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Abstract HIV-1 replication in the central nervous system
(CNS) is typically limited by the availability of target cells.
HIV-1 variants that are transmitted and dominate the early
stages of infection almost exclusively use the CCR5
coreceptor and are well adapted to entering, and thus infect-
ing, cells expressing high CD4 densities similar to those found
on CD4+ T cells. While the “immune privileged” CNS is
largely devoid of CD4+ T cells, macrophage and microglia
are abundant throughout the CNS. These cells likely express
CD4 densities that are too low to facilitate efficient entry or
allow sustained replication by most HIV-1 isolates. Examina-
tion of CNS viral populations reveals that late in disease the
CNS of some individuals contains HIV-1 lineages that have
evolved the ability to enter cells expressing low levels of CD4
and are well-adapted to entering macrophages. These
macrophage-tropic (M-tropic) viruses are able to maintain
sustained replication in the CNS for many generations, and
their presence is associated with severe neurocognitive

impairment. Whether conditions such as pleocytosis are nec-
essary for macrophage-tropic viruses to emerge in the CNS is
unknown, and extensive examinations of macrophage-tropic
variants have not revealed a genetic signature of this pheno-
type. It is clear, however, that macrophage tropism is rare
among HIV-1 isolates and is not transmitted, but is important
due to its pathogenic effects on hosts. Prior to the evolution of
macrophage-tropic variants, the viruses that are predominately
infecting T cells (R5 T cell-tropic) may infect macrophages at
a low level and inefficiently, but this could contribute to the
reservoir.
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Introductory summary

HIV-1 pathogenesis has been a major focus of research for the
last 30 years. The central feature of HIV-1 disease is the loss of
CD4+ T cells leading to immunodeficiency and the appear-
ance of opportunistic infections and virus-driven cancers. In
addition, untreated HIV-1 infection can lead to HIV-associated
dementia (HAD) in a significant proportion of subjects. Viral
replication in and destruction of CD4+ T cells is only part of
the story of viral pathogenesis. To maintain replication in the
face of the host immune system, HIV-1 has the capacity to
undergo rapid evolution that results in the outgrowth of im-
mune escape mutants, escaping the selective pressure of both
humoral and cellular immune responses. This capacity for
rapid evolution underlies the ability to generate drug-
resistant variants in the presence of incomplete suppression
of replication. However, these are not the only places where
the effects of viral evolution can be seen.

The rapid evolution of HIV-1 also generates host range
variants, i.e., variants of the virus that have evolved to
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replicate in new cell types. In addition to the typical virus,
which uses CD4 and CCR5 to enter activated Tcells, there are
two well-recognized variants. One variant switches from
using CCR5 as the coreceptor to using CXCR4 for entry, in
addition to CD4, and these viruses have been termed X4
viruses. X4 viruses likely represent an expansion of viral
replication into naive CD4+ Tcells, which express high levels
of CXCR4 and little to no CCR5 (Zamarchi et al. 2002). The
second variant retains the requirement for both CD4 and
CCR5 but evolves to enter cells that have lower levels of
CD4. The obvious target cell for this variant is the macro-
phage, which has significantly lower levels of CD4 than
CD4+ T cells, and these variants have been termed
macrophage-tropic (or M-tropic) viruses. The appearance of
X4 variants has been associated with a more rapid loss of
CD4+ T cells (Connor et al. 1997; Koot et al. 1993), although
the question of cause or effect persists (Arrildt et al. 2012).
Viral replication in both naive CD4+ T cells and macrophages
may be slower than in activated memory CD4+ T cells, thus
allowing some level of immune surveillance prior to immu-
nodeficiency. Alternatively, the virus may be more likely to
encounter activated memory CD4+ T cells with their high
levels of CD4 and CCR5, thus driving the selective pressure
for replication in this cell type until it declines in number with
advanced disease. This review will focus on macrophage-
tropic variants, their evolution, and their role in pathogenesis.
As interest in pathogenesis morphs into questions about viral
persistence and latency on therapy, a different set of issues
arise about the role of macrophage-tropic viruses.

