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Abstract Despite the availability of effective antiretroviral
therapies, cognitive impairment (CI) remains prevalent in
HIV-infected (HIV+) individuals. Evidence from primarily
cross-sectional studies, in predominantly male samples, impli-
cates monocyte- and macrophage-driven inflammatory pro-
cesses linked to HIV-associated CI. Thus, peripheral systemic
inflammatory markers may be clinically useful biomarkers in
tracking HIV-associated CI. Given sex differences in immune
function, we focused here on whether mean and intra-
individual variability in inflammatory marker-predicted CI in
HIV+ and HIV−women. Seventy-two HIV+ (36 with CI) and
58 HIV− (29 with CI) propensity-matched women participat-
ing in the Women’s Interagency HIV Study completed a neu-
ropsychological battery once between 2009 and 2011, and
performance was used to determine CI status. Analysis of 13
peripheral immune markers was conducted on stored

biospecimens at three time points (7 and 3.5 years before
neuropsychological data collection and concurrent with data
collection). HIV+ women showed alterations in 8 immune
markers compared to HIV− women. The strongest predictors
of CI across HIV+ and HIV− women were lower mean solu-
ble tumor necrosis factor receptor I (sTNFRI) levels, higher
mean interleukin (IL)-6 levels, and greater variability in C-
reactive protein (CRP) and matrix metalloproteinase
(MMP)-9 (p values < 0.05). Stratified by HIV, the only signif-
icant predictor of CI was greater variability in CRP for both
HIV+ and HIV− women (p values < 0.05). This variability
predicted lower executive function, attention/working memo-
ry, and psychomotor speed in HIV+ but only learning in HIV−
women (p values < 0.05). Intra-individual variability in CRP
levels over time may be a good predictor of CI in predomi-
nately minority low-socioeconomic status midlife women.
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Introduction

HIV-associated cognitive impairment (CI) remains a major
clinical issue in HIV care despite combination antiretroviral
therapy (cART). Although the incidence of dementia has
markedly decreased in the cART era, 30–60% of individuals
living with HIV will exhibit CI during their lifetime (Grant
2008). The pathophysiology of HIV-associated CI in the
cART era remains incompletely understood and is a high-
priority issue in HIV research.

HIV-associated CI may result from direct neurotoxic effect
of the virus itself or via the shedding of viral proteins such as
Tat and gp120 (D’Aversa et al. 2005; Haughey and Mattson
2002; Li et al. 2005). There is also compelling evidence that
HIV-associated CI may result from indirect neurotoxic immu-
nological processes mediated by cells of the monocyte/
macrophage lineage (Burdo et al. 2013a; Hong and Banks
2015; Kaul et al. 2001; Langford and Masliah 2001; Valcour
et al. 2010). Activated HIV-infected monocytes traffic across
the blood–brain barrier, infecting microglia and macrophages
which in turn lead to an overexpression of cytokines and
chemokines and initiation of an astrocyte-induced inflamma-
tory cascade (Eugenin et al. 2011; Kou et al. 2009; Vartak-
Sharma et al. 2014; Wang et al. 2008). Even with suppressive
cART, HIV-induced inflammation can result in brain injury
(Vera et al. 2016).

The role of neuroinflammation as a major contributor of
brain injury has been examined in studies where peripheral
systemic inflammatory markers are used as indicators of neu-
roinflammation. In neuroimaging studies for example, plasma
and CSF inflammatory biomarkers are strongly associated
with adverse alterations in brain structure and function
(Ances and Hammoud 2014; Anderson et al. 2015a, b; Bora
et al. 2014). The state of the science is primarily based on
largely male-dominant samples and cross-sectional studies.
Given substantial evidence of sex differences in neuroimmune
activation (Martin et al. 2013; Mathad et al. 2016; Ticona et al.
2015) and cognition (Failde-Garrido et al. 2008; Heaton et al.
2015; Robertson et al. 1996; Royal et al. 2016), previous
findings might not be generalizable to HIV-infected women.
Moreover, longitudinal studies are needed to enhance our un-
derstanding of the time course of CI in relation to altered
immune function, including whether absolute levels and/or
variability in these biomarkers over time relate to HIV-
associated CI.

