 2} by τ(i) we denote the set of all k ∈ {0, 1, 2} such that k 
= i and
rk ∈ Hi . By the above observations τ(i) 
= ∅ for every i. If for some 0 ≤ i < j ≤ 2
one has τ(i) ∩ τ( j) 
= ∅ we choose k ∈ τ(i) ∩ τ( j). Then rk ∈ H0 ∩ H1 ∩ H2 = Q,

and by this the cell conv{p0, p1, p2, rk} of Z2 is a subset of Q. The latter means that
Q is not of type 3, a contradiction. Thus, τ(i) ∩ τ( j) = ∅ for 0 ≤ i < j ≤ 2.

Taking into account that i 
∈ τ(i) for i ∈ {0, 1, 2}, we see that τ(i) is a singleton
for every i and is in fact one of the two possible cyclic shifts on {0, 1, 2}. In other
words, either τ(i) = i + 1 (mod 3) for every i or τ(i) = i + 2 (mod 3) for every i.
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If τ(i) = i +1 (mod 3) for every i, then ri+2 
∈ Hi for every i. This means, that the i-th
barycentric coordinate of ri+2 with respect to Q is strictly negative. This barycentric
coordinate is xi+1 + xi+2 − 1 since

ri+2 = −pi+2 + pi + pi+1

= −((1 − xi+2)qi + xi+2qi+1) + ((1 − xi )qi+1 + xi qi+2)

+ ((1 − xi+1)qi+2 + xi+1qi )

= (xi+1 + xi+2 − 1)qi + (1 − xi − xi+2)qi+1 + (1 − xi+1 + xi )qi+2.

Thus, we obtain (b). If τ(i) = i + 2 (mod 3) for every i, arguing in the same way
we obtain (a).

For proving the converse, we assume that (a) or (b) is fulfilled and show that Q is
a lattice-free triangle of type 3. Consider an arbitrary p ∈ Z2. We can represent p by
p = z0 p0 + z1 p1 + z2 p2 where zi ∈ Z and z0 + z1 + z2 = 1. From symmetry reasons,
we may assume that z0 ≤ z1 ≤ z2. Under these assumptions, we have z2 ≥ 1 and
z0 ≤ 0. We evaluate the barycentric coordinates of p with respect to Q as follows:

p = z0 p0 + z1 p1 + z2 p2

= z0((1 − x0)q1 + x0q2) + z1((1 − x1)q2 + x1q0) + z2((1 − x2)q0 + x2q1)

= (z1x1 + z2(1 − x2))q0 + (z0(1 − x0) + z2x2)q1 + (z0x0 + z1(1 − x1))q2.

If z1 ≤ 0, then the barycentric coordinate z0x0 + z1(1 − x1) is non-positive and by
this, in view of Lemma 4.1.I, p 
∈ int Q. Assume that z1 ≥ 1. If (a) is fulfilled, then
the barycentric coordinate z0x0 + z1(1 − x1) is estimated as follows:

z0x0 + z1(1 − x1) < z0x0 + z1x0 = (z0 + z1)x0 = (1 − z2)x0 ≤ 0.

Consequently, p 
∈ int Q. If (b) is fulfilled, the barycentric coordinate z0(1− x0)+
z2x2 can be estimated analogously:

z0(1 − x0) + z2x2 < z0(1 − x0) + z2(1 − x0) = (z0 + z2)(1 − x0)

= (1 − z1)(1 − x0) ≤ 0.

Thus, also in this case p 
∈ int Q. This shows the first part of the lemma.
We now show the second part. In view of Lemma 4.2 it suffices to show

g(x) := min

{
max

i=0,1,2
|xi yi + (1 − xi+1)yi+1| : y ∈ Z3\{o}, y0 + y1 + y2 = 0

}

= min{x0, x1, x2}

under the assumption that xi + x j > 1 for all 0 ≤ i < j ≤ 2. Taking all six choices
of y ∈ {−1, 0, 1}3 with y0 + y1 + y2 = 0 we easily verify that

g(x) ≤ min
i=0,1,2

max{xi+1, 1 − xi } = min{x0, x1, x2},
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where the last inequality is due to assumption (a). It remains to show the converse
inequality. Consider y ∈ Z3\{o} with y0 + y1 + y2 = 0. Possibly, interchanging y
by −y, we assure the existence of j such that y j ≥ 0 and y j+1 ≥ 0. If y j ≥ 1 and
y j+1 ≥ 1, then

max
i=0,1,2

|xi yi + (1 − xi+1)yi+1| ≥ x j + 1 − x j+1 ≥ x j ≥ min{x0, x1, x2}.