Nomenclature

“Words have meaning and names have power.” Cervantes
There is an unfortunate twist in the history of HIV-1 re-

search that has led to great confusion about the nature of
macrophage-tropic HIV-1. Initial attempts to grow HIV-1 in
CD4+ T cell lines (transformed cells typically isolated from
lymphomas or leukemias) showed that only a fraction of viral
isolates were capable of infecting these cells and quite natu-
rally the viruses that could were called T cell-tropic. Of all the
isolates not able to infect these Tcell lines, some of them could
efficiently infect macrophages and the entire group of “non-T
cell-tropic” viruses have come to be called macrophage-trop-
ic. The subsequent identification of CCR5 and CXCR4 as
coreceptors revealed an important flaw in this dichotomous
designation, and as a field we are now struggling to redefine
these viruses and integrate how the new definitions impact our
understanding of HIV-1 pathogenesis and persistence.

Specifically, we now know that most transformed CD4+ T
cell lines do not express CCR5 and therefore the “T cell-
tropic” viruses are now appropriately called X4 viruses for
their use of CXCR4. The confusion comes with the

“macrophage-tropic” viruses, which we now know are a col-
lection of two distinct types of CCR5-using viruses. Although
a small minority of the CCR5-using viruses can enter cells
with low levels of CD4 and infect macrophages efficiently, the
vast majority of these viruses require high levels of CD4 to
enter cells and only infect macrophages poorly. Thus, it is a
serious conceptual mistake to refer to all of them as macro-
phage-tropic. We have developed the following designations
to describe the host range of most HIV-1. (1) R5 T cell-tropic:
these variants use CCR5 and require high levels of CD4 to
enter cells, and represent the vast majority of HIV-1, including
transmitted/founder viruses. (2) X4 T cell-tropic: T cell-tropic
variants that have switched to use the CXCR4 coreceptor. (3)
Macrophage-tropic: variants that still use CCR5 but can enter
macrophages and other cells expressing low levels of CD4.
We review the evidence for these designations below, but
want to point out that it is essential to view HIV-1 as these
three different types of host range variants—the normal R5 T
cell-tropic virus and the two host range variants, X4 T cell-
tropic viruses and macrophage-tropic viruses—to place HIV-1
transmission, evolution, pathogenesis, and persistence in their
proper context.

There are two (at least) types of HIV-1 that do not fit neatly
into our basic nomenclature. First, some T cell-tropic viruses
evolve the ability use CXCR4, while retaining the ability to
use CCR5. It is unknown whether these dual-tropic variants
use both coreceptors in vivo, but the extent to which the virus
favors one co-receptor or the other largely predicts its sensi-
tivity to coreceptor antagonists in cell culture assays (Toma
et al. 2010). Second, some macrophages express low levels of
CXCR4 (Lee et al. 1999), raising the possibility that CXCR4-
using viruses could evolve macrophage tropism. CXCR4-
using viruses have been isolated from the macrophage-rich
central nervous system (CNS) (Mefford et al. 2008; Yi et al.
2003), but it is unknown whether these variants are
macrophage-tropic as defined by the ability to enter using
low levels of CD4. One of these variants was shown to infect
macrophages differentiated in culture (Yi et al. 2003), but
differentiation methods are known to strongly influence ex-
pression of CXCR4 and CD4 (Lee et al. 1999), making it
difficult to know if this variant would be likely to infect
macrophages in vivo. At a minimum, putative X4
macrophage-tropic viruses are exceedingly rare, indicating
that either CXCR4-using viruses cannot adapt to replicating
in macrophages or do so infrequently.

The nomenclature that we have adopted indicates the cell
type in which viruses are replicating and adapting. This is
similar to the “lymphocyte-R5” nomenclature that has been
proposed by Goodenow and Collman (2006). A limitation of
both approaches is that “R5 T cell-tropic” viruses (or “lym-
phocyte-R5” viruses) have not been shown to be better
adapted at replicating in T cells than are “macrophage-tropic”
variants. In order to avoid any implication that one type of
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virus is better able to infect T cells than another, some re-
searchers (Peters et al. 2006) simply divide viruses into “mac-
rophage-tropic” and “non-macrophage-tropic”. The disadvan-
tage of this approach is that it provides no information about
where the vast majority of HIV-1 (i.e., “non-macrophage-
tropic” HIV-1) replicates. We have chosen to distinguish
viruses based on the cells in which they are replicating, and
we acknowledge that we have an incomplete understanding of
the relative replication rates of different viruses in T cells and
T cell subsets.