In a prospective, nested, case–control study, we examine
the time course of inflammatory and immune biomarkers over
a 6-year time period and the extent to which those biomarkers
predict CI at the 6-year mark. We include four groups of
women that differ in HIV serostatus (HIV+ versus HIV−)

and CI (present or absent at 6 years). The selected biomarkers
have shown differences by HIV serostatus, associations with
cognitive performance in HIV+ individuals, and/or associa-
tions with cognitive performance in other individuals
(Cohen et al. 2011; Correia et al. 2013; Koyama et al. 2013;
Singh and Newman 2011).We hypothesized that regardless of
HIV status, mean levels and variability in interleukin (IL)-6,
IL-10, IL-16, IL-18, tumor necrosis factor (TNF)-α, C-
reactive protein (CRP), interferon-gamma inducible protein
(IP)-10, monocyte chemoattractant protein (MCP)-1, MCP-
9, soluble TNFR(receptor) I and II, and macrophage inflam-
matory protein (MIP)-1βwould be predictors of prevalent CI.
However, we expected that mean levels and variability in IL-
6, IL-10, TNF-α, and CRP would be stronger predictors of
prevalent CI among HIV+ women than among HIV− women
and that IL-1β and TNF-related apoptosis-inducing ligand
(TRAIL) would be specific predictors of prevalent CI among
HIV+ women.

Methods

Study sample

Participants were enrolled in the Women’s Interagency HIV
Study (WIHS), an ongoing longitudinal, multi-site cohort
study of HIV+ and sociodemographically similar HIV−wom-
en (http://wihshealth.org). For this prospective, nested case/
control study, we used participants enrolled in the first two
waves who also subsequently completed baseline neuropsy-
chological (NP) testing between 2009 and 2011 (for complete
information regarding demographics, behavioral, and clinical
characteristics, see Maki et al. 2015). The first wave of data
collection occurred between October 1994 and November
1995 and the second between October 2001 and September
2002 at six sites (Brooklyn, Bronx, Chicago, DC, Los
Angeles, and San Francisco). Detailed information regarding
recruitment procedures, eligibility criteria, and study methods
has been previously published (Bacon et al. 2005; Barkan
et al. 1998).

To determine which cases were selected for analyses (see
Supplemental Table 1 for the distribution of CI for HIV+ and
HIV− women), we used propensity matching which reduces
case–control selection bias (Walsh et al. 2012). A single logis-
tic regression model was used to obtain propensity scores
where the outcome was case status and predictors were HIV
status; age; years of education;Wide Range Achievement Test
(WRAT-R) reading subset score; race/ethnicity (African–
American, Latina, White, Other), HCV status at baseline
(HCVAb[antibody]−, HCVAb+ RNA−, HCVAb+ RNA un-
known, HCVAb+ RNA+); body mass index; current smoker;
recent marijuana use; recent crack, cocaine, and/or heroin use;
alcohol use (none, light (0–7 drinks/week), moderate (7–12
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drinks/week), heavy (> 12 drinks/week)); depressive symp-
toms (Center for Epidemiologic Studies Depression Scale
(CES-D) 16 cutoff); self-reported antidepressant use; liver fi-
brosis (aspartate aminotransferase to platelet ratio index—
APRI); and hepatic fibrosis (FIB-4). The matching was imple-
mented separately by HIV status. Using a tolerance of 0.04,
HIV+ cases (CI) were matched to HIV+ controls (no CI) and
HIV− cases (CI) were matched to HIV− controls (no CI). The
goal of propensity matching was to create four groups (HIV+
CI, HIV+ no CI, HIV− CI, HIV− no CI) balanced on all
covariates included in the matching model which were factors
known to be or potentially associated with CI.

Prior to propensity matching, cases were included/excluded
from possible selection based on the following factors. Cases
available for study inclusion were the following: (1) availabil-
ity of specimens at the visit when NP testing occurred (2009–
2011) and at one or two earlier visits (2003–2004 and/or
2006–2007), (2) valid completion of all neuropsychological
tests in each of the seven domains, and (3) English speaking.
A total of 341 HIV+ no CI, 104 HIV+ CI, 202 HIV− no CI,
and 45 HIV− CI met these criteria. Cases excluded from study
inclusion were the following: (1) seroconverters and other rare
phenotypes (ART-naïve HAART initiator, long-term non-
progressor (CD4 > 500 cells/mm3 for ≥ 5 years, no ART), elite
controller (viral load < 80 cp/ml for ≥ 1.5 years, no ART),
registry-confirmed incident cancer), (2) CD4 < 200 cells/
mm3, (3) self-report of a physician diagnosis of dementia,
(4) self-reported CVA/stroke, (5) self-reported use of antipsy-
chotic or Alzheimer’s medications, (6) visual or health-related
issues that could impact performance on the cognitive test
battery, (7) staff note indicating that the participant was under
the influence of drugs during testing, and (8) women self-
reporting neuropathy or complaints of arthritis or damaged
fingers which would invalidate performance on grooved
pegboard. After exclusion criteria were applied, we were able
to select from 167 HIV+ no CI, 36 HIV+ CI, 149 HIV− no CI,
and 30 HIV− CI for propensity matching.

