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Abstract
HIV-associated neurocognitive disorders (HAND) describe a spectrum of neuropsychological impairment caused by HIV-1
infection. While the sequence of cellular and physiological events that lead to HAND remains obscure, it likely involves chronic
neuroinflammation. Host genetic markers that increase the risk for HAND have been reported, but replication of such studies is
lacking, possibly due to inconsistent application of a behavioral phenotype across studies. In the current study, we used histo-
pathologic phenotypes in order to validate putative risk alleles for HAND. The National NeuroAIDS Tissue Consortium, a
longitudinal study of the neurologic manifestations of HIV. Data and specimens were obtained from 175 HIV-infected adults.
After determining several potential covariates of neurocognitive functioning, we quantified levels of six histopathological
markers in the frontal lobe in association with neurocognitive functioning: SYP, MAP 2, HLA-DR, Iba1, GFAP, and β-amyloid.
We then determined alleles of 15 candidate genes for their associations with neurocognitive functioning and histopathological
markers. Finally, we identified the most plausible causal pathway based on our data using a multi-stage linear regression-based
mediation analysis approach. None of the genetic markers were associated with neurocognitive functioning. Of the histopatho-
logical markers, only MAP 2 and SYP were associated with neurocognitive functioning; however, MAP 2 and SYP did not vary
as a function of genotype. Mediation analysis suggests a causal pathway in which presynaptic degeneration (SYP) leads to
somatodendritic degeneration (MAP 2) and ultimately neurocognitive impairment. This study did not support the role of host
genotype in the histopathology underlying HAND. The findings lend further support for synaptodendritic degeneration as the
proximal underlying neuropathological substrate of HAND.
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Introduction

Pharmaceutical advances stemming from immunologic and
genetic research have greatly improved and extended the lives
of people living with HIV-1 (PLWH). Despite this, the prev-
alence of neurocognitive deficits in PLWH, collectively
termed HIV-associated neurocognitive disorders (HAND), re-
mains high (Antinori et al., 2007; Heaton et al., 2011). Prior to
the widespread use of combination antiretroviral therapy
(cART), neurocognitive syndromes due to HIV-1 infection
were often severe and largely considered the manifestation
of HIV encephalitis (McArthur et al., 1993; Moore et al.,
2006; Glass et al., 1995; Bell et al., 1998; Persidsky &
Gendelman, 2003; Everall et al., 2005; Letendre et al., 2011;
Boven et al., 2000; Conant et al., 1998; Eugenin et al., 2006;
Kraft-Terry et al., 2009). However, HAND currently presents
with milder symptoms in the vast majority of cART-treated
cases (McArthur et al., 2005; Heaton et al., n.d.) and is not
typically associated with HIV encephalitis (Everall et al.,
2009). Instead, the neuropathogenesis of HAND is now be-
lieved to be largely the result of neurodegeneration driven by
chronic neuroinflammation (Glass et al., 1995; Persidsky &
Gendelman, 2003; Kraft-Terry et al., 2009; Everall et al.,
2009).

Candidate gene studies have identified functional variants,
largely within immune-related genes, that modify risk for
HAND (as reviewed in (Levine et al., 2014a; Kallianpur &
Levine, 2014)). Such findings make sense biologically,
supporting the role of inflammation in HAND pathogenesis.
For example, some chemokines affect neuronal signaling with
subsequent disturbance of glial and neuronal functions (Zheng
et al., 2001), while others serve to block the HIV-1 co-recep-
tor, thus mitigating HIV-1 replication (Lane et al., 2003) and
slowing disease progression (Gonzalez et al., 2001; Gonzalez
et al., 2005), as well as reducing macrophage activation and
chemotaxis of monocytes and other cells into the brain (Kaul
& Lipton, 2005; Weiss et al., 1999). In addition to immune-
related genes, candidate gene studies have implicated dopami-
nergic dysregulation (Levine et al., 2014a; Kumar et al., 2009;
Kumar et al., 2011; Levine et al., 2012; Levine et al., 2014b),
variation in mitochondrial function (Samuels et al., 2016;
Hulgan et al., 2015), and cellular lipid and cholesterol trans-
port in HAND pathogenesis, as recently reviewed in (Geffin
& McCarthy, 2018). However, very few candidate gene
markers have been replicated in subsequent studies by inde-
pendent groups. One likely reason for this is that the vast
majority of these studies utilized behavioral phenotypes
(e.g., HAND diagnosis or neurocognitive functioning), with
little consistency between studies. Due to the inherent limita-
tions of neurocognitive assessment (e.g., measurement error
due to tests’ psychometric properties and engagement by the
examinee), coupled with the poor inter-rater agreement of
what dis t inguishes HAND from other causes of

neurocognitive impairment (Woods et al., 2004), a more fruit-
ful strategy may be to focus on histopathological phenotypes.