Note that tropism is often assessed based on the ability of a
HIV-1 variant to enter a specific host cell, but replication
blocks that arise after entry may also influence cellular tro-
pism. HIV-1 entry is determined by the HIV-1 Env protein.
The Env precursor protein is cleaved into two subunits by a
host furin-like protease. The resulting subunits, gp120 and
gp41, stay non-covalently associated as heterodimers and are
organized as trimers on the surface of the virion, with gp41
being a transmembrane protein anchoring the trimer in the
viral envelope/membrane. Entry into the host cell is initiated
when the CD4 binding site of gp120 binds a CD4molecule on
the surface of the host cell, which results in conformational
changes that expose the coreceptor binding site on gp120.
Binding either the CCR5 or CXCR4 coreceptor causes the
extracellular domain of gp41 to form a six-helix bundle and
generate a fusion pore between the viral and host membrane
that allows the capsid to enter the host cell (reviewed byWilen
et al. 2012). Thus, functional or genetic analyses of Env
proteins are effective tools for assessing the ability of an
HIV-1 variant to enter a target cell. However, other factors
may also influence cellular tropism after entry. For example,
the concentration of dNTPs in macrophages is approximately
100-fold lower than that of activated CD4+ T cells and effi-
cient replication in macrophages requires that reverse tran-
scriptase be able to catalyze DNA synthesis when the dNTP
concentration is low (Diamond et al. 2004). We would argue
that the viral proteins that act against intracellular innate host
responses evolved to do so in T cells, but it is possible that
these viral proteins also adapt to carry out similar functions, or
the long terminal repeats (LTRs) adapt to different host tran-
scription factors, in the environment of different cell types.

HIV-1 in the blood is R5 T cell-tropic

There are three types of evidence indicating that the vast
majority of HIV-1 is R5 T cell-tropic. The first type of evi-
dence comes from studies showing that T cells are the most
commonly infected cells in the blood. This is illustrated by the
fact that HIV-1 proviral DNA and replication competent vi-
ruses can be readily recovered from CD4+ T cells isolated
fromHIV+ subjects both on (Brenchley et al. 2004; Chun et al.
1997; Finzi et al. 1997; Ho et al. 2013; Wong et al. 1997; Yukl

et al. 2013) and off antiretroviral therapy (Brinchmann et al.
1991; Psallidopoulos et al. 1989; Schnittman et al. 1989). The
only other cell type in the blood reported to be infected is
monocytes. A number of studies report the detection of HIV-1
DNA in monocytes (Wang et al. 2013; Xu et al. 2008; Zhu
et al. 2002) and the isolation of replication competent virus
(Lambotte et al. 2000; Sonza et al. 2001; Wang et al. 2013)
from monocytes, but T cells are clearly infected with much
greater frequency than monocytes (Fulcher et al. 2004;
Lambotte et al. 2000; Spivak et al. 2011) and some investiga-
tors have failed to find viral DNA in monocytes above levels
that could be accounted for by T-cell contamination (Spivak
et al. 2011).

The second line of evidence that CD4+ T cells are the
primary targets of HIV-1 in vivo comes from the observation
that initiating highly active antiretroviral therapy (HAART)
results in exponential decay of HIV-1 in the blood (Ho et al.
1995; Perelson et al. 1996) (Fig. 1). Since antiretroviral ther-
apy blocks infection of new cells, viral decay reflects the death
of infected cells and can be used to calculate the half-life of
HIV-1-infected cells. Exponential viral decay after the initia-
tion of antiretroviral therapy indicates that most viruses are
produced by short-lived cells such as infected Tcells (Ho et al.
1995; Perelson et al. 1996; Simon and Ho 2003; Wei et al.
1995).

