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Abstract
Since its definition 65 years ago, progressive multifocal leukoencephalopathy (PML) has continued to devastate a growing 
population of immunosuppressed patients despite major advances in our understanding of the causative JC virus (JCV). 
Unless contained by the immune system, JCV lyses host oligodendrocytes collateral to its life cycle, leading to demyelination, 
neurodegeneration, and death. Novel treatments have stagnated in the absence of an animal model while current antiviral 
agents fail to address the now ubiquitous polyomavirus. In this review, we highlight the established pathogenesis by which 
JCV infection progresses to PML, highlighting major challenges that must be overcome to eliminate the underlying virus 
and, therefore, the debilitating disease.
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JC virus

At the time of its framing as a distinct disorder in 1958, the 
etiology of PML remained uncertain (Astrom et al. 1958). 
With a majority of cases affecting patients with advanced 
blood cancers (i.g., leukemias, lymphomas, myelomas) and 
severe inflammatory conditions (i.g., lupus erythematous, 
sarcoidosis), an early hypothesis proposed that it was the 
consequence of an opportunistic virus (Richardson 1961, 
1974). This was confirmed by Zu Rhein and Chou in 1965, 
who identified an unknown “papova-like virus” when ana-
lyzing PML lesions with electron microscopy (Zurhein and 
Chou 1965). Six years later, Padgett et al. (1971) successfully 
isolated the PML-causing strain of JC virus (JCV) from the 
autopsy of the eponymous patient, JC. By 1976, JCV was 
identified in the sera of over twenty cases of PML and was 
the accepted cause of the demyelinating disease (Padgett 

et al. 1976). Shortly thereafter, Frisque, Bream, and Cannella 
published the complete genome and associated proteome of 
the first isolated JCV strain, Mad-1 (Frisque et al. 1984).

JCV is a double-stranded DNA polyomavirus with a cir-
cular, supercoiled genome packaged within an icosahedral 
capsid (Fig. 1A). The non-coding control region (NCCR) 
regulates the bicistronic genome consisting of two early and 
four late open reading frames (Fig. 1B). The early NCCR 
and six coding regions are largely conserved whereas the late 
NCCR varies across benign and pathologic strains (Fig. 2). 
Two early proteins, small and large tumor antigen (smtAg 
and LTAg), act as essential transactivators of the NCCR. In 
addition to increasing viral transcription by functioning as a 
helicase (unwinding and unzipping the hypercoiled dsDNA) 
and enhancer (recruiting host machinery to the promoter), 
the T antigens interact with housekeeping genes to create a 
pro-viral environment (Saribas and Safak 2020). Through 
interaction with E3 ubiquitin ligase, TRIM25, smtAg inter-
rupts the cytokine signaling pathway of the innate immune 
response (Bollag et al. 2010; Chiang et al. 2021). LTAg 
inactivates tumor suppressors, p53 and pRb; inhibits the 
pro-apoptotic protein, survivin, and promotes proliferation 
through the c-Myc/Wnt pathway (Krynska et al. 1997; Gan 
et al. 2001) The resultant pro-survival state provides the two 
early peptides with their “tumor” namesake.

Agnoprotein (Agno), the intermediate or “early-late” 
protein, hinders early LTAg and promotes late gene expres-
sion of additional Agno and the three capsid proteins, VP1-3 

 *	 Ilker K. Sariyer 
	 isariyer@temple.edu

 *	 Joseph R. Berger 
	 Joseph.Berger@pennmedicine.upenn.edu

1	 Department of Microbiology, Immunology 
and Inflammation, Center for Neurovirology and Gene 
Editing, Temple University Lewis Katz School of Medicine, 
Philadelphia, PA 19140, USA

2	 Department of Neurology, Perelman School of Medicine, 
University of Pennsylvania, 3400 Convention Avenue, 
Philadelphia, PA 19104, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s13365-023-01164-w&domain=pdf
http://orcid.org/0000-0002-0641-6141


525Journal of NeuroVirology (2023) 29:524–537	

1 3

(Safak et al. 2001; Akan et al. 2006). Agno exits the host cell 
prior to cell death and interacts with adjacent cells, priming 
them for viral infiltration (Saribas et al. 2018). Within the 
infected cell, it also interacts with mitochondria to directly 
induce apoptosis of oligodendrocytes, enabling the lytic 
spread of JCV (Merabova et al. 2008; Saxena et al. 2021).