Measures

Multiplex cytokine and chemokine analysis

Serum sampleswere assayed for two or three longitudinal time
points at approximately 3-year intervals using the standard-
sensitivity Milliplex Map kit (Millipore) for IL-10, IL-1β,
IL-6, IP-10, MCP-1, MIP-1β, and TNF-α; standard-sensitiv-
ity Panel II kit (Millipore) for IL-16 and TRAIL; Soluble
Receptor kit (Millipore) for soluble TNF receptor types I
(sTNFRI) and II (sTNFRII); Matrix Metalloproteinase panel
Luminex (Millipore) forMMP-9; R&DQuantikine ELISA for
CRP; and MBL International ELISA for IL-18. Standards and
samples were tested in duplicate. Beads were acquired on a

Labscan analyzer (Luminex) using Bio-PlexManager 6.1 soft-
ware (Bio-Rad). ELISA was read on a Molecular Devices
Emax plate reader and acquired on Softmax Pro (version
5.4). High CV% between repeat samples were flagged and
repeated for analyses (Keating et al. 2011). To avoid con-
founding of batch with time and group, all longitudinal sam-
ples were run on the same plate, with an equal proportion of
the four groups (ratio 2:1 HIV+ to HIV−). The same two
controls were run on every plate to evaluate the reliability of
values across plates. Values that were determined to be out of
range low were assigned 0.5, the lowest standard. The propor-
tion of undetectable values for cytokines was as follows: IL-
1β (56%), IL-6 (45%), IL-10 (20%), IL-16 (9%), CRP (2%),
MIP-1β (1%), and TRAIL (1%). Values that were extrapolat-
ed beyond the standard curve were accepted as that value. All
immune markers were log transformed and winsorized (< 1%
of values changed to be equal to the highest or lowest value
that was within 3 SD of the interquartile range) to normalize
distributions.

Primary outcome

CI status, the primary outcome variable, was based on a neu-
ropsychological test battery completed once between 2009
and 2011. The battery included eight tests: Hopkins Verbal
Learning Test-Revised (HVLT-R), Letter-Number
Sequencing, Trail Making Test (TMT), Stroop Test, Symbol
Digit Modalities Test (SDMT), Controlled Oral Word
Association Test (COWAT), Category Fluency Test
(Animals), and Grooved Pegboard (GPEG). Seven domains
were assessed using these tests: learning (outcome = total
learning across HVLR-T trials), memory (outcome = delayed
free recall on HVLT-R), attention/working memory (out-
comes = total correct on LNS control and experimental con-
ditions), psychomotor speed (outcomes = total correct on
SDMT, time to completion on Stroop Trial 2), executive func-
tion (outcomes = time to completion on TMT Part B and
Stroop Trial 3), fluency (outcomes = total correct on
COWAT and Category Fluency Test), and motor skills (out-
comes = total time to completion for each hand on GPEG).
Timed outcomes were log transformed to normalize distribu-
tions and reverse scored so higher values equated to better
performance.

Consistent with previous large-scale HIV cohorts (Cysique
et al. 2014; Heaton et al. 2004; Sacktor et al. 2016) including
WIHS (Maki et al. 2015; Rubin et al. 2015, 2016), demo-
graphically adjusted T-scores were derived for each outcome
and these T-scores were used to create domain scores
(Supplemental Materials). CI was defined as scoring below
the expected level of performance (T-score < 40) in at least
three of seven domains. Although only two domains of CI are
typically required for a diagnosis of HIV-associated
neurocognitive disorder (HAND) (Antinori et al. 2007), we
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chose a more stringent definition because at the time we did
not have measures necessary to determine HAND, including
instrumental activities of daily living.

Statistical analysis

A series of conditional logistic regression models were
conducted in SAS (version 9.4, Cary, NC) to assess wheth-
er average or fluctuation (standard deviation) in inflamma-
tory biomarkers over all time points tested predicted CI in
general (using overall sample) or whether they differential-
ly predicted HIV-associated CI (stratified by HIV
serostatus). Conditional logistic regression models were
selected to handle the nested propensity-matched pair de-
sign (65 pairs). Unadjusted models were first conducted to
examine the association of primary predictor variables to
CI. Primary predictor variables were average levels and
variability (standard deviation) of the 13 inflammatory
markers from all time points. Based on these models, all
predictors associated with the outcome at p < 0.10 were
included in a stepwise model. The study design prohibited
the inclusion of HIV status in models for the overall sam-
ple; the proportion of cases was exactly 50% in both HIV+
and HIV− women. Variables were retained in the stepwise
models if p < 0.10. Odds ratios (ORs) and 95% CIs were
calculated using maximum likelihood estimates from the
conditional logistic regression models. When inflammato-
ry markers were predictive of CI among HIV+ women,
models were rerun including HIV-specific covariates (viral
load, current and nadir CD4 count, and CD4/CD8 ratio).
Additionally, when inflammatory markers were predictive
of CI in either group, exploratory correlational analyses
using Spearman’s rho were conducted to determine the
specific domains contributing to the global effect.
Because exploratory analyses were performed for heuristic
purposes to examine the potential clinical significance for
future larger scale studies, we did not correct for multiple
comparisons. However, given the small sample sizes, when
correlations were observed (p < 0.10), bootstrapping of the
correlation coefficient (based on 1000 samples) was con-
ducted to determine the strength of the associations and to
ensure findings were not driven by outliers. The 95% CI
from the bootstrapping procedure was used to determine
statistical significance (95% CI does not include 0).