Otherwise, one of the yi ’s is equal to zero and the remaining ones are equal to k
and −k for some k ∈ N. The latter means we can replace y by 1

k y, which would
decrease max {|xi yi + (1 − xi+1)yi+1| : i = 0, 1, 2} . We thus arrive at the case y ∈
{−1, 0, 1}3 which has already been considered above.

Let us prove the third part of the lemma. Without loss of generality let x0 ≤ x1 ≤ x2.

Case 1: x0 ≤ 1
2 . Then x1 > 1

2 and x2 > 1
2 and we have

1

w(Q)
= x0x1x2 + (1 − x0)(1 − x1)(1 − x2)

x0

≥ x0x1x2 + x0(1 − x1)(1 − x2)

x0

= 1

2
(2x1 − 1)(2x2 − 1) + 1

2
>

1

2
,

(5.1)

which implies that w(Q) < 2.

Case 2: x0 > 1
2 . We use the notations σ1(x) := x0 + x1 + x2 and σ2(x) :=

x0x1 + x0x2 + x1x2. Clearly, 2σ2(x) − σ1(x) = (x0 + x1 − 1)x2 + (x0 + x2 − 1)x1 +
(x1 + x2 − 1)x0 ≥ (2(x0 + x1 + x2) − 3)x0 = (2σ1(x) − 3)x0 and by this

x0x1x2 + (1 − x0)(1 − x1)(1 − x2) = 1 − σ1(x) + σ2(x)

≥ 1 − 1

2
σ1(x) +

(
σ1(x) − 3

2

)
x0

= 1 − 3

2
x0 +

(
x0 − 1

2

)
σ1(x)

≥ 1 − 3

2
x0 +

(
x0 − 1

2

)
3x0

= 1 − 3x0 + 3x2
0 .

(5.2)

Consequently, applying elementary calculus, we get

1

w(Q)
≥ 3x0 − 3 + 1

x0
≥ 2

√
3 − 3,

which implies w(Q) ≤ 1+ 2√
3

and shows that the equality w(Q) = 1+ 2√
3

is attained

if and only if x0 = x1 = x2 = 1√
3
. ��
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Fig. 8 A maximal lattice-free
quadrilateral in the proof of
Theorem 2.2

The following two lemmas prepare the proof of Theorem 2.2. Parts of the proof of
Lemma 5.2 are borrowed from Hurkens (1990); nevertheless we need these parts for
subsequent arguments.

Lemma 5.2 Let K ∈ K2 be maximal lattice-free with [0, 1]2 ⊆ K and let w := w(K )

and A := A(K ). Then w ≤ 2 and either it holds w = 1 and A = ∞ (i.e. K is a
split) or w > 1 and A ≤ w2

2(w−1)
with equality A = w2

2(w−1)
characterized by Part II of

Theorem 2.2.

Proof If w = 1 there is nothing to show. Thus, assume w > 1 and therefore K
is a triangle of type 1, type 2 or a quadrilateral. We only consider the case that K
is a quadrilateral. The case where K is a triangle can be viewed as a degenerate
version of a quadrilateral where one vertex becomes a convex combination of its two
neighbor vertices. By a1, a2, a3, a4 we denote the consecutive vertices of [0, 1]2. Let
q1, q2, q3, q4 be consecutive vertices of K such that the point q ′

i of [0, 1]2 closest
to qi lies in conv{ai , ai+1}. The distance from qi to q ′

i will be denoted by hi and
the distance from ai to q ′

i by ti , see also Fig. 8. Taking into account the relations
hi hi−1 = ti (1 − ti−1) it can be verified that

1 − (h1 + h3)(h2 + h4) = (1 − t1 − t3)(1 − t2 − t4)