The external capsid includes 360 VP1 peptides arranged 
in 72 pentamers, forming an icosahedral capsid with T = 7 
symmetry (Fig. 1A). Without an envelope, VP1 directly 
interacts with the environment, binding sialic acid resi-
dues on cell membranes to induce endocytosis (Fig. 1C) 
(Shishido-Hara et al. 2000; Ou et al. 2001; Kobayashi et al. 
2013). Serotonin receptor 5HT2A, in particular, has been 

shown to interact with VP1, initiating the internalization of 
the entire virus into clathrin-coated pits (Querbes et al. 2004; 
Chapagain et al. 2008; Mayberry et al. 2019). The VP1 shell 
is capable of self-assembly but is stabilized around intrin-
sic minor proteins VP2 and VP3 (Ou et al. 2001; Shishido-
Hara et al. 2004). Each five-VP1 capsomere is paired with 
an intrinsic VP2 or VP3 monomer, the latter being a trun-
cated version of the former. The absence of either minor 
protein impairs the nuclear localization of JCV VP1 result-
ing in a reduction of viral progeny with key roles in nuclear 
localization and DNA packaging (Shishido-Hara et al. 2004; 
Gasparovic et al. 2006). The myristoylated VP2 has been 
identified in the role of uncoating in early infection whereas 

Fig. 1   Overview of JC capsid, genome map, and interaction with 
host receptors. A Cartoonized depiction of the JC virus, which is 
12% DNA and 88% protein by weight. The external icosahedral cap-
sid consists of 72 VP1 pentamers organized around an inner capsid 
of approximately 72 VP2/VP3 proteins (not visible). The circular 
dsDNA genome is supercoiled within the capsid. B The genome is 

5.2  kb, including a bicistronic non-coding control region and six 
open reading frames. The early genome (red) encodes small and large 
T-antigen; the late genome (blue) encodes agnoprotein and the three 
capsid proteins. C The VP1 proteins of the outer capsid directly bind 
to sialic acid residues and/or 5HT2A receptors on the host cell sur-
face, initiating endocytosis
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VP3 has been shown to inhibit the early promoter of the viral 
genome (Krauzewicz et al. 1990; Huang et al. 2003). Com-
plexes of VP2 and VP3, together, enhance LTAg binding 
to the NCCR, promoting viral genome expression (Saribas 
et al. 2014).

The exact ratio of VP2 to VP3 is unknown; other poly-
omaviruses, such as Merkel polyomavirus, lack VP3 alto-
gether. Simian virus 40 (SV40) is a primate polyomavirus 
with a 69% homology to JCV (Deckhut et al. 1991). Its 
similar external shell of VP1 peptides surrounds a mixed 
core of 72 VP2 and VP3 monomers of an unspecified ratio 
(Nakanishi et al. 2006; Gasparovic et al. 2006). A complex 
of both VP2 and VP3 acts as a viroporin in the endoplasmic 
reticulum, enabling infection and packaging of viral DNA 
in the nucleus (Daniels et al. 2006). Given their similarities, 

it can be extrapolated that the roles of JCV VP2 and VP3 
are similar to those of SV40, but the exact numbers remain 
unestablished for both.

The lifecycle of JCV: the adaptation hypothesis

Using viral isolate from patient samples and hemagglutination-
inhibition testing, Padgett and Walker (1973) found 69% of the 
general population expressed antibodies against JCV, with 
14% seropositivity in young children growing to 86% in senior 
adults. Asymptomatic individuals were identified as carriers 
as 20% of healthy subjects shed infectious JC virions in their 
urine (Hogan et al. 1980; Kitamura et al. 1990; Flaegstad et al. 
1991). This peripheral strain has been referred to as “archetype” 

Fig. 2   Arrangements of non-coding control regions of archetype 
(cy) and PML-type (Mad-1, Mad-4) JCV strains. Depiction of the 
archetype control region with noted deletions and rearrangements of 
the late promoter, producing common PML-type strains, Mad-1 and 

Mad-4. The early promoter (z) is largely conserved and regulates the 
expression of smtAg and LTAg whereas the late promoter (a–f) is 
prone to hypervariability and regulates the expression of Agno and 
VP1-3
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JCV (cy-JCV). Yogo and colleagues isolated cy-JCV and 
found it persists within the same, healthy participants over 
many years without mutations in the genome or decrement 
in concentrations (Yogo et al. 1990, 1991; Kato et al. 1994; 
Kitamura et al. 1997). Conversely, hypervariable “prototype” 
(hyp-JCV, also referred to as “neurotropic”) strains were 
isolated from PML patients, with rearrangements of the late 
NCCR differing across cases as well as within individuals 
(Grinnell et al. 1983; Martin et al. 1985; Iida et al. 1993; Ault 
and Stoner 1993; Yogo et al. 1994).