Results

Sample characteristics

The overall sample of 130 women was 67% African–
American, non-Hispanic, and 20% Hispanic and ranged in
age from 25 to 70 years (mean = 43.9, SD = 9.6), which is

comparable to previously published large-scale WIHS studies
(Maki et al. 2015; Rubin et al. 2016). The four groups were
comparable across a range of sociodemographic, behavioral,
and clinical characteristics (Table 1). Among those with CI,
there was a similar prevalence of CI across all domains except
psychomotor speed which was more prevalent among HIV+
compared to HIV− women (p = 0.03, Supplemental Table 2).

Serum immune biomarkers

Table 2 provides the average of each individual’s mean and
intra-individual variability (SD) from the two (27 women
contributed 54 observations) or three (103 women contrib-
uted 309 observations) time points of immune marker
levels as a function of HIV status. There were no significant
differences in immune marker levels (mean or SD) as a
function of having two or three time points. Compared to
HIV− women, HIV+ women showed higher mean levels of
IL-18, sTNFRII, MCP-1, IP-10, TNF-α, and TRAIL and
lower mean levels of IL-1β and IL-6 (p values < 0.05).
After controlling the false discovery rate (FDR) using the
Benjamini–Hochberg procedure, only two markers did not
remain significant: TRAIL and IL-1β. HIV+ women also
showed greater individual variability in sTNFRII and
TRAIL compared with HIV− women (p < 0.05); however,
these differences did not remain after controlling the FDR.
Similar results were seen when comparing women with
HIV RNA ≤ 80cp/ml and HIV− women. Of the markers
showing HIV serostatus differences, higher viral load was
associated with lower mean levels of TRAIL (rs = − 0.28,
p = 0.02) and sTNFRII (rs = − 0.24, p = 0.04). Lower CD4/
CD8 ratio was associated with higher mean levels of
TNF-α (rs = − 0.42, p < 0.0001), IL-1β (rs = − 0.32,
p = 0.007), IL-6 (rs = − 0.32, p = 0.007), and TRAIL (r-
s = − 0.27, p = 0.03). These markers were not significantly
associated with current or nadir CD4 count (p values
> 0.07).

Table 3 provides the results from the unadjusted condi-
tional logistic regression models across HIV+ and HIV−
groups to assess general predictors of CI as well as stratified
by serostatus to assess for specific predictors of HIV-
associated CI. In unadjusted analyses, the strongest predic-
tors of CI in the overall sample were lower mean levels of
sTNFRI (p = 0.009) and greater variability in CRP
(p = 0.003), with trends for higher mean levels of IL-6
(p = 0.08) and greater variability in MMP-9 (p = 0.08). In
adjusted analyses, all four of these biomarkers were signif-
icant predictors of CI: mean levels of sTNFRI (OR 0.07,
95% CI 0.01–0.46, p = 0.006), mean levels of IL-6 (OR
1.54, 95% CI 1.09–2.18, p = 0.01), variability in CRP
(OR 4.66, 95% CI 1.52–14.24, p = 0.007), and variability
in MMP-9 (OR 16.85, 95% CI 1.98–143, p = 0.009). In unad-
justed analyses in HIV+ women only, the only significant
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predictor of CIwas increased variability in CRP levels (p= 0.04).
CRP remained significant (p = 0.04) after adjusting for viral
load, CD4 count (current and nadir), and the CD4/CD8 ratio
(p values NS). In unadjusted analyses in HIV− women, the
strongest predictors of CI were lower mean levels of sTNFRI
(p = 0.04) and increased variability in CRP (p = 0.03), but only
increased variability in CRP remained significant in adjusted
analyses (OR 4.21, 95% CI 1.14–15.49).