Fig. 1 Successful HAART blocks new infection but does not affect cells
already infected with HIV-1. Therefore, the remaining viral production
(and viral load) is directly related to the lifespan of the cells infected prior
to initiating HAART. In essentially all patients infected with HIV-1, viral
load (VL) decays rapidly upon initiation of HAART with a half-life of
approximately 1 to 2 weeks in the blood (indicated by the solid red line)
and cerebrospinal fluid (CSF; solid blue line), which is consistent with
virus produced from infected CD4+ Tcells in both compartments. In rare
cases, patients will have the same rapid decay of VL in the blood but will
have a much slower decay in the CSF (dashed blue line). This indicates
that in these patients viruses are being produced in CD4+ T cells in the
blood but are being produced by a longer-lived cell, likely perivascular
macrophages or microglia, in the CSF.
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The final type of evidence comes from in vitro analyses
showing that most HIV-1 isolates are well adapted to replicat-
ing in CD4+ T cells and poorly adapted to replicating in
macrophages, the rationale being that an HIV-1 lineage will
be well-adapted to the cell type in which it typically replicates.
Multiple studies have shown that infectious molecular clones
(Li et al. 2010; Ochsenbauer et al. 2012; Salazar-Gonzalez
et al. 2009) and env gene clones (Isaacman-Beck et al. 2009)
generated from transmitted/founder viruses encode surface
Env proteins that do not allow efficient infection of
monocyte-derived macrophages (MDM). A limitation of this
approach is that MDMs are highly variable in their suscepti-
bility to infection by HIV-1 both across donors and from
different time points (Joseph et al. 2014; Naif et al. 1998;
Sonza et al. 1995), which may cause a virus to appear well
adapted to infecting MDMs in one experiment and poorly
adapted at another.

There is another, more reproducible approach to examining
whether viruses are adapted to entering macrophages by ex-
amining whether viruses are adapted to entering cells with
similar CD4 receptor levels compared to macrophages.
Monocyte-derived macrophages and CD4+ T cells express
similar numbers of CD4 molecules (Joseph et al. 2014; Lee
et al. 1999), but their larger surface area causesMDMs to have
a 20-fold lower CD4 density than do CD4+ T cells (Joseph
et al. 2014). Using this approach, we (Joseph et al. 2014; Ping
et al. 2013) and others (Alexander et al. 2010; Parrish et al.
2012; Peters et al. 2006) have found that blood-derived Env
proteins from all stages of infection require high densities of
CD4 to facilitate entry, similar to those levels expressed on
CD4+ T cells (Joseph et al. 2014). In vitro assays have also
revealed that the vast majority of blood-derived Env proteins
require CCR5 (Alexander et al. 2010; Isaacman-Beck et al.
2009; Keele et al. 2008; Parrish et al. 2012; Wilen et al. 2011),
but it is unclear whether they differ from CNS-derived,
macrophage-tropic Env proteins. We previously observed no
difference in how paired macrophage-tropic and T cell-tropic
Env proteins from five patients interact with CCR5 (Joseph
et al. 2014). In contrast, another study suggested that
macrophage-tropic viruses are more “CCR5-dependent”
(Salimi et al. 2013); however, their analysis may have con-
founded CCR5 usage with CD4 usage.

Because most blood-derived viruses are well adapted to
entering CD4+ T cells and use the CCR5 coreceptor, most
HIV-1 isolates are R5 T cell-tropic. This situation changes
with the appearance of X4 T cell-tropic and/or dual-tropic
viruses appearing in the blood of approximately one half of
subjects infectedwith subtype BHIV-1 as they progress to late
in disease (Berger et al. 1999).