= (h1h2h3h4 − t1t2t3t4)2

t1t2t3t4
≥ 0, (5.3)

for details see (Hurkens 1990, p. 124). Without loss of generality we assume that
h1 + h3 ≤ h2 + h4. Relations (5.3) yield h1 + h3 ≤ 1. Thus, the width of K with
respect to the vector u = (1, 0) is h1 + h3 + 1 ≤ 2. For all vectors u ∈ Z2\{o} which
are not in {±(1, 0),±(0, 1)} we easily get w(K , u) ≥ w([0, 1]2, u) ≥ 2. Hence
w = h1 + h3 + 1 ≤ 2. Furthermore,

A = 1 + 1

2
(h1 + h2 + h3 + h4) = 1 + 1

2
(w − 1 + h2 + h4)

≤ 1 + 1

2

(
w − 1 + 1

h1 + h3

)
= 1 + 1

2

(
w − 1 + 1

w − 1

)
= w2

2(w − 1)
.
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If the equality A = w2

2(w−1)
is attained, then h2 + h4 + 1 = w

w−1 and
(1 − t1 − t3)(1 − t2 − t4) = 0, which implies that 1 − t1 − t3 = 0 or 1 − t2 − t4 = 0.

Taking into account the geometric meaning of ti ’s, we see [using (5.3)] that the equal-
ities 1 − t1 − t3 = 0 and 1 − t2 − t4 = 0 imply one another so that one has
1 − t1 − t3 = 1 − t2 − t4 = 0. The above relations yield the characterization of
the equality case given in Part II of Theorem 2.2. ��
Lemma 5.3 Let K ∈ K2 be a maximal lattice-free triangle with w := w(K ) and
A := A(K ). Then w > 1 and (2.3) resp. (2.4) holds true. The equality case in both
inequalities is characterized by Part II resp. Part III of Theorem 2.2.

Proof If K is a triangle of type 1 or type 2, then clearly w > 1. Consider a triangle
K of type 3 and a set P = conv{p0, p1, p2}, as in Lemma 5.1, such that the relative
interior of each edge of K contains a point from {p0, p1, p2}. Then, for every vector,
the width function of K is strictly larger than that of P, and furthermore, the lattice
width of P is equal to 1. It follows that w > 1.

If K contains more than three integer points (and thus there is a unimodular trans-
formation of K which contains [0, 1]2), the assumptions of Lemma 5.2 are fulfilled
and the assertion follows directly from Lemma 5.2.

Now assume that every edge of K contains precisely one integer point, i.e., K is a
triangle of type 3. We define K = Q = conv{q0, q1, q2} with q0, q1, q2 and Q given
as in Lemma 5.1, and also borrow the other notations of Lemma 5.1. Without loss of
generality we assume that x0 ≤ x1 ≤ x2 and xi + x j > 1 for all 0 ≤ i < j ≤ 2.

Let f (x) := x0x1x2 + (1 − x0)(1 − x1)(1 − x2). The upper bound for w follows from
Lemma 5.1.

Case 1: x0 ≥ 1
2 . If 1 < w < 2, then in view of Lemma 4.2 we obtain

A = 1

2 f (x)
= x0

f (x)
· 1

2x0
= w

2x0
≤ w <

w2

2(w − 1)
. (5.4)

Assume now that w ≥ 2. Then, taking into account Lemmas 5.1 and 4.2 we obtain

A ≤ max

{
1

2 f (x)
: 1

2
≤ x0 ≤ x1 ≤ x2 < 1, x0 = w f (x)

}

= 1

2

(
min

{
f (x) : 1

2
≤ x0 ≤ x1 ≤ x2 < 1, x0 = w f (x)

})−1

.

Furthermore, using (5.2), we obtain

min

{
f (x) : 1

2
≤ x0 ≤ x1 ≤ x2 < 1, x0 = w f (x)

}

= 1

w
min

{
x0 : 1

2
≤ x0 ≤ x1 ≤ x2 < 1, x0 = w f (x)

}

≥ 1

w
min

{
x0 : 1

2
≤ x0 < 1, x0 ≥ w

(
1 − 3x0 + 3x2

0

)}
.