The “adaptation model” became the accepted theory of the 
JCV/PML life cycle wherein cy-JCV is spread through contami-
nation of the environment before mutating to hvp-JCV within an 
immunocompromised host (Fig. 3). This theory is supported by 
the identification of cy-JCV in sewage and age-graded changes 
in anti-VP1 seropositivity (Bofill-Mas and Girones 2003; Bofill-
Mas et al. 2003). Recent evidence from the novel coronavirus 
pandemic supports the gastrointestinal route of infection: regions 
with mask mandates show stable JCV seroconversion rates 
while viruses known to transmit through respiratory droplets 
(e.g., coronavirus, influenza, rhinovirus) declined (Cheng et al. 
2021; Oh et al. 2021; Leech et al. 2022; Vigiser et al. 2022). 
LTAg has been implicated in multiple gastrointestinal cancers 
in the absence of systemic JCV, further supporting the proposed 
mechanism of infection via ingestion (Enam et al. 2002; Del 
Valle et al. 2005; Shin et al. 2006; Shavaleh et al. 2020; Querido 
et al. 2020; Fang et al. 2022).

During immunosuppression, cy-JCV and its hvp-JCV 
progeny expand to include additional reservoirs, infiltrating 
lymphocytes and spreading hematogenously from the primary 
latency site in the kidney to include bone marrow and nervous 
tissue (Tornatore et al. 1992; White et al. 1992; d’Arminio 
Monforte et al. 1997; Du Pasquier et al. 2004; Van Loy et al. 
2015). In the absence of immunosuppression, the blood–brain 
barrier successfully prevents the hematogenous spread of JCV, 
but evidence suggests even temporary immunosuppression can 
enable infiltration of nervous tissues through B-cell mediated 
extravasation. Both cy- and hvp-JCV proliferate strongest 
in glial cells, and both have been identified in the brains and 
peripheral tissues of PML and non-PML patients (White 
et al. 1992; O’Neill et al. 2003; Tan et al. 2010). Increased 
proliferation significantly increases the degree and rate of NCCR 
mutation, with deletions preceding translocations and variants 
increasing with viral load (Ault and Stoner 1993; Agostini et al. 
1997; Pietropaolo et al. 2003). These mutations have clinical 
significance, with the number of repeats correlating with 
poorer PML outcomes (Pfister et al. 2001; Van Loy et al. 2015; 
Wilczek et al. 2022). The hypervariable prototype strains are 
not only less common, but less resistant to external stressors 
which influence the proposed route of transmission (i.e., 
extremes of pH) (Bofill-Mas et al. 2001, 2003; Bofill-Mas and 
Girones 2003). Particular rearrangements (e.g., Mad1, Mad4) 
promote the rate of replication more than cy-JCV and other, 

less common, hvp-JCV isoforms, supporting their convergent 
evolution in separate hosts (Daniel et al. 1996; Sock et al. 1996; 
Ault 1997; Elsner and Dörries 1998; Fedele et al. 2003; O’Neill 
et al. 2003). Mutations in coding regions, such as the late capsid 
proteins, are less commonly reported (Stoner and Ryschkewitsch 
1995). Phenotype-altering mutations of the early (sm- and 
LTAg) and early-late proteins (Agno) significantly impaired 
viral propagation by removing the necessary recruitment of 
host polymerases (Okada et al. 2001). Similarly, alterations of 
the capsid proteins (VP1-3) altered the stability and infectivity 
of the virions. Alterations in these capsid proteins may alter the 
need for sialic acid binding for cellular invasion and, therefore, 
favor infection (Gorelik et al. 2011).