While T cells are the most commonly infected cells in the
blood and most viruses in the blood are R5 T cell-tropic, there
is evidence that tissue macrophages may represent important
viral reservoirs and may be detected in the blood under some

circumstances. It has long been noted that after initiating
antiretroviral therapy, the plasma viral load initially decays
very rapidly but then enters a period of slow decay that
corresponds to the release of virus from longer-lived cells
(Perelson et al. 1997). One potential source of this plasma
virus is infected macrophages in tissue. In some patients, CNS
macrophages are known to be productively infected by HIV-1
(see below). It is still unknown how often HIV-1 infects
macrophages in different tissues and what conditions favor
those events, but some studies suggest that coinfections may
promote HIV-1 infection of macrophages in tissue. An analy-
sis of macrophages in lymphoid tissue found that macro-
phages were infected with HIV-1 in subjects with opportunis-
tic infections (OIs), but not in subjects lacking OIs (Orenstein
et al. 1997). Further, a study of subjects coinfected with HIV-1
and Mycobacterium tuberculosis found that both macro-
phages and T cells contributed to virus in pleural fluid (Lawn
et al. 2001). However, when the slow decay virus was exam-
ined using the heteroduplex tracking assay to assess its genetic
complexity, it was found to be the same as the virus in the
blood plasma indicating that this component of virus, at least
in the subjects examined, does not represent a distinct popu-
lation (Ince et al. 2009).

The CNS is an “immune privileged” site containing
a unique mix of target cells

The CNS has long been viewed as an “immune privileged”
site where T cells are rare and antigens do not induce a strong
adaptive immune response. The foundation of this concept
can be traced as far back as 1921 when it was observed that a
rat sarcoma tumor grew well if transplanted into the mouse
brain but failed to grow when transplanted outside of the CNS
(Shirai 1921). Subsequent studies were able to show that
growth of the tumor in the CNS was possible because the
CNS shielded it from immune surveillance (reviewed by
Galea et al. 2007).

How the immune system achieves this “privilege” is gen-
erally attributed to the blood–brain barrier (BBB) and the
blood–cerebrospinal fluid barrier (BCSFB), which restrict
the movement of cells and other materials from the peripheral
blood into the CNS (Ousman and Kubes 2012). The BBB
lines blood vessels in the brain and consists of endothelial
cells expressing tight junctions. In the average adult, this
barrier has a large surface area of between 12 and 18 m2

(Nag and Begley 2005), presenting many potential points of
weakness where substances in the blood might gain direct
access to the brain parenchyma. Alternatively, substances
can cross the BCSFB at the choroid plexus. Ependymal cells
within the choroid plexus secrete CSF by processing the
peripheral blood (Brown et al. 2004) and the resulting CSF
flows into the brain ventricular system and circulates through
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the subarachnoid spaces surrounding the brain. Substances in
the CSF can enter the brain parenchyma and spinal cord by
crossing ciliated ependymal cells that line the ventricles and
subarachnoid spaces (Del Bigio 2010). Thus, there are differ-
ent barriers separating the blood from the CNS and multiple
ways for substances to breach those barriers and reach the
brain parenchyma.

Immune privilege functions to maintain the proper condi-
tions for neuronal and glial signaling (Verkhratsky et al. 1998)
and protect the delicate cells of the CNS. The efficiency of
these barriers is well illustrated by the observation that the
concentration of T cells and HIV-1 in the cerebrospinal fluid
(CSF) is typically less than 1 % of that found in the blood.
These barriers also appear to alter the ratio of cells. For
example, neutrophils, the most common leukocytes in the
blood, are rarely observed in the CSF, and the ratio of CD4+
to CD8+ T cells is higher in the CSF than in the blood
(Ransohoff et al. 2003). Thus, the BBB and BCSFB consid-
erably limit movement from the blood into the CNS and also
select for specific cells.

There are a number of ways for T cells may to enter the
CNS (Ransohoff et al. 2003). An analysis of fluorescently
labeled T cells injected into the peripheral blood of mice
showed that 2 h after being injected, the cells could
be observed entering the CNS through both the choroid
plexus and meninges (Carrithers et al. 2002). This is
supported by the observation that T cells are clustered
in the choroid plexus and meninges of human autopsy
tissue (Kivisakk et al. 2003). Another study found that
CD4+ T cells that have been primed to attack myelin-
ated nerves primarily enter the CNS at the fifth lumbar
cord (Arima et al. 2012). Interestingly, this study also
found that this point of entry could be blocked by
reducing the expression of the chemokine CCL20
(MIP3A) (Arima et al. 2012), and other studies have
shown that inflammatory cytokines such as tumor ne-
crosis factor α (TNFα), interleukin (IL)-1β, and IL-6
reduce the integrity of the BBB (deVries et al. 1996).
Thus, permeability of the BBB varies both by anatom-
ical region and immunologic state.