Putative immunohistochemical markers of the neuropatho-
logical changes underlying HAND include synaptophysin
(SYP) and microtubule-associated protein-2 (MAP 2)
(Moore et al., 2006), abnormal protein aggregates such as β-
amyloid (Achim et al., 2009; Rempel & Pulliam, 2005; Green
et al., 2005; Esiri et al., 1998; Soontornniyomkij et al., 2012),
and markers of microglial/macrophage activation, astroglial
activation, and dysregulated cytokine expression (Glass
et al., 1995; Bell et al., 1998; Persidsky & Gendelman,
2003; Everall et al., 2005; Letendre et al., 2011; Boven
et al., 2000; Conant et al., 1998; Eugenin et al., 2006; Kraft-
Terry et al., 2009). If previously identified genetic variants
modify risk for HAND, it logically follows that those variants
also modify the cellular and pathophysiological pathways that
underlie HAND. Bridging the informational gap between ge-
notypes and behavioral phenotypes in the context of HAND
may provide important insights about pathogenesis. We re-
cently reported results of an ambitious study that bridged ge-
netic, histopathological, virologic, and neurocognitive data
within subjects in order to understand which histopathological
features and genetic variants were relevant to HAND patho-
genesis (Levine et al., 2015). That study identified several
genetic susceptibility loci that influenced histopathology and
other disease parameters. Most notably, neurocognitive func-
tioning was strongly correlated with levels ofMAP 2 and SYP
in the frontal cortex, both of which declined as plasma HIV-1
RNAviral load increased. This underscores the widely report-
ed process by which HIV-1 replication-related events lead to
synaptodendritic degeneration. Furthermore, an inverse rela-
tionship between SYP expression and β-amyloid plaque bur-
den in frontal cortex suggests that HIV-1 replication in the
brain may be a driver of the histopathological changes or,
alternatively, an initiator of a causal chain of events involving
neuroinflammation (reflected by ionized calcium-binding
adapter molecule-1 (Iba1)) and dysfunctional protein clear-
ance (reflected by β-amyloid plaque deposition).
Downstream to these changes is synaptodendritic degenera-
tion which is the immediate histopathological substrate of
HAND, although several factors likely modify this cascade
(Guha et al., 2018; Cantres-Rosario et al., 2019; Santerre
et al., 2019; Desplats et al., 2013) and the ultimate manifesta-
tion of HAND (Geffin & McCarthy, 2018; Saloner et al.,
2019; Yu et al., 2019; Tovar-y-Romo et al., 2012; Gannon
et al., 2017).

In the current study, we expanded upon the previous find-
ings (Levine et al., 2015). In the previous paper, we were
unable to examine how demographic factors, HIV-1 disease
variables, and host genotypes predicted MAP 2 and SYP
levels due to the low number of cases. In the current study,
we first revisited this relationship by examining data from a
larger sample of PLWH. Second, we assessed whether a
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variety of histopathological markers were associated with
neurocognitive functioning among the larger sample. Third,
we genotyped several additional genetic susceptibility loci
and tested for association with the histopathological markers
within the frontal cortex. Finally, we examined the causal
pathway between these histopathological markers and global
neuropsychological functioning. Our goal was to exploit
knowledge of functional polymorphisms to identify the rele-
vant genes and histopathological markers involved in HAND
pathogenesis.

Methods

Biological specimens were obtained from the National
NeuroAIDS Tissue Consortium (NNTC) (Morgello et al.,
2001). The NNTC is a longitudinal study of neuroAIDS in
existence since 1998. Specimens and data used in the current
study generally came from participants recruited because they
had one or more diagnoses indicative of advanced HIV-1 dis-
ease, were at high risk of death, and agreed to participate in the
study evaluations and to donate their organs for research pur-
poses. Participants were typically evaluated every 6–
12 months, undergoing comprehensive neurocognitive test-
ing, psychiatric/substance use interview, and neuromedical
evaluation. Upon death, brains were harvested for research
purposes. Demographic and HIV-1 disease characteristics of
individuals included in the current study are shown in Table 1.

For inclusion, all cases were required to be HIV-seroposi-
t ive, 18 years or older, and diagnosed as ei ther
neurocognitively normal or with HAND within 1 year prior
to death, per established research criteria (Antinori et al.,
2007; No authors, 1996). Those determined to be
neurocognitively impaired due to other causes were not in-
cluded. All cases died well into the cART era (post-
1996). Exclusion criteria were (1) pre- or postmortem ev-
idence of non-HIV-related neurological diseases (e.g.,
stroke, neoplasm, multiple sclerosis, traumatic brain inju-
ry, and neurodegenerative illness) and (2) history or evi-
dence of central nervous system (CNS) toxoplasmosis or
progressive multifocal leukoencephalopathy. Comorbid
medical conditions were in most cases self-reported by
participants during the visits just prior to death, and were
confirmed via chart review whenever possible. Sample
characteristics are displayed in Table 1.