Latency and reactivation: the role 
of immune modulation in JCV pathogenesis

The mechanism by which an immune system promotes JCV 
latency is unknown, with several different mechanisms of 
immunosuppression resulting in reactivation (Du Pasquier 
et al. 2001; Iannetta et al. 2019). Flaws in both humoral 
and cell-mediated pathways have been implicated in PML 
pathogenesis, while reductions in pro-inflammatory markers 
have shown a correlation with JCV proliferation. Nuclear 
regulators, such as alternative splicing factor SF2/ASF, also 
change the capacity of a cell to maintain JCV levels at a 
low, unchanging level (Sariyer and Khalili 2011; Uleri et al. 
2013; Piu et al. 2020). In addition to immunosuppression, 
certain external factors can enhance JCV replication includ-
ing comorbid viruses and pollution (Dolci et al. 2018).

During the human immunodeficiency virus/acquired 
immunodeficiency syndrome (HIV/AIDS) epidemic, PML 
became significantly more common. The overall death rate of 
PML quadrupled, and 5–7% of individuals with HIV/AIDS 
developed PML (Holman et al. 1991). Although immuno-
suppression of HIV/AIDS increases risk, the incidence of 
PML was far greater than in other immune disorders (e.g., 
transplant recipients, lymphoma patients). With 80% of PML 
cases affecting patients with HIV/AIDS, clinical and epide-
miological evidence hinted at a compounding relationship 
between human immunodeficiency and JC viruses (Wortman 
et al. 2000; Daniel et al. 2001). A complex of HIV transacti-
vator, Tat, and cellular transcription factor, purα, was found 
to significantly increase the expression of JCV late genes by 
interacting with its promoter region. Other viruses have since 
shown cross-activation of the JCV late promoter with human 
T-lymphotropic virus type I acting through its tax protein and 
cytomegalovirus through IE2 (Okada et al. 2000; Winklhofer 
et al. 2000). Host proteins, including Bag1, NFκβ, YB-1 Sμbp-
2, and Spi-B increase expression whereas c-Jun decreases it 
(Chen et al. 1997; Devireddy et al. 2000; Ravichandran et al. 
2006; Marshall et al. 2010).
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Fig. 3   Transmission of arche-
type JCV (cy-JCV) in the envi-
ronment with latent reservoirs 
in an immune-competent host 
(black arrows) and pathogenesis 
during immune compromise 
(red arrows). Archetype JCV 
is ingested (1) and passed 
asymptomatically in urine 
with persistently low levels of 
replication in kidney tissue (2). 
Contamination of sewage (3a) 
and food products (3b) occurs 
secondary to poor hygiene, 
enabling spread to additional 
hosts through ingestion (1). 
During immune compromise, 
disinhibition of latent JCV 
increases proliferation (3). High 
proliferation rates increase the 
spontaneous rearrangements of 
cy-NCCR into PML-type strains 
(4a). Disinhibition and mutation 
enable the spread to additional 
organ reservoirs with preferen-
tial replication in glial cells of 
the brain (4b)
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This interrelationship between HIV and JCV confounded 
the investigation of JC-specific antiviral agents. PML mortality 
peaked as the first protease inhibitor, saquinavir, was approved 
by the FDA in 1995. Within a year, HAART became widely 
available. The three-drug treatment drastically improved T-cell 
counts of HIV/AIDS patients, bringing a significant reduction 
in many HIV-associated diseases, including PML (Christensen 
et al. 2010). The resultant decline in PML-associated deaths 
was due to the improvement in predisposing immunosuppres-
sion and reduction in the co-promotional HIV. JC itself, how-
ever, was not treated. Improved outcomes were observed after 
the addition of cidofovir to HAART in patients with both HIV/
AIDS and PML (De Luca et al. 1999; Brambilla et al. 1999; 
Jiang et al. 2010). However, as with other potential antivirals 
for PML, cidofovir has shown no benefit in clinical trials and is 
not recommended for the treatment of PML (Marra et al. 2002; 
De Luca et al. 2008).