HIV-1 in the CNS can be either R5 T cell-tropic or R5
macrophage-tropic

The CNS contains three groups of CD4+ immune cells that
are likely to be infected by HIV-1: CD4+ T cells, macro-
phages, and microglia. The CNS also contains CD4− astro-
cytes which have been proposed to be infected by HIV-1.
Unlike CD4-mediated infection of T cells, macrophages, and
microglia, infection of astrocytes would require a CD4-
independent pathway. Here we review the evidence that
HIV-1 infects these cells in vivo.

CD4+ T cells

CD4+ Tcells are the most commonly HIV-infected cells in the
human body overall (see above) and are major targets of HIV-
1 infection in the CNS. The CSF of a healthy individual
contains as many as 300,000 CD4+ T cells in a total volume
of approximately 150 ml (Ransohoff and Engelhardt 2012),
the majority of which are CD4+ CD45RA− CD27+ CD69+
activated central memory T cells (Kivisakk et al. 2002, 2003).
Given that CD4+ memory T cells are the primary target of
HIV-1 in the blood (Brenchley et al. 2004; Douek et al. 2002;
Sleasman et al. 1996), the T-cell population in the CSF is
likely to be highly susceptible to infection by HIV-1.

Direct identification of HIV-infected CD4+ T cells in the
CNS is challenging given that CD4+ T cells are primarily
confined to the CSF, where they are present at low concentra-
tion. Similarly, the concentration of CD4+ T cells in the brain
parenchyma is likely to be very low. Thus, identifying HIV-
infected CD4+ Tcells in the CNS requires less direct methods,
such as assessing whether viruses replicating in the CNS are
well adapted to entering T cells and not adapted to entering
macrophages or microglia. In an analysis of eight subjects
diagnosed with HAD, we observed three subjects with CSF
viral populations that were genetically distinct compared to
virus in the blood (i.e., compartmentalized) (Schnell et al.
2011), poorly adapted to entering macrophages (Schnell
et al. 2011) and other low CD4 cells (Schnell et al. 2011)
and decayed rapidly when the subject initiated therapy
(Schnell et al. 2009). The observation that some viral popula-
tions in the CSF decay rapidly after initiating therapy and are
poorly adapted to entering macrophage/microglia indicates
that the virus was replicating in CD4+ T cells at the time of
sampling and had been replicating in CD4+ T cells for many
generations. Whether CNS inflammation and pleocytosis are
necessary to support ongoing replication in CD4+ T cells in
the CNS is unknown.

Microglia

Examinations of microglia and macrophages in the CNS
reveal that they are frequently infected by HIV-1 despite
expressing low levels of CD4 (Dick et al. 1997; Wang et al.
2002), levels that are well below those expressed on CD4+ T
cells in the blood (Dick et al. 1997). Assessing the relative
susceptibility of these two types of myeloid cells to HIV-1
infection is complicated by the fact that they express many of
the same surface markers. Prior to activation, these two cell
types are easily distinguished based on morphological differ-
ences, but activation by infection, trauma, etc. causes microg-
lia to take on macrophage-like characteristics (reviewed by
Kettenmann et al. 2011). Despite these similarities, the glu-
cose transporter 5 protein (GLUT5) is expressed on both
resting and activated microglia, but not on macrophages
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(Horikoshi et al. 2003; Maher et al. 1994; Vannucci et al.
1997), and has been used to stain microglia in healthy
(Kitamura et al. 2010) and damaged brains (He and Crews
2008; Kitamura et al. 2010; Sasaki et al. 2004). Similarly,
antibodies to the mannose receptor stain macrophages, but not
microglia, in inflamed and normal human (Fabriek et al. 2005)
and mouse brains (Galea et al. 2005). Given how difficult it is
to distinguish these cells by morphology and/or immunohis-
tochemistry, they are often identified based on their localiza-
tion within the CNS.