DNA extraction and genotyping

DNA extraction and genotyping methods are provided in the
Supplemental Material. Table 2 displays the genes, specific
reference SNP cluster ID numbers, and gene function.

Clinical variables

Neurocognitive functioning

Neuropsychological clinical ratings were determined for each
case based on neurocognitive test scores obtained within
1 year of death. A global ability rating was derived from
demographically corrected T-scores from a comprehensive
neuropsychological battery, as previously described (Woods
et al., 2004). Clinical ratings were assigned on a scale that
ranged from 1 (above average) to 9 (severely impaired), with
scores greater than or equal to 5 indicative of at least mild
impairment. These were summarized as a global clinical rating
(GCR). Among PLWH, the GCR was associated with activi-
ties of daily living (Heaton et al., 2004), HIV-1 disease vari-
ables (Heaton et al., 2011), and synaptodendritic changes on
brain histopathology (Moore et al., 2006).

HIV-1 disease measures

Peripheral blood was collected from living participants by
venipuncture into EDTA and heparinized tubes prior to death
and was assayed using the Roche Amplicor Assay for HIV-1
RNA viral load and by flow cytometry for CD4+ T lympho-
cyte subsets. Plasma HIV-1 RNA viral load was measured at
the last premortem visit within 1 year of death. Plasma mea-
sures of viral load and CD4+ Tcell count were not available at
the time of death because venipuncture cannot be performed
after the heart has ceased beating due to intravascular blood
coagulation. Duration of HIV-1 infection was based on self-
reported date of infection and confirmed by chart reviewwhen
possible.

Antiretroviral CNS penetration or effectiveness

We employed the antiretroviral CNS penetration or effective-
ness (CPE), a score that is based on the pharmacologic char-
acteristics of antiretroviral medications (Letendre, 2011). The
CPE of individual antiretroviral drugs is ranked from 1
(poorest) to 4 (best) based on the 2010 ranking system
(Letendre et al., 2010). The CPE score for each case was
derived by adding ranks of all antiretroviral drugs within the
regimen, which was reported at the time of neurocognitive
testing. Higher scores indicated a regimen with increased pen-
etration of the blood-brain barrier.

Alcohol and substance use

The Psychiatric Research Interview for Substance and Mental
Disorders (PRISM) (Hasin et al., 1996) or Composite
International Diagnostic Interview (CIDI) (Robins et al.,
1988) was used to ascertain lifetime substance use disorders.
Both are structured diagnostic interviews that yield DSM-IV
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diagnoses. For the purposes of the current study, NNTC par-
ticipants were classified with none, current, or past substance
use disorder for the following drugs: cocaine, opioids, and
methamphetamine. Alcohol use was similarly classified.

Immunohistochemistry and histopathological
characterization

As described in (Moore et al., 2006; Masliah et al., 1997),
brain tissue was harvested from deceased HIV-seropositive
NNTC participants as soon as possible after death. Tissue
blocks measuring 4 cm3 were taken from the right dorsolateral
midfrontal cortex. The blocks were fixed overnight in 4%
paraformaldehyde and cut at 40 μm thick with a Leica
Vibratome (Vienna, Austria). Histopathological character-
ization was accomplished using previously described

methods (Moore et al., 2006; Masliah et al., 1997) based
on immunohistochemistry conducted on formalin-fixed
paraffin-embedded sections. The midfrontal gyrus was
processed for the following markers: SYP (gray matter),
MAP 2 (gray matter), human leukocyte antigen-DR
(HLA-DR, gray and white matter separately), Iba1 (gray
and white matter separately), glial fibrillary acidic protein
(GFAP, gray and white matter separately), and β-amyloid
(gray matter). Additional details of immunohistochemistry
analysis and quantitative image analysis are in the
Supplemental Material.

Statistical analysis

Significance was assessed at a false discovery rate (FDR) of
0.05 (Benjamini & Hochberg, 1995).