In 2005, three simultaneously published case reports 
described the development of PML in patients treated with 
natalizumab (Tysabri) (Kleinschmidt-DeMasters and Tyler 
2005; Langer-Gould et al. 2005; Van Assche et al. 2005). 
Natalizumab, a selective adhesion molecule inhibitor of α4β1 
and α4β7 integrins prevents leukocyte entry into CNS via 
VCAM and gastrointestinal tissues via MadCAM  (Ghosh 
et al. 2003; Miller et al. 2003). It was approved by the FDA for 
the treatment of multiple sclerosis and Crohn’s disease. The 
inhibition of α4β1 integrin is responsible for the heightened 
risk of PML in patients treated with natalizumab through not 
only impaired immunosurveillance, but also through the release 
of JCV-infected premature B cells from bone marrow stores 
and likely other currently unrecognized mechanisms (Berger 
and Koralnik 2005; Frohman et al. 2014). Proliferating within 
oligodendrocytes, JCV lyses to propagate its life cycle, and 
demyelination results as the source of myelin is destroyed. 
The risk of PML was calculated at 1:1000 after 18 months of 
natalizumab treatment (Yousry et al. 2006). In addition to altering 
the levels of natalizumab, studies show altered T-lymphocyte 
morphology, increasing the risk of JCV reactivation further 
than general immunosuppression alone (Iannetta et al. 2016; 
Zingaropoli et al. 2018). After a temporary recall, natalizumab 
returned to the American market in 2006 with the introduction 
of “Touch,” a mandatory program wherein natalizumab-treated 
patients underwent regular monitoring with seropositivity and/
or PML symptoms indicating immediate cessation of treatment 
(Sheridan 2006). Four long-term observational studies were 
also initiated (STRATIFY-2, STRATA, TOP, and TYGRIS). A 
combined sample of over 37,000 patients revealed significant 
benefit from annual screening of the anti-JCV antibody index 
in the peripheral blood (Ho et al. 2017). JCV antibodies in 
peripheral blood and JCV DNA in urine correlate with previous 
exposure to JCV and, therefore, indicate an increased risk of 
natalizumab-induced PML.

Epidemiology: JCV prevalence and PML risk

The prevalence of JCV is consistently reported as 60–80% of 
the general population, citing the initial hemagglutination-
inhibition studies by Padgett and Walker (1973). Their results 
were updated in 2009 by Egli et al. who observed anti-JCV 
antibodies by ELISA assay in 58% of healthy blood donors with 
notable age-graded seropositivity and uniform cy-JCV typing 
(Egli et al. 2009). A more recent 2018 metanalysis using anti-
JCV ELISA found a mean seropositivity of 57.1% in patients 
with multiple sclerosis or neuromyelitis optica (Paz et al. 2018). 
Although hemagglutination-inhibition and anti-JCV antibody 
ELISA do suggest previous exposure to JCV, the serological 
tests do not equate to prevalence. A 2013 study found 37% of 
patients with multiple sclerosis who tested negative anti-JCV 
antibodies were positive for JCV viruria; this high false nega-
tive rate suggests a significant underestimation of JCV preva-
lence in the general population (Berger et al. 2013a, b).

Despite the consistently high levels of JCV, PML remains 
a rare disorder. Estimated annual incidence rates are on the 
order of about 1 in 1,000,000 persons, and in one popula-
tion-wide study from Canada, the incidence of the disease 
was roughly one-half of that of Creutzfeldt Jakob disease 
(Bakal et al. 2021). As discussed above, the prevalence of 
the PML has changed over time to reflect the underlying 
prevalence of predisposing disorders. This change over 
time has been referred to as the “Epochs of PML” (Berger 
and Hartung 2023). These epochs were largely, although 
not exclusively, derived from the onset of the AIDS pan-
demic in 1981 and monoclonal antibody–associated PML in 
2005. Prior to the AIDS pandemic, PML was predominantly 
observed in patients with underlying hematological malig-
nancies, chiefly, B cell malignancies (Astrom et al. 1958). 
The prevalence of PML increased markedly in 1981 with the 
onset of the AIDS pandemic as 5–10% of all HIV-infected 
persons would develop PML (Berger 2014). Following the 
introduction of effective antiretroviral therapy in 1996, the 
prevalence of PML in the HIV-infected population began to 
decline; however, AIDS continues to be the most common 
predisposing cause for PML in the USA (Anand et al. 2019). 
Immunotherapies became a significant contributor to the 
prevalence of PML in 2005, after the first 3 cases of PML 
with natalizumab were reported (Kleinschmidt-DeMasters 
and Tyler 2005; Langer-Gould et al. 2005; Van Assche et al. 
2005). To date, there are over 850 reported cases of natali-
zumab-associated PML (Dsilva et al. 2023). A wide range 
of immunosuppressive agents has been associated with the 
development of PML, although natalizumab and efalizumab 
(an LFA-1 monoclonal antibody that is now off the market) 
have rates orders of magnitude higher (Maas et al. 2016). 
Other conditions—in addition to AIDS and certain immu-
nosuppressive therapies—which are predisposing to PML 
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are lympho- and myeloproliferative disorders, carcinomas, 
primary immune deficiency diseases (e.g., idiopathic CD4 
lymphopenia), and granulomatous inflammatory disorders 
(e.g., sarcoidosis). On rare occasion, no underlying explana-
tion for PML is identified, and its development is believed 
to be simply a stochastic event.