The minimum in the previous expression is attained for x0 equal to the smaller root
of the equation t = w(1 − 3t + 3t2) since this root, which is equal to
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3w + 1 − √
1 + 6w − 3w2

6w
,

lies in [ 1
2 , 1). The characterization of the equality case follows directly by analyzing

the equality cases in the above estimates. Thus, equality holds for x0 = x1 = x2.

Case 2: x0 < 1
2 . We have

I := inf

{
f (x) : 0 < x0 <

1

2
,

1

2
< x1 ≤ x2 < 1, x0 + x1 > 1,

x0 + x2 > 1, x0 = w f (x)

}

= 1

w
inf

{
x0 : 0 < x0 <

1

2
,

1

2
< x1 ≤ x2 < 1, x0 + x1 > 1,

x0 + x2 > 1, x0 = w f (x)

}

≥ 1

w
inf

{
x0 : 0 < x0 <

1

2
,

1

2
< x1 ≤ x2 < 1, x0 + x1 > 1,

x0 + x2 > 1, x0 ≥ w f (x)

}
.

Furthermore,

f (x) = (x0 + x1 − 1)x2 + (1 − x0)(1 − x1)

≥ (x0 + x1 − 1)x1 + (1 − x0)(1 − x1)

= x0(2x1 − 1) + (1 − x1)
2

= (1 − x0)x0 + (x0 + x1 − 1)2

> (1 − x0)x0.

Hence

I ≥ 1

w
inf

{
x0 : 0 < x0 <

1

2
, x0 > wx0(1 − x0)

}

= 1

w
inf

{
x0 : 1 − 1

w
< x0 <

1

2

}

= 1

w

(
1 − 1

w

)
.

It follows that

A = 1

2 f (x)
≤ 1

2I
≤ w2

2(w − 1)
.

The equality case is characterized in a straightforward way. ��
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We notice that Theorem 2.1 is a consequence of Propositions 3.2, 3.1 and
Lemmas 5.2, 5.3 (in fact, the main steps of the proof from Hurkens (1990) were
incorporated in Lemmas 5.1, 5.2 and 5.3).

Proof of Theorem 2.2 Let us show (2.2)–(2.4). In view of Lemmas 5.2, 5.3 bounds
(2.2)–(2.4) hold for maximal lattice-free sets. Let K ∈ K2 be an arbitrary lattice-free
set. By Proposition 3.1, there exists a maximal lattice-free set H ∈ K2 such that
K ⊆ H. We have w(K ) ≤ w(H) and A(K ) ≤ A(H). For 0 < w ≤ 1 + 2√

3
define

F(w) to be the upper bounds in (2.2)–(2.4). Note that F(w) is monotonically non-
increasing. Thus, it follows A(K ) ≤ A(H) ≤ F(w(H)) ≤ F(w(K )). The equality
A(K ) = F(w(K )) implies K = H and, thus, the characterizations of the equal-
ity cases for (2.2)–(2.4) follow from the characterizations of the equality cases in
Lemmas 5.2, 5.3. The bound (2.2) and Part IV follow directly from Theorem 2.3. ��

Proof of Corollary 2.6 We have μ1(K )w(K ) = 1. Furthermore, an appropriate trans-
late of μ2(K ) · K is lattice-free. Thus, we apply the upper bounds of Theorem 2.2 to
the body μ2(K ) · K and then express the lattice width of μ2(K ) · K as μ2(K )

μ1(K )
. The

sharpness of the bounds follows from the characterizations of the equality cases in
Theorem 2.2. ��

6 Proofs for centrally symmetric bodies

In this section we prove Theorems 2.4 and 2.5. Inequalities (2.6) have already been
stated in Kannan and Lovász (1988), Theorem 2.13, but the proof of Kannan and
Lovász does not seem to show this result. Therefore, we first show (2.6) by proving
Theorem 2.5. Afterwards, we use (2.6) to show (2.7)–(2.6).