Table 1 Sample characteristics
Age at death 47.4 yearsa (SD = 9.2)

Length of HIV infection 12 years (SD = 6.4)

CD4+ T cell count 122 (SD = 168)

Median plasma HIV-1 RNA viral load 15,406 copies/mL

CPE 8.96 (SD = 4.08)

Global clinical rating 5.31 (SD = 1.87)

Percentb of sample (n)

Detectable (> 50 copies/mL) plasma HIV-1 RNA viral load 84% (Hulgan et al., 2015)

Male 81.4% (162)

Race/ethnicity

Caucasian 50.8% (100)

African American 24.9% (No authors, 1996)

Hispanic 22.3% (Saloner et al., 2019)

Asian/Native Alaskan 2% (Moore et al., 2006)

Major depression

Current 23.4% (Woods et al., 2004)

Past 16.8% (Kaul & Lipton, 2005)

Substance use disorder

Current 20.3% (Geffin & McCarthy, 2018)

Past 29.4% (Yu et al., 2019)

Alcohol use disorder

Current 9% (McArthur et al., 2005)

Past 26% (Guha et al., 2018)

HIVencephalitis 9.2% (Everall et al., 2009)

HAND 74.2% (135)

ANI 14.2% (Kumar et al., 2011)

MND 31% (Benjamini & Hochberg, 1995)

HAD 29% (Hasin et al., 1996)

SD standard deviation, CPE central nervous system penetration or effectiveness, ANI asymptomatic
neurocognitive impairment, MND mild neurocognitive disorder, HAD HIV-associated dementia
a Values presented as means unless otherwise indicated
b Percentages are the proportion of those with available data
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All genetic loci except MBL2 and APOE were treated as
having a dominant acting risk allele. MBL2 genotypes were
treated as three categories (A/A, A/O, and O/O). To test the
association of APOE ε4 and ε2 alleles with GCR, wemodeled
dominant main effects and an interaction between ε4 and ε2 in
order to allow the inclusion of participants carrying the APOE
ε2/ε4 genotype. Symbolically, this model was:

GCRi ¼ α

þ βε4 i;ε4=ε4;ε4=ε3;ε4=ε2f g þ βε2

�
�

�
�
i;ε2=ε2;ε2=ε3;ε4=ε2f g

þ γε4ε2 i;ε4=ε4;ε4=ε3;ε4=ε2f g
�
�

�
�
i;ε2=ε2;ε2=ε3;ε4=ε2f g þ ei

where I{ε4/ε4, ε4/ε3, ε4/ε2} = 1 if individual i’s genotype was
ε4/ε4, ε4/ε3, or ε4/ε2 and = 0 otherwise, I{ε2/ε2, ε2/ε3, ε4/ε2} = 1
if individual i’s genotype was ε2/ε2, ε2/ε3, or ε4/ε2 and = 0
otherwise, and ei was the residual error. If the evidence for
interaction was not significant, we reduced the model to:
GCRi = α + βε4 I{i, ε4/ε4, ε4/ε3, ε4/ε2} + βε2 I{i, ε2/ε2, ε2/ε3, ε4/
ε2} + ei

To test potential causal pathways involving histopatholog-
ical markers, we used a multi-stage linear regression-based
mediation analysis approach (MacKinnon, 2008; Tingley
et al., 2014). The evidence for a particular pathway was pro-
vided by the proportion of the effect of a predictor that could
be explained by the effect of a mediator (the proportion me-
diated). The proportion mediated was determined by
conducting two linear regressions: (1) regressing the mediator

Table 2 Candidate genes and
their protein’s primary function Gene Full name Reference

SNP cluster
ID

Protein function

IL6 Interleukin 6 rs1800796 Pro-inflammatory cytokine

CCL3 C-C motif
chemokine
ligand 3

rs1719134 Chemokine involved in recruitment and activation of
granulocytes

HCP5 HLA complex P5 rs2395029 A human endogenous retrovirus. Variants confer
protection against AIDS

CX3CR1 C-X3-C motif
chemokine
receptor 1

rs3732379 Chemokine involved in adhesion and migration of
leukocytes

HFE Homeostatic iron
regulator

rs1799945 Regulates circulating iron uptake via regulating interaction
between transferrin receptor and transferrin

NFE2L2 Nuclear factor,
erythroid 2 like 2

rs6706649 Transcription factor that regulates expression of
antioxidant proteins in response to injury and
inflammation

CXCL12 C-X-C motif
chemokine
ligand 12

rs1801157 Chemokine that activates leukocyte migration in CNS as
part of inflammatory activation

CCR2 C-C motif
chemokine
receptor 2

rs1799864 Chemokine that mediates monocyte chemotaxis

BDNF Brain-derived
neurotrophic
factor

rs6265 Supports cell survival in CNS

HEPH Hephaestin rs1264212 Involved in metabolism and homeostasis of iron

TNF Tumor necrosis
factor

rs1800629 Pro-inflammatory cytokine

CD33 CD33 molecule
(SIGLEC3)

rs3865444 Involved in inhibition of phagocytosis within cells

CCL2 C-C motif
chemokine
ligand 2

rs1024611 Pro-inflammatory cytokine

MBL2 Mannose-binding
lectin 2

rs1800450 Involved in innate immune response
rs1800451

rs5030737

APOE Apolipoprotein E rs429358 Involved in lipid transport and metabolism
rs7412

SNP single nucleotide polymorphism, CNS central nervous system
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on the predictor and (2) regressing the outcome on the medi-
ator and the predictor. Additional covariates could be included
in both regressions if desired.