PML: a clinically unmet challenge

In 1958, Astrom, Mancall, and Richardson defined PML by 
its unique histopathological features in three patients: two 
diagnosed with chronic lymphatic leukemia and one with 
Hodgkin’s B-cell lymphoma (Astrom et al. 1958). Over the 
course of the disease, shared symptoms included weakness, 
gait changes, slurred speech, vision changes, and cognitive 
alteration. Symptoms progressed in successive examinations. 
The cytological features differentiated PML from other demy-
elinating conditions as there was a characteristic triad of dis-
seminated foci of demyelination, hypertrophy of astrocytes 
into “bizarre gigantic forms,” and oligodendrocytes with 
enlarged, round nuclei that stain darkly basophilic. Using this 
unique triad, they were able to reassess five historical cases 
for which histology was preserved: two undiagnosed patients 
in 1930, one proposed to be lymphogranulomatosis in 1941, 
and two cases presented as Schilder’s disease in 1945 and 
1955. The description of PML from 65 years ago remains 
relevant today as challenges in diagnosis, treatment, and pre-
clinical modeling have gone unmet.

Diagnosis

Brain biopsy remains the gold standard for diagnosis, 
with qPCR of cerebral spinal fluid (CSF) failing to meet 
its accuracy, instead functioning as an exclusionary screen 
(d’Arminio Monforte et al. 1997; Berger et al. 2013a, b; 
Ikeda et al. 2017). Because the screening procedure for a 
lumbar puncture is invasive, significant irreversible damage 
must occur and incite symptoms to arouse clinical suspicion 
and justify the procedure. Although a positive CSF screen is 
sufficient in the context of symptoms, repeatedly negative 
CSF PCRs may require a brain biopsy for diagnosis.

The presence of JCV in CSF in the absence of symptoms 
has a low sensitivity for predicting PML (Swinnen et al. 
2019). The seropositive status of anti-JCV antibodies in the 
periphery does not equate to PML risk, as the prevalence 
of JCV is so extensive and the incidence of PML is so rare. 
(Ferretti et al. 2018; Cortese et al. 2021). Similarly, identifi-
cation of JCV in the peripheral tissues does not translate to 
PML risk as it does not indicate mutation of cy-JCV to hvp-
JCV nor does it reflect penetrance of the blood–brain barrier. 
An accepted and effective risk mitigation strategy is only 

currently available for natalizumab, with previous exposure 
to JCV (measured by anti-JCV antibodies) increasing the 
risk of drug-induced immunosuppression reactivating the 
virus (Ho et al. 2017). In these cases, patients are ineligible 
for certain PML-causing therapies. Other cases with non-
iatrogenic or unavoidable immunosuppression have a dire 
need for a non-invasive, pre-symptomatic screen for PML-
causing hvp-JCV.

Treatment

There is no effective treatment for JCV or PML (Berger et al. 
2013a, b). Therapeutics are complicated by the heteroge-
neous patient population, with myriad subpopulations with 
different predisposing conditions underlying their immuno-
suppression. The common cause, the virus itself, is therefore 
the ideal target. A protein vaccine for polyomaviruses JC 
and BK is currently being studied in macaques; however, 
the training of the host immune system to recognize cap-
sids as disease-associated is only valuable in an immune-
competent environment (Peretti et al. 2023). Although the 
exact mechanism by which an immune system suppresses 
JCV is not established, cell-mediated immunity, especially 
JCV-specific T-cell responses, is clearly fundamental to the 
suppression of the disorder (Koralnik 2002). The role of 
the humoral immune system in preventing the development 
of PML in JCV-infected individuals remains uncertain but 
likely plays a role (Ray et al. 2015). Unlike many other viral 
infections, the presence of JCV-directed antibody is not pro-
tective. However, there may be neutralizing antibodies that 
have a role in the amelioration of the disorder.