Proof of Theorem 2.5 We want to show that μ2(K ) ≤ 2μ1(K ) for every centrally
symmetric K ∈ K2. For convenience we define μi := μi (K ) for i = 1, 2 and
w := w(K ). Since both μ1 and μ2 are homogeneous of degree −1, it suffices to con-
sider the case μ2 = 1. Using μ1w = 1 it remains to prove that w ≤ 2. Since μ2 = 1, K
has a lattice-free translate. Without loss of generality let K itself be lattice-free. By
Proposition 3.1, there exists a maximal lattice-free set K ′ ∈ K2 with K ⊆ K ′. In partic-
ular, we have w ≤ w(K ′) and A(K ) ≤ A(K ′). From Proposition 3.2, it follows that K ′
is either a split or a triangle or a quadrilateral. If K ′ is a split, then w ≤ w(K ′) = 1. If
K ′ is a quadrilateral, then in view of Lemma 5.2 one has w ≤ w(K ′) ≤ 2. Thus, let K ′
be a triangle. Assume, by contradiction, that w > 2. Then w(K ′) > 2 and applying
(2.4) we see that A(K ′) ≤ 2 (note that the upper bound in (2.4) is nonincreasing
in w). Let c be the center of symmetry of K . We consider the centrally symmetric set
L := K ′ ∩ (2c − K ′), where 2c − K ′ is the reflection of K ′ in c. From K ⊆ K ′ and
K = 2c − K ⊆ 2c − K ′, it follows that K ⊆ K ′ ∩ (2c − K ′) = L . Since K ′ is a
simplex, we have A(L) ≤ 2

3 A(K ′) (see, for instance, Fáry and Rédei 1950, Satz 5).
Hence, A(K ) ≤ A(L) ≤ 2

3 A(K ′) ≤ 2
3 · 2 = 4

3 . On the other hand, by (2.2), we have
A(K ) ≥ 3

8w2 > 3
8 22 = 3

2 , which contradicts A(K ) ≤ 4
3 . ��
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Remember that every o-symmetric K ∈ K2 can be associated with a norm

‖u‖K = min {α ≥ 0 : u ∈ αK } .

It is well known that ‖u‖K = h(K ∗, u).

Lemma 6.1 Let 0 ≤ α < 1 and let Kα := conv{±(1, α),±(0, 1)}. Then μ2(Kα) =
1
2 max{1 + α, 2 − α}.

Proof The unimodular transformation given by the matrix

(
1 0
1 −1

)
maps Kα onto

K1−α. Thus, it suffices to consider the case 0 ≤ α ≤ 1
2 . For the sake of brevity we write

K := Kα. Direct computations show that K ∗ = conv{±(−α+1, 1),±(−α−1, 1)} =
conv{(−α, 1), (α,−1)} + conv{(1, 0), (−1, 0)}. Hence

f (u) := h(K ∗, u) = |u2 − αu1| + |u1|,

for u = (u1, u2) ∈ R2. We have

μ2(K ) = min{μ ≥ 0 : μK + Z2 = R
2}

= min{μ ≥ 0 : ∀x ∈ R2 ∃z ∈ Z2 such that ‖x − z‖K ≤ μ}
= max

x∈R2
min
z∈Z2

‖x − z‖K

= max
x∈R2

min
z∈Z2

h(K ∗, x − z)

= max
x∈R2

min
z∈Z2

f (x − z). (6.1)

For t ∈ R let �t� denote the nearest integer function. If s, t ∈ R, we introduce the
distance between s and t modulo 1 by d(s, t) := d(s−t, 0), where d(s, 0) := |s−�s� |.
We choose x = (x1, x2) ∈ R2 and consider

f (x − z) = |x2 − z2 − α(x1 − z1)| + |x1 − z1|

with z = (z1, z2) varying in Z2. For z1 = �x1� and z2 = �x2 − α(x1 − z1)� we have
f (x − z) ≤ 1. Furthermore, if z1 
∈ {�x1� , �x1�} , then f (x − z) ≥ |x1 − z1| ≥ 1.