Results

We first determined if potential confounders were associated
with GCR (Table 3), including age at death, sex (female or
reference group male), duration of HIV-1 infection, log10
plasmaHIV-1 RNAviral load (herein referred to as viral load),
NNTC site (reference group site 1), CD4+ T cell count, CPE
score, self-reported race/ethnicity (African American,
Hispanic, Asian/Native Alaskan, or reference group
Caucasian), alcohol use (current, past, or reference group
none), or drug use (current, past, or reference group none).
Only viral load was associated with GCR using a significance
threshold of 0.05. Because the inclusion of race/ethnicity
could reduce the effects of population stratification that

confounded genetic association analyses, we included race/
ethnicity in our subsequent analyses despite lack of statistical
significance.

We next tested each of the histopathological markers’ as-
sociation with GCR, controlling for the effects of race/
ethnicity and viral load (Table 4). Only MAP 2 and SYP were
associated with GCR at an FDR of 0.05. We then determined
whether the potential confounders were associated with MAP
2 or SYP. The viral load was significantly associated with
SYP. None of the potential confounder variables were associ-
ated with MAP 2 (Table 3).

Association of Genotype with GCR, SYP, and MAP 2

We next determined candidate genetic markers’ associations
with GCR, SYP, or MAP 2. Because genetic associations
could be confounded by population stratification, we included
race/ethnicity as a covariate in all subsequent analyses despite
its lack of statistical significance. When using a nominal per

Table 3 Potential confounding covariates of GCR, SYP, and MAP 2

GCR SYP MAP 2

Covariate Estimate p value n Estimate p value n Estimate p value n

Age at death − 0.022 0.156 175 0.005 0.915 102 0.007 0.875 102

Sex: Female − 0.429 0.227 175 − 0.905 0.404 102 − 0.316 0.763 102

NNTC siteb

Site 2 0.596 0.148a 175 NA NA NA NA NA NA

Site 3 0.890 − 0.123 0.880 102 − 0.244 0.757 102

Site 4 0.427 NA NA NA NA NA NA

Duration of HIV infection − 0.043 0.051 170 − 0.006 0.919 98 − 0.017 0.775 98

Log10 plasma HIV-1 RNA viral load 0.272 0.004 169 − 0.600 0.040 95 − 0.442 0.119 95

CD4+ T cell count − 0.002 0.069 169 0.004 0.104 97 0.003 0.240 97

CPE 0.061 0.131 145 0.011 0.906 83 0.118 0.194 83

Race/ethnicityc

African American −0.498 0.148a 173 1.331 0.201 100 0.607 0.543 100

Hispanic 0.235 – – 0.101 – – 0.296 – –

Asian/Native Alaskan 0.969 – 173 − 1.074 – – 0.957 – –

Alcohol use

Current 0.58 0.271a 151 2.71 0.133a 71 0.155 0.930a 71

Past 0.416 – – −1.376 – – −1.023 – –

Drug use

Current 0.273 0.493a 150 0.239 0.870a 70 − 0.528 0.704a 70

Past 0.462 – – −0.507 – – −0.574 – –

Statistically significant values are shown in italic

GCR global clinical rating, SYP synaptophysin,MAP 2microtubule-associated protein-2, NNTCNational NeuroAIDS Tissue Consortium, CPE central
nervous system penetration or effectiveness, NA not applicable
a Omnibus p value
b Site 1 as the reference site
c Caucasian as the reference group

501J. Neurovirol.  (2020) 26:496–508



test p value cutoff of 0.05, HFE, HEPH, and MBL2 were
associated with GCR, NFE2L2, and CCR2 were associated
with SYP, and NFE2L2, and HCP5 were associated with
MAP 2. However, none of the genetic markers were signifi-
cantly associated with GCR, SYP, or MAP 2 at an FDR of
0.05 (Table 5). Thus, when further testing for the association
of MAP 2 and SYP with GCR, we did not include genetic
markers.