No antivirals are recommended for any stage of infection, 
and many fail to show improvement in larger clinical trials 
(Gasnault et al. 2001; Jamilloux et al. 2016; Summers et al. 
2019). Medications known to have high CNS penetrance and 
pre-existing FDA approval are often investigated, as their tox-
icities have been established for other conditions, making the 
lack of a translational animal model moot. Mefloquine, for 
example, is an anti-malarial agent with which Brickelmaier 
et al. significantly reduced JC replication within human glial 
cells (Brickelmaier et al. 2009). Small clinical studies and case 
reports showed mixed results on its benefit; however, it failed 
to improve viral load or clinical outcomes in cohort studies 
(Epperla et al. 2014; Kurmann et al. 2015; Nambirajan et al. 
2017). Mefloquine has been paired with mirtazapine, a 5HT2A 
receptor antagonist approved for the treatment of major depres-
sive disorder. Metanalyses have shown no benefit of mirtazap-
ine, alone, on outcomes for PML patients (Jamilloux et al. 
2016). The value of a combination therapy warrants consid-
eration as the anti-malarial is proposed to reduce the genomic 
threat of JCV while the tricyclic antidepressant prevents capsid 
binding and, therefore, cell entry. The need for combination 
therapy is a mainstay of the sister virus, HIV, with highly active 
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antiretroviral therapy (HAART) combining three drugs target-
ing different characteristics: a direct antagonist of reverse tran-
scriptase, an indirect antagonist of reverse transcriptase, and a 
protease inhibitor preventing virion maturation. Redundancy 
in treatment will likely improve our targeting of both the JCV 
capsid/packaging—which is key to spread—as well as the JCV 
genome—which is key to expression and proliferation—to suc-
cessfully eliminate the virus or suppress its viral load enough 
for management by a weakened immune system.

Targeting of the capsid through transfusion of T-cells 
primed against the major capsid protein VP1 and immune 
checkpoint inhibitors are appealing treatment possibilities 
but remain to show demonstratable efficacy (Muftuoglu 
et  al. 2018; Cortese et  al. 2019). The former mounts 
an immune response against the viral capsid; the latter 
increases the production of immune cells by obstructing 
anti-inflammatory PD-1, CTLA, or LAG-3. Unfortunately, 
altering the immune response can be problematic as 
reductions in viral load occur secondary to T-cell mediated 
culling of affected cells, advancing PML (Martins 
et  al. 2019). Additionally, many PML patients rely on 
therapeutically low immune cells (i.e., transplant recipients, 
patients treated for autoimmune conditions) making them 
ineligible for the immune checkpoint inhibitors proposed.

Preclinical modeling

Progress in both diagnostics and therapeutics is limited by 
the absence of a pre-clinical, translational model. Animal 
analogs, including the murine (MuPyV) and simian (SV40) 
polyomaviruses, are homologous, but not identical, to JCV 
(White et al. 2015). While capable of duplicating PML-like 
conditions, the viruses themselves diverge too much to vali-
date non-human preclinical research targeting JCV (Simon 
et al. 1999; Dang et al. 2005). JC virus preferentially affects 
human cells and inoculation with JCV uniformly produces 
tumors in neonatal hamsters, owl monkeys, squirrel mon-
keys, mice, and rats (Walker et al. 1973; London et al. 1978, 
1983; Gordon et al. 2000; Del Valle and Khalili 2021). Mul-
tiple laboratories have produced humanized mice capable 
of harboring the JC virus (Matoba et al. 2008; Kondo et al. 
2014). Matoba et al. engrafted JCV-infected cells from PML 
patients into mice, maintaining the cell line for 2 weeks 
prior to successfully suppressing the virus with an siRNA 
targeting agnoprotein. Kondo et al. introduced human glial 
progenitor cells into perinatal shiverer mice, which lack 
endogenous myelin, and achieved human myelination of 
mice axons. When JCV was injected into the brains of these 
chimeras, human astrocytes and oligodendrocytes were sus-
ceptible to infection; mouse cells were spared. Both models, 
proposed over a decade ago, reveal the potential to model 
JCV in vivo through humanization.

Future advancements

To eliminate PML, several translational concepts must, and can, 
be addressed: the development of JCV-targeting therapies, the 
creation of an animal model to test said therapies, and the crea-
tion of a non-invasive diagnostic screen that will enable effective 
treatment prior to the onset of irreversible demyelination.