Follow-up exploratory analyses in the overall sample
indicated that a lower mean level of sTNFRI was associat-
ed with lower performance in psychomotor speed (rs = 0.18,
p = 0.04, 95% CI 0.01–0.35), attention/working memory
(r

s
= 0.25, p = 0.005, 95% CI 0.10–0.41), and fluency

(rs = 0.28, p = 0.001, 95% CI 0.11–0.44). Greater var-
iability in MMP-9 levels was associated with lower perfor-
mance on fluency (rs = − 0.18, p = 0.04, 95% CI − 0.37 to

Table 1 Characteristics as a function of cognitive impairment (CI) and HIV serostatus at the visit concurrent with cognitive data in 2009–2011

Characteristics HIV+ CI (n = 36) HIV+ unimpaired
(n = 36)

HIV− CI (n = 29) HIV− unimpaired
(n = 29)

p value

Age, median (IQR) 46.2 (36.9–51.3) 47.9 (41.2–51.1) 38.9 (33.2–49.4) 43.8 (33.1–51.5) 0.14

Years of education, median (IQR) 12 (11–12) 12 (11–12) 12 (11–12) 12 (11–12) 0.26

WRAT, median (IQR) 89 (75–109) 92 (83–101) 90 (84–107) 89 (77–99) 0.91

BMI, median (IQR) 27.8 (22.6–31.6) 28.3 (23.9–32.7) 27.7 (23.4–36.7) 30.7 (24.1–37.4) 0.49

APRI, median (IQR) 0.24 (0.15–0.39) 0.26 (0.17–0.39) 0.20 (0.15–0.37) 0.20 (0.15–0.35) 0.47

FIB-4, median (IQR) 0.83 (0.59–1.20) 0.89 (0.66–1.23) 0.69 (0.54–1.27) 0.68 (0.48–0.94) 0.33

HCV viremic, n (%) 6 (17) 8 (22) 6 (21) 5 (17) 0.94

Current smoker, n (%) 17 (47) 21 (58) 15 (52) 19 (66) 0.48

Recent marijuana use, n (%) 6 (17) 9 (25) 7 (24) 6 (21) 0.84

Recent crack, cocaine, and/or
heroin use, n (%)

0 (0) 1 (3) 3 (10) 2 (7) 0.17

Drinks per week, n (%) 0.91

None to 7 32 (89) 31 (86) 25 (86) 24 (83)

≥ 8 4 (11) 5 (14) 4 (14) 5 (17)

Race, n (%) 0.10

African–American 26 (72) 24 (67) 17 (59) 20 (69)

Latina 5 (14) 5 (14) 7 (24) 9 (31)

White/other 5 (14) 7 (19) 5 (17) 0 (0)

Recent antidepressant use, n (%) 8 (22) 12 (33) 3 (10) 3 (10) 0.07

CES-D > 16, n (%) 7 (19) 9 (25) 9 (31) 7 (24) 0.78

Propensity score, median (IQR) 0.23 (0.16–0.29) 0.23 (0.16–0.29) 0.20 (0.14–0.26) 0.20 (0.14–0.27) 0.39

Number of visits with specimens, n (%) 0.36

2 9 (25) 7 (29) 8 (28) 3 (10)

3 27 (75) 29 (81) 21 (72) 26 (90)

Years between visits with specimens, median (IQR)

Visit 1 to visit 2 2 (2–3) 3 (2–3) 2 (2–3) 3 (2–3) 0.72

Visit 2 to visit concurrent with cognitive data 3 (2–3) 3 (2–3) 3 (2–3) 3 (2–3) 0.73

HIV-specific characteristics*

On HAART at visit, n (%) 36 (100) 33 (91) – – 0.24

CD4 cell count, median (IQR) 641 (379–799) 620 (396–788) – – 0.99

CD4 nadir, median (IQR) 261 (242) 199 (176) 0.64

CD4/CD8 ratio, median (IQR) 0.77 (0.76) 0.75 (0.46) 0.67

HIV RNA ≤ 80 (undetectable), n (%) 31 (86) 26 (72) – – 0.25

Log10 HIV RNA among detectables, median
(IQR)

2.3 (2.2–3.1) 2.2 (2.1–3.1) – – 0.81

The four groups were compared using Wilcoxon Mann–Whitney U test on continuous outcomes and Fisher’s exact tests for categorical outcomes

WRAT, Wide Range Achievement Test, scaled score;CES-D, Center for Epidemiologic Studies Depression Scale;HCV, hepatitis C virus;Recent use, use
in the past 6 months; APRI, liver fibrosis; FIB-4, non-invasive index of hepatic fibrosis; IQR, interquartile range

*Not included in matching model
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− 0.01) whereas greater variability in CRP levels was as-
sociated with worse executive function (95% CI − 0.41 to
− 0.07), psychomotor speed (95% CI − 0.38 to − 0.07),
attention/working memory (95% CI − 0.37 to − 0.04),
and learning (95% CI − 0.36 to − 0.04) (Fig. 1). Greater
variability in CRP levels was the strongest correlate of
psychomotor speed, attention/working memory, and exec-
utive function in HIV+ women (p values < 0.05, 95%
CI ≤ 0.01) and learning in HIV− women (p = 0.04, 95%
CI − 0.51 to − 0.02) (Fig. 1). Similar results were seen
among HIV+ women after adjusting for viral load and
CD4 count (current and nadir) (p values NS).