Mediation analysis

When both MAP 2 and SYP were simultaneously included as
predictors, MAP 2, but not SYP, was associated with GCR
(Table 6). This suggests the relationship of SYP and GCR is
mediated by MAP 2; however, there was strong collinearity
between MAP 2 and SYP. To test this potential pathway, we
used mediation analyses to determine the most plausible path-
way that could explain the observed association of SYP, MAP
2, and GCR. We assumed that GCR would not influence SYP
or MAP 2; therefore, we limited our analyses to four possible
pathways: (1) the effect of SYP on GCR was mediated
through MAP 2 (SYP ➔ MAP 2 ➔ GCR); (2) the effect of
MAP 2 on GCR was mediated through SYP (MAP
2 ➔ SYP ➔ GCR); (3) neither SYP nor MAP 2 was a medi-
ator of the other; and 4) a more complex pathway in which
both MAP 2 and SYP mediated the effects of each other,
possibly due to unmeasured variables. If pathway 1
(SYP ➔ MAP 2 ➔ GCR) was the predominant pathway, we
would expect the mediation effects to be significant for this
pathway and not for pathway 2 (MAP 2 ➔ SYP ➔ GCR). If
pathway 2 was the predominant pathway, the mediation ef-
fects would be significant for this pathway and not for path-
way 1. If neither SYP nor MAP 2 mediated, neither analysis

would be statistically significant. If both SYP and MAP 2 had
direct and mediated effects, both analyses would be expected
to be statistically significant. Based on the mediation analyses,
the statistical support for pathway 1 (Fig.1) was much stronger
than that for pathway 2 (Fig. 2). Therefore, these results were
most consistent with the SYP ➔ MAP 2 ➔ GCR causal
pathway.

Discussion

In the current study, we took several steps to address the ques-
tion of whether or not host genotype affected the histopatho-
logical factors that underlay the neurocognitive dysfunction
common to PLWH. The first step involved determining if
the quantitative measure of neurocognitive functioning (i.e.,
GCR) was associated with virologic, demographic, mood,
CNS penetration of antiretroviral medication, and/or sub-
stance use factors. In this sample, only plasma HIV-1 RNA
viral load was significantly associated with GCR. This finding
might be somewhat unexpected considering that recent studies
did not find viral load to be associated with cognitive func-
tioning, at least in the current era of widespread cART use
(Clifford&Ances, 2013). However, the NNTC cohort is com-
posed of individuals with more advanced illness, in which
viral load was likely higher and cognitive functioning poorer
than in clinical cohorts of living PLWH in general.
Furthermore, the higher viral load might reflect poor medica-
tion adherence and health in general, which suggests that other
medical factors not captured in the current analysis (e.g., met-
abolic syndrome and comorbidmedical illnesses) may be con-
tributing. The lack of association between demographics and
GCR may be due to the use of normative data when
interpreting neurocognitive test scores. That is, standardized
scores were derived using age, education, gender, and/or eth-
nicity stratified normative data. Neither current nor past sub-
stance or alcohol use disorder was associated with GCR, de-
spite our focus on the most neurotoxic drugs (cocaine, meth-
amphetamine, and opioids). This is somewhat surprising con-
sidering that the majority of past studies have reported an
increased risk of neurocognitive impairment associated with
substance use (Martin et al., 2018; Thaler et al., 2015;
Persidsky et al., 2011; Meyer et al., 2013). One possible ex-
planation is that the relatively advanced disease stage of our
sample, with concomitant higher rates of severe cognitive im-
pairment (i.e., HIV-associated dementia), might simply over-
shadow the damaging effects of alcohol or substance use.
Finally, as a group, our sample was neurocognitively impaired
based on the average GCR. The reason for this impairment
may not have been captured by our study due to incomplete
data collection, as mentioned above. Among those important
variables not captured were comorbid medical conditions,
which in more recent studies appeared to be among the

Table 4 Histopathological marker associations with GCR controlling
for race/ethnicity and plasma HIV-1 RNA viral load

Effect size p valuea n

Iba1 gray matter − 0.0176 0.2259 161

Iba1 white matter − 0.0234 0.0499 161

HLA-DR gray matter 0.0227 0.7310 160

HLA-DR white matter 0.0224 0.4039 160

GFAP gray matter 0.3357 0.1133 161

GFAP white matter − 0.1112 0.5873 161

β-amyloid gray matter 0.3496 0.1299 161

MAP 2 gray matter − 0.1889 0.0003 82

SYP gray matter − 0.1518 0.0031 82

Iba1 ionized calcium-binding adapter molecule-1, HLA-DR human leu-
kocyte antigen-DR, GFAP glial fibrillary acidic protein, MAP 2
microtubule-associated protein-2, SYP synaptophysin
a p values shown are not corrected for false discovery rate (FDR)
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Table 5 Association of genetic loci with GCR, SYP, and MAP 2