Modern advances in gene editing have great value in the 
treatment of persistent and evasive viral infections. Although 
protein vaccines and immune modulators can prevent the entry 
of virions into cells, and reverse transcriptase and polymer-
ase inhibitors can prevent genome expansion, these efforts are 
viro-static, rather than viro-cidal. CRISPR/Cas9 targets even 
latent DNA, curing a host of the virus entirely. The similarly 
persistent virus, HIV, has been successfully eliminated from 
T-lymphocytes in vitro, humanized mice, and SIV-analogous 
macaques and is currently in clinical trials (Datta et al. 2016; 
Kaminski et al. 2016; Dash et al. 2019; Mancuso et al. 2020). 
The RNA virus persists following integration into the host 
genome, making the excision of the viral genes essential to 
effective, lasting therapies. Other RNA viruses which vary 
significantly across strains, such as corona- and influenza-
viruses, can be addressed en masse through conserved gene 
segments, as shown by Abbott et al. (2020) who produced a 
“pan-coronavirus” therapy utilizing six gRNAs to account 
for 90% of all coronaviruses, including SARS-CoV-2. Gene 
therapies utilizing CRISPR as a curative antiviral have shown 
success with notoriously latent herpesviruses (including cyto-
megalovirus, herpes simplex type 1, and Epstein Barr) which 
contain a dsDNA genome that permanently infects the host, like 
JCV (Yuen et al. 2015; van Diemen et al. 2016). CRISPR con-
structs against JCV have been successful, with Wollebo et al. 
(2015) completely excising the NCCR-LTAg span of the JCV 
genome in vitro, terminating the viral life cycle. Unfortunately, 
the absence of an animal model for JCV stalls such therapies 
at the preclinical stage.

Disease modeling has improved significantly in recent 
years with the production of multicellular human organoids 
and the xenotransplantation of said organoids into animal 
surrogates. Barreras et al. (2022) successfully propagated 
the JC virus within human cerebral organoids, a three-
dimensional system containing neurons, oligodendrocytes, 
and astrocytes. The system not only produced myelinated 
axons, but it also hosted JCV infection and displayed associ-
ated demyelination. This is a monumental step toward the 
creation of a JCV model when considered in the context of 
xenotransplantation foreshadowed by the teams of Matoba 
and Kondo. A research “pocket” of xenotransplanted cer-
ebral organoids could better reflect the multicellular envi-
ronment of JCV-driven PML while borrowing the metabo-
lism and blood–brain barrier of host mice, bridging the gap 
between basic science research and clinical investigations. 
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In researching xenotransplantation, Dong et al. (2021) and 
Bao et al. (2021) successfully injected human organoids into 
murine brains. The human cells formed synaptic and angio-
genic connections with their murine neighbors, producing an 
in vivo model with a more accurate human. Ex vivo infec-
tion of human organoids and their incorporation into mouse 
brains may, therefore, produce a humanized model, a neces-
sary stage for assessing the safety and bioavailability of new 
JCV therapies and diagnostics prior to clinical trials.

Outside of neuroprotectants or neuro-regeneration, the 
only true treatment for PML is prevention, as neurodegener-
ation and central nervous system demyelination are irrevers-
ible. Agnoprotein has been proposed as a promising target, 
as cells actively producing JCV release the early-late protein 
into the environment prior to cell lysis (Otlu et al. 2014). 
Potentially acting as a viroporin primer for the anticipated 
release of virions, agnoprotein interacts with adjacent unin-
fected cells (Suzuki et al. 2010; Saribas et al. 2018). The 
ability to detect the 5kD agnoprotein prior to its triggering 
of apoptosis is complicated by the absence of a preclinical 
model and the patency of the blood–brain barrier. Highly 
sensitive diagnostics, like sandwich ELISA and RT-LAMP, 
have been validated for identifying minute levels of viral 
proteins and RNA (Morioka et al. 2014; Zai et al. 2018; 
Huang et al. 2020; Tanimoto et al. 2022). Targeting agnopro-
tein in the blood may now be possible for early identification 
of JC-reactivation and pre-symptom PML screening.

Advancements in JCV research have well exceeded those 
of PML, despite the polyomavirus being discovered nearly 
a decade after the disease’s definition. There is a distinct 
pathologic link between the infection and its disease, but 
no such link has entered the clinical sphere diagnostically 
or therapeutically with the exception of very specific iatro-
genic prevention. We have the technology, today, to improve 
patient outcomes by developing realistic screens, transla-
tional preclinical models, and JC-targeting therapies, all 
necessary tools to better aid individuals of the heterogenous 
PML patient population.
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