Discussion

Extending previous cross-sectional studies in predominantly
male samples, we conducted a prospective, nested case–con-
trol study to determine if peripheral inflammatory markers
over time predict CI in HIV+ women and HIV− women.
Our conclusions support the finding of consistent immune
alterations despite ART. Consistent with previous studies, se-
rum levels of cytokines (IL-6, IL-18, TNF-α, IL-1β) and their
receptors (sTNFRII, TRAIL) as well as chemokines (MCP-1,
IP-10) differed between a sample of predominately cART-
treated (96%) and virologically suppressed (93%) HIV+
women and HIV− women (Cohen et al. 2011; Correia et al.
2013; Deeks et al. 2013; Neuhaus et al. 2010; Ronsholt et al.
2013). Importantly, there was no bias in which group contrib-
uted two or three samples. We not only found robust HIV
serostatus differences when examinng mean levels, but also
found differences when examining intra-individual variability
in immune markers (sTNFRII, TRAIL; CRP and IL-18
trends) a metric that can only be examined with multiple
measurements.

Although most studies report HIV serostatus differences in
immune markers, the patterns and markers themselves are not
always consistent across studies. Compared to HIV− women,
HIV+women in the present study showed lower levels of IL-6
and IL-1β and higher levels of IL-18, TNF-α, sTNFRII,
TRAIL, MCP-1, and IP-10. These findings are partially con-
sistent with those of previous studies (Cohen et al. 2011;
Correia et al. 2013; Neuhaus et al. 2010; Ronsholt et al.
2013). For example, Neuhaus et al. (2010) found that ART-
treated men and women had approximately 40 to 60% higher
IL-6 levels compared to controls. Others have reported lower
levels of TNF-α in HIV+ compared to HIV− individuals, no
differences in TRAIL, and elevated levels of MIP-1β (Cohen
et al. 2011; Correia et al. 2013). Inconsistencies across studies
could be due to numerous factors such as the examination of
mixed samples of men and women, using a single measure-
ment versus our use of average levels across multiple time
points, or the inclusion of individuals co-infected with HCV.
This study includes individuals co-infected with HCV, albeit a
similar proportion across the four groups.

Our findings also provide support for the role of inflamma-
tion in CI in HIV− individuals. In the overall sample, IL-6,
CRP, sTNFRI, and MMP-9 predicted CI. Among population
studies of aging, IL-6, CRP, and TNF-α are among the most
studied markers of adverse outcomes including cognitive de-
cline (see Singh and Newman 2011, for review). Many, but
not all studies, demonstrate associations between these gener-
al markers of systemic low-grade inflammation and cognitive
performance and/or decline as well as all-cause dementia. For
example, findings from the NorthernManhattan Study, a large
community-based prospective cohort of older HIV-uninfected
socioeconomically and ethnically diverse sample of men and

Table 2 Comparison ofmean levels and variability in levels of immune
markers over time for HIV+ and HIV− women

Log levels HIV+ HIV− p value
M (SE) M (SE)