GCR SYP MAP 2

Genotypea Effect size p valueb n Effect size p valueb n Effect size p valueb n

IL6 − 0.43 0.303 148 1.122 0.346 88 − 0.075 0.947 88

CCL3 − 0.250 0.454 145 0.568 0.561 86 − 0.116 0.901 86

HCP5 − 0.214 0.800 148 − 1.621 0.517 88 − 5.451 0.018 88

CX3CR1 − 0.357 0.275 148 0.562 0.571 88 0.873 0.354 88

HFE − 1.019 0.004 148 0.766 0.517 88 0.273 0.809 88

NFE2L2 0.091 0.858 148 3.402 0.017 88 2.914 0.032 88

CXCL12 0.129 0.721 148 − 1.148 0.253 88 − 0.721 0.453 88

CCR2 0.161 0.652 148 2.678 0.007 88 1.749 0.070 88

BDNF − 0.319 0.365 148 1.023 0.306 88 − 0.442 0.644 88

HEPH 0.670 0.037 148 − 1.601 0.084 88 − 0.754 0.399 88

TNF 0.483 0.198 146 0.895 0.428 88 1.289 0.228 88

CD33 − 0.617 0.056 147 1.163 0.263 87 1.255 0.215 87

CCL2 − 0.508 0.102 148 0.600 0.516 88 0.356 0.686 88

MBL2 148 88 88

A/O 0.422 0.027c 1.025 0.118c − 0.239 0.310c

O/O 2.272 − 6.423 − 6.009
APOE 164 88 88

ɛ2 − 0.451 0.151c,d 1.096 0.567c,d 1.948 0.263c,d

ɛ4 0.515 − 0.571 0.494

GCR global clinical rating, SYP synaptophysin, MAP 2 microtubule-associated protein-2
a All loci except MBL and APOE were run under a dominant acting genetic model
b Log10 plasma HIV-1 RNA viral load and race/ethnicity included as covariates
c Omnibus p value
d ɛ2 by ɛ4 interaction not significant, so omitted from the model

Table 6 Effect sizes and p values of GCR, MAP 2, and SYP as outcomes

Outcome Log10 plasma HIV-1 RNA viral load p value Race/
ethnicitya

p value SYP p value MAP 2 p value

GCR 0.171 0.235 − 0.862 0.314b − 0.068 0.280 − 0.146 0.028

− 0.491
0.379

MAP 2 − 0.056 0.812 − 0.258 0.886b 0.618 3.37 × 10−11 – –

0.183

1.725

SYP − 0.350 0.149 0.991 0.363b – – 0.645 3.37 × 10−11

− 0.362
− 1.532

GCR global clinical rating, MAP 2 microtubule-associated protein-2, SYP synaptophysin
a Categorized as African American, Hispanic, Asian/Native Alaskan with Caucasian as the reference group
bOmnibus p value
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greatest predictors of neurocognitive impairment (Saloner
et al., 2019; Sacktor et al., 2016; Lake et al., 2017; Wu
et al., 2018; Vance et al., 2016). As such, the documented
adverse effects of the recreational drugs included in our anal-
yses, as well perhaps of depression, may have been
overshadowed by factors that were not measured.

The second step involved determining which histopatho-
logical markers were associated with GCR. Only MAP 2 and

SYP were found to be significant predictors of global cogni-
tive functioning. This finding is consistent with our earlier
study (Levine et al., 2015), as well as other studies, many of
which included samples from the NNTC (Moore et al., 2006;
Bryant et al., 2017; Masliah et al., 1992). There are several
mechan i sms t h rough wh i ch HIV-1 may a f f e c t
synaptodendritic functioning, including direct actions via en-
velope protein gp120 and transactivator of transcription (tat)
protein, as reviewed in (Wenzel et al., 2019). Furthermore, our
inclusion of potential confounding variables found to be sig-
nificant in the initial step of our analyses revealed that plasma
HIV-1 RNAviral load was significantly associated with SYP,
but not with MAP 2.

In the third step, we tested for associations of each candi-
date genetic marker with GCR, SYP, and MAP 2, controlling
for plasma HIV-1 RNA viral load and race/ethnicity. We ex-
pected to discover some associations, based on our previous
finding (Levine et al., 2015). However, there were no signif-
icantly associated genetic markers with any of the outcomes
after correcting for multiple comparisons using an FDR of
0.05. Therefore, despite the increase in sample size from the
previous study, we found no statistically significant associa-
tion of these outcomes with the genetic markers, suggesting
that these genetic pathways are not major determinants of
neurocognitive dysfunction or neurodegeneration among
PLWH with advanced disease. Such findings further under-
score the likely lack of consistently significant genetic influ-
ence on neurobehavioral outcomes in PLWH, as reviewed in
(Levine et al., 2014a; Kallianpur & Levine, 2014).