Thus, computing (6.1) we may assume that z1 ∈ {�x1� , �x1�} . If x1 ∈ Z we may set
z1 = x1 and z2 = �x2� obtaining f (x−z) ≤ 1

2 . Otherwise x1 ∈ R\Z and we introduce
β := x1 − �x1� satisfying 0 < β < 1. Since we can assume that z1 ∈ {�x1� , �x1�}
we have

min
z∈Z2

f (x − z) = min
z2∈Z

min {|x2 − z2 − αβ| + β, |x2 − z2 + α(1 − β)| + 1 − β}
= min {d(x2 − αβ, 0) + β, d(x2 + α(1 − β), 0) + 1 − β} .
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Thus, the value in (6.1) is the maximum of 1
2 and the value

max
x∈R

2

x1 
∈Z

min
z∈Z2

f (x − z)= max
0<β<1
x2∈R

min {d(x2 − αβ, 0) + β, d(x2 + α(1 − β), 0) + 1 − β}

= max
0<β<1
x2∈R

min {d(x2+α(1−β), α)+β, d(x2+α(1−β), 0)+1−β}

= max
0<β<1
x2∈R

min {d(x2, α) + β, d(x2, 0) + 1 − β}

≤ max
β,x2∈R

min {d(x2, α) + β, d(x2, 0) + 1 − β} .

If d(x2, α) + β and d(x2, 0) + 1 − β differ, then sligthly perturbing β the min-
imum of these two values becomes larger. Hence the latter maximum is attained
for the β for which d(x2, α) + β and d(x2, 0) + 1 − β coincide. In this case
β = 1

2 (d(x2, 0) − d(x2, α) + 1). Thus

max
β,x2∈R

min {d(x2, α) + β, d(x2, 0) + 1 − β} = max
x2∈R

1

2
(d(x2, 0) + d(x2, α) + 1)

= 1

2

(
1 + max

x2∈R

(
d(x2, 0) + d(x2, α)

))

= 1

2
(2 − α).

Since the latter is at least 1
2 we have shown μ2(K ) ≤ 1

2 (2 − α). It remains to show
that the above is attained with equality. Employing the above derivations we can see
that the equality is attained for x1 = 1

2 and x2 = 1
2 . ��

Proof of Theorem 2.4 Since (2.6) is established the bounds (2.7) and (2.8) together
with Parts II and III follow directly from Theorem 2.2.

Now let us show (2.6) and Part IV. By (3.1), o is the only interior integer point in
w·(DK )∗, where w := w(K ). Thus, by Minkowski’s first theorem, A(w·(DK )∗)≤4.

Using the above fact and Mahler’s inequality we obtain

A(K ) = A(DK )

4
= A(DK )A((DK )∗)

4A((DK )∗)
≥ 2

A((DK )∗)
≥ w2

2
.

It remains to characterize the case where this inequality is tight. In view of Mahler’s
inequality and Minkowski’s first theorem (the parts in these statements which give
information on the equality cases), the equality A(K ) = w2

2 implies that (DK )∗ is a
parallelogram and that the sets w

2 (DK )∗ + z with z ∈ Z2 tile R2. By Proposition 3.3
we deduce that there exists a linear unimodular transformation T and a parameter
0 ≤ α < 1 such that

T
(w

2
(DK )∗

)
= 1

2
conv{±(−α − 1, 1),±(−α + 1, 1)}.
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Taking duals and slightly modifying the left hand side of the equality we arrive at

2

w
(T −1)∗(DK ) = 2 (conv{±(−α − 1, 1),±(−α + 1, 1)})∗ .

Direct computations yield

(conv{±(−α − 1, 1),±(−α + 1, 1)})∗ = conv{±(1, α),±(0, 1)}.

Clearly, the transformation (T −1)∗ is unimodular. Summarizing we see that, up to
unimodular transformations, we have

1

2
DK = w

2
conv{±(1, α),±(0, 1)}

with 0 ≤ α < 1. Note that 1
2 DK is a translate of K . An appropriate translate of

1
2 DK is lattice-free if and only if μ2(

1
2 DK ) ≥ 1. In view of Lemma 6.1 we get

μ2(
1
2 DK ) = 2

w
· 1

2 max{1 + α, 2 − α}. The above observations yield Part IV. ��
Proof of Corollary 2.7 The proof is analogous to the proof of Corollary 2.6. ��
Acknowledgments We thank the anonymous referee, E. Makai, Jr. and C.A.J. Hurkens for useful
suggestions and pointers to the literature.
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