Mean

IL-1β − 1.6 (0.15) − 1.1 (0.22) 0.04

IL-18 5.4 (0.06) 4.8 (0.08) < 0.001†

sTNFRII 8.6 (0.03) 8.4 (0.04) 0.006†

sTNFRI 7.1 (0.04) 7.1 (0.04) 0.31

MCP-1 4.9 (0.05) 4.7 (0.05) 0.008†

IP-10 5.8 (0.09) 5.3 (0.09) < 0.001†

TNF-α 1.7 (0.05) 1.6 (0.06) 0.01†

TRAIL 3.3 (0.05) 3.1 (0.06) 0.03

MIP-1β 3.3 (0.04) 3.4 (0.05) 0.23

IL-6 − 1.4 (0.14) − 0.8 (0.20) 0.01†

IL-16 2.7 (0.08) 2.8 (0.09) 0.37

IL-10 − 0.1 (0.15) − 0.3 (0.20) 0.44

MMP-9 9.7 (0.06) 9.8 (0.07) 0.53

CRP 7.2 (0.16) 7.3 (0.17) 0.51

Standard deviation

IL-1β 0.9 (0.08) 0.8 (0.12) 0.87

IL-18 0.3 (0.02) 0.2 (0.02) 0.05

sTNFRII 0.2 (0.01) 0.1 (0.01) 0.004†

sTNFRI 0.1 (0.01) 0.1 (0.01) 0.44

MCP-1 0.2 (0.02) 0.3 (0.02) 0.41

IP-10 0.4 (0.03) 0.4 (0.04) 0.24

TNF-α 0.3 (0.03) 0.3 (0.03) 0.44

TRAIL 0.3 (0.02) 0.2 (0.02) 0.04

MIP-1β 0.3 (0.02) 0.3 (0.02) 0.38

IL-6 0.9 (0.10) 0.9 (0.10) 0.94

IL-16 0.4 (0.03) 0.3 (0.03) 0.15

IL-10 0.9 (0.08) 1.0 (0.10) 0.62

MMP-9 0.4 (0.03) 0.4 (0.03) 0.99

CRP 0.6 (0.05) 0.8 (0.08) 0.07

Italicized values are significant based on independent t tests; values in
boldface are trends at p < 0.10
† Significance after controlling the false discovery rate (FDR) using the
Benjamini–Hochberg procedure. The FDR was set at 10%
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women, demonstrated that elevated IL-6 levels were associat-
ed with lower cognitive performance (Wright et al. 2006) and
greater cognitive decline (Economos et al. 2013).

Our strongest effects of predictors of prevalent CI were
with variability in CRP levels. While Economos et al.
(2013) did not demonstrate an association between CRP
and cognitive decline, others have demonstrated this asso-
ciation with absolute levels of CRP (Noble et al. 2010;
Puzianowska-Kuznicka et al. 2016; Roberts et al. 2009;
Yaffe et al. 2003) and with variability in CRP levels
(Metti et al. 2014). In a meta-analysis, CRP was associated
with a 45% increase in all-cause dementia and IL-6 was
associated with a 32% increase (Koyama et al. 2013).
Variability in CRP has been observed in other settings

(Bogaty et al. 2013) and might be related to the presence
of and variability in inflammation and immune status,
weight gain, physical activity, vascular and metabolic con-
ditions, and/or psychological symptoms (Metti et al. 2014)
as CRP is associated with each of these comorbidities
(DeGoma et al. 2012; Koenig et al. 2003; Ladwig et al.
2005; Puzianowska-Kuznicka et al. 2016). Larger longitu-
dinal studies with more frequent measurements are needed
to identify any particularly meaningful pattern in variabil-
ity in CRP and any mediators (e.g., vascular) of these as-
sociations. As with other biomarkers shown to predict
HIV-related CI (e.g., neuroimaging biomarkers), CRP
may have limited clinical utility. Rather, the value of these
findings is in identifying the mechanisms contributing to

Table 3 Associations between
average and standard deviation of
immune markers predicting
cognitive impairment among
HIV+ and HIV− women
separately as well as in the overall
sample

Log levels HIV+ HIV− Overall

Impairment (vs. none) Impairment (vs. none) Impairment (vs. none)
OR (95% CI) OR (95% CI) OR (95% CI)

Mean

IL-1β 0.99 (0.68–1.45) 1.03 (0.78–1.36) 1.02 (0.81–1.27)

IL-18 1.51 (0.60–3.77) 1.30 (0.52–3.24) 1.40 (0.73–2.67)

sTNFRII 1.18 (0.24–5.93) 0.58 (0.09–3.66) 0.87 (0.26–2.90)

sTNFRI 0.24 (0.04–1.39) 0.10 (0.01–0.95)* 0.16 (0.04–0.64)**

MCP-1 1.55 (0.42–5.64) 0.92 (0.27–3.16) 1.18 (0.49–2.87)

IP-10 1.40 (0.75–2.63) 1.16 (0.54–2.50) 1.30 (0.80–2.11)

TNF-α 1.36 (0.50–3.69) 0.87 (0.32–2.36) 1.09 (0.54–2.19)

TRAIL 1.62 (0.46–5.69) 1.69 (0.42–6.84) 1.65 (0.65–4.20)

MIP-1β 2.78 (0.67–11.24) 1.46 (0.40–5.38) 1.99 (0.77–5.19)

IL-6 1.31 (0.89–1.93) 1.19 (0.87–1.65) 1.24 (0.97–1.59)T

IL-16 0.72 (0.36–1.44) 0.67 (0.29–1.54) 0.70 (0.41–1.19)

IL-10 1.12 (0.76–1.65) 1.13 (0.80–1.59) 1.13 (0.87–1.45)

MMP-9 0.58 (0.20–1.67) 0.74 (0.27–1.98) 0.66 (0.32–1.36)

CRP 1.02 (0.71–1.47) 0.70 (0.43–1.16) 0.89 (0.67–1.19)

Standard deviation

IL-1β 1.13 (0.75–1.71) 1.24 (0.67–2.29) 1.16 (0.83–1.64)

IL-18 1.38 (0.15–12.72) 0.67 (0.02–28.69) 1.15 (0.17–7.71)

sTNFRII 0.63 (0.01–29.74) 2.70 (0.01–704) 1.01 (0.04–23.77)

sTNFRI 42.84 (0.26–999) 0.26 (0.00–39.96) 3.53 (0.11–108.14)