The final step of our study was to apply mediation analysis
to examine potential causal pathways relating SYP, MAP 2,
and GCR. This step was taken to determine if the effect of
MAP 2 on GCR was mediated through SYP, or if the effect of
SYP on GCR was mediated through MAP 2. As the directed
pathway of MAP 2 to SYP to GCR did not show any signif-
icant evidence and the directed pathway of SYP to MAP 2 to
GCR was significant, the most plausible causal pathway is
that MAP 2 mediates the effect of SYP on GCR. Coupled
with the findings from earlier steps, an overall model emerges
in which elevated plasma HIV-1 RNA viral load results in
presynaptic degeneration (as indicated by SYP levels), which
in turn leads to somatodendritic degeneration (as indicated by
MAP 2 levels) and ultimately neurocognitive dysfunction.
However, even if presynaptic degeneration is a downstream
effect of more active systemic viral replication, it is almost
certain that additional intermediary factors are involved, such
as changes in neurogranin and calmodulin (Guha et al., 2018),
cathepsin B and serum amyloid p component (Cantres-
Rosario et al., 2019), E2F transcription factor-3 (Santerre
et al., 2019), and BCL11B-encoded protein (Desplats et al.,
2013), to name just a few. Importantly, this putative multicom-
ponent sequence of events leading to neurocognitive dysfunc-
tion in PLWH is just one of a list of several other causes, a list

Fig. 1 Mediation analysis results for the model MAP 2 mediating the
effect of SYP on GCR. The model includes log10 plasma HIV-1 RNA
viral load and race/ethnicity as covariates. Estimates for the average caus-
al mediation effect (ACME), the average direct effect (ADE), and the total
effect are denoted as closed circles, and the 95% confidence intervals (CI)
are denoted as horizontal lines. Effects significant at a p value less than
0.05 do not cross the hatched vertical line at zero. The ACME p value =
0.032, the ADE p value = 0.282, and the total effect p value = 0.004. The
proportion mediated = 0.547 (95% CI = 0.045, 1.832; p value = 0.036),
supporting the hypothesis that MAP 2 mediates the effect of SYP on
GCR, SYP ➔ MAP 2 ➔ GCR (MAP 2 mediating SYP effect on
GCR), a Controlling for log10 plasma HIV-1 RNA viral load and
race/ethnicity

Fig. 2 Mediation analysis results for the model SYP mediating the effect
of MAP 2 on GCR. The model includes log10 plasma HIV-1 RNA viral
load and race/ethnicity as covariates. Estimates for the average causal
mediation effect (ACME), the average direct effect (ADE), and the total
effect are denoted as closed circles, and the 95% confidence intervals (CI)
are denoted as horizontal lines. Effects significant at a p value less than
0.05 do not cross the hatched vertical line at zero. The ACME p value =
0.296, the ADE p value = 0.030, and the total effect p value = 0.002. The
proportion mediated = 0.212 (95% CI = − 0.196, 0.871; p value = 0.294),
indicating a lack of support for the hypothesis that SYP mediates the
effect of MAP 2 on GCR, MAP 2 ➔ SYP ➔ GCR (SYP mediating
MAP 2 effect on GCR), a Controlling for log10 plasma HIV-1 RNAviral
load and race/ethnicity
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that includes medical comorbidities (Saloner et al., 2019; Yu
et al., 2019), low-grade systemic chronic inflammation
(Geffin &McCarthy, 2018), and antiretroviral medication tox-
icity (Tovar-y-Romo et al., 2012; Gannon et al., 2017).

The current study had several limitations. Perhaps most
important was the absence of key variables in our analysis,
including those mentioned in the immediately preceding par-
agraph (e.g., medical comorbidities), as well as brain HIV-1
viral load, CD163, and germane medical comorbidities.
Additionally, the generalizability of the findings to the current
cART era is limited, as the NNTC cases typically have more
advanced illness and comorbidities than the vast majority of
PLWH, at least within the USA (Morgello et al., 2001). This is
best demonstrated by the relatively high rate of HIV-
associated dementia (29%) and HIV encephalitis (9%) in our
sample. Our use of plasma HIV-1 RNA viral load rather than
the brain- or CSF-derived viral load also limits the interpret-
ability, as these two measures are not strongly correlated
(Gelman et al., 2013; Bavaro et al., 2019). Finally, while our
study may be among the largest genetic-histopathological
studies of HIV-related neurocognitive impairment, the statis-
tical power was nevertheless limited by the sample size.

In conclusion, while our results affirmed the role of
synap todend r i t i c degene r a t i on in HIV- r e l a t ed
neurocognitive impairment, we did not find definitive ev-
idence of a host genetic influence on these histopatholog-
ical markers among individuals with advanced HIV-1 dis-
ease. Our study adds to the existing literature of genetic
association studies of HAND, which have focused on be-
havioral rather than histopathological phenotypes. Our
findings do suggest that presynaptic degeneration pre-
cedes somatodendritic degeneration in the lead up to
neurocognitive impairment.
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