MCP-1 1.43 (0.07–28.73) 0.92 (0.27–3.16) 5.91 (0.55–63.33)

IP-10 0.91 (0.20–4.18) 2.26 (0.21–24.27) 1.20 (0.34–4.27)

TNF-α 3.03 (0.39–23.69) 1.18 (0.12–11.91) 2.02 (0.44–9.26)

TRAIL 0.41 (0.05–3.16) 0.58 (0.03–11.44) 0.45 (0.09–2.45)

MIP-1β 1.32 (0.14–12.67) 8.60 (0.32–228) 2.52 (0.40–15.83)

IL-6 1.09 (0.68–1.73) 1.03 (0.55–1.92) 1.07 (0.73–1.55)

IL-16 1.09 (0.23–5.18) 7.24 (0.42–124.86) 1.78 (0.46–6.85)

IL-10 0.88 (0.50–1.53) 1.24 (0.62–2.49) 1.00 (0.65–1.55)

MMP-9 2.11 (0.28–15.64) 6.37 (0.71–57.11) 3.59 (0.83–15.62)T

CRP 3.78 (1.09–13.17)* 4.21 (1.14–15.49)* 3.99 (1.62–9.79)**

Italicized values are significant at p < 0.05; values in boldface are trends at p < 0.09

**p < 0.01, *p < 0.05, † p = 0.06, T p = 0.08
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HIV-associated CI so that they can be targeted through
appropriate interventions.

Greater variability in MMP-9 levels was also a significant
predictor of CI in the overall sample. MMP-9, a major secre-
tion product of macrophages, is implicated in the breakdown
and remodeling of the extracellular matrix in normal and
pathological inflammatory processes (Klein and Bischoff
2011). HIV can both downregulate and upregulate MMP-9
production (Ciborowski et al. 2004; Muratori et al. 2007).
Neurotoxic viral proteins gp120 and Tat increase expression
of MMP-9 and consequently induce blood–brain barrier per-
meability by degrading vascular tight junction proteins in
endothelial cells (Louboutin et al. 2010; Xu et al. 2012).
Thus, MMP-9-related disruption of the blood–brain barrier
may play a critical role in CI generally and in the pathogen-
esis of HAND (Avison et al. 2004).

In stratified analyses, only variability in CRP levels
remained a significant predictor of CI in HIV+ and HIV−
women. In exploratory analyses in HIV+ women, greater
variability in CRP was associated with lower performance
on a broad range of cognitive abilities including psychomotor

speed, attention/working memory, and executive function.
Conversely, in HIV− women, greater CRP variability was
associated only with lower learning. CRP may influence cog-
nitive performance differently in HIV+ compared with HIV−
individuals. The robustness of these differences and the
mechanisms leading to different patterns warrant further
investigation.

Limitations of the present study include the relatively small
sample size and unknown cognitive status of participants be-
fore 2009. Most likely, we are examining prevalent and not
incident cases of CI. No peripheral monocyte-driven immune
activation markers such as soluble CD163 and CD14 were
studied but have shown associations with CI (Burdo et al.
2013b; Royal et al. 2016) including in the WIHS (Imp et al.
2017). While the use of propensity matching yielded four
groups that were balanced on a number of sociodemographic,
clinical, and behavioral characteristics known to be associated
with cognitive impairment, this approach controls only for
measured confounders and unmeasured factors can still bias
results. Finally, the standard sensitivity assay measured most
of the analytes required for this analysis but can cause loss of
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Fig. 1 Mean variability in log
CRP levels predicted cognitive
performance. a Executive
function. b Psychomotor speed. c
Attention/working memory. d
Learning. WM, working memory.
Mean variability in log CRP
levels predicted performance on
all of these domains in the overall
sample (p values < 0.05). CRP is
the strongest predictor of
attention/working memory, exec-
utive function, and psychomotor
speed for HIV+ women, whereas
for HIV− women, CRP is the
strongest predictor of learning
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values at the lower end of detection; however, this did not
greatly impact the significant markers found in this study to
predict prevalent CI. Sensitivity was more of an issue for IL-
1β, IL-6, IL-10, and IL-16 in the present study. A deeper
investigation impact of low levels of these cytokines on CI
will need to be conducted using more sensitive assays.

In sum, our longitudinal findings in women provide further
support for the adverse role of persistent residual immune
activation despite cART in HIV+ individuals. Alterations in
immune processes predicted CI among both HIV+ and HIV−
women. Although variability in CRP, a more general marker
of low-grade systemic inflammation, was the strongest predic-
tor in both HIV+ and HIV− women, the specific cognitive
correlates of CRP differed across the groups with much
broader associations in HIV+ women. Findings warrant fur-
ther study into possible peripheral immune signatures exam-
ined over a longer duration that may differentially predict the
patterns of CI over time generally and in HIV+ individuals
specifically.
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