Microglia are the resident macrophages in the CNS. They
are the onlymyeloid cells located within the CNS parenchyma
(i.e., the brain tissue proper, which does not include the CSF
spaces, blood vessels, or meningeal coverings) (Ransohoff
and Cardona 2010) and they represent 5–20 % of the adult
brain cells (Polazzi and Monti 2010). In their non-activated or
“resting” state, the surface of microglia are made up of many
branched processes that are continuously surveying the brain,
but activation causes them to transition to an amoeboid,
macrophage-like appearance (Kettenmann et al. 2011). Recent
studies have shown that unlike most myeloid cells, microglia
are not derived from hematopoietic stem cells in the bone
marrow, but rather they are derived from precursors that
colonize the CNS during embryonic development (reviewed
by Perdiguero et al. 2013). Microglia share many functions
with macrophages such as phagocytosis, secretion of proin-
flammatory cytokines, and antigen presentation (Polazzi and
Monti 2010), but they also have protective roles that promote
proper brain function and development (Tremblay et al. 2011).

HIV-1 has been shown to infect microglia both in vivo and
in vitro. At autopsy, infected microglia can be identified by
labeling brain tissue for HIV-1 RNA (Stoler et al. 1986; Wiley
et al. 1986) and/or protein (Cosenza et al. 2002; Neuenjacob
et al. 1993; Wiley et al. 1986). However, these analyses are
typically performed on subjects who died with severe
neurocognitive impairment and HIV-1 infection of microglia
may be less common earlier in disease. HIV-1 has also been
shown to infect microglia in culture (Albright et al. 2000;
Ioannidis et al. 1995; McCarthy et al. 1998; Watkins et al.
1990), but it is unclear how culturing these cells influences
their susceptibility to infection. Together, these studies pro-
vide strong evidence that microglia are susceptible to HIV-1
infection but provide little information about the frequency of
microglial infection in subjects that do not have severe
neurocognitive impairment.

It is clear that the viruses replicating in the CNS can make
an evolutionary transition from replicating in T cells to repli-
cating in macrophages or microglia. This transition can be
assessed by determining whether viruses replicating in the
CNS are well adapted to entering cells expressing low levels
of CD4 and whether viral RNA load decays slowly in the CSF
after initiation of antiretroviral therapy. One caveat of this
approach is that microglia and macrophages are both long-

lived cells with low surface densities of CD4. As a result,
replication in and adaptation to either cell type would likely
result in viral populations that decay slowly and are well
adapted to entering cells expressing low levels of CD4. In
our analysis of eight subjects diagnosed with HAD, we ob-
served five subjects with CSF viral populations that were
genetically distinct from virus in the blood (i.e., compartmen-
talized) (Joseph and Kincer unpublished data; Schnell et al.
2011), well adapted to entering macrophages and/or other low
CD4 cells (Schnell et al. 2011) and decayed slowly after
initiation of therapy (Joseph and Kincer unpublished data;
Schnell et al. 2009). This suggests that the CSF lineages had
been replicating in long-lived, low CD4 cells in the CNS
(either microglia or macrophage) for many generations to
allow evolution of this host range variant.

It is important to make a distinction about two different
circumstances under which cells with low levels of CD4 may
become infected. There is not an absolute block to infection of
CD4-low cells by R5 T cell-tropic viruses. These viruses will
infect MDMs in culture but at very low efficiency compared
to M-tropic viruses (K. Arrildt unpublished observation).
Thus, there could be low levels of infection of macrophages
in vivo throughout infection. Such levels may be enhanced by
juxtaposition of an infected T cell to a macrophage (cell–cell
transmission). However, this type of infection is distinct from
the situation where the virus actually evolves to infect cells
with low levels of CD4, i.e., macrophage tropism, signaling a
change in the predominant cell type that is being infected
locally.

Choroid plexus, meningeal, and perivascular macrophages

There are three types of CNS macrophages found outside of
the brain parenchyma: perivascular macrophages, choroid
plexus macrophages, and meningeal macrophages (Ransohoff
and Cardona 2010). These bone-marrow-derived macro-
phages are named for anatomical region in which they reside.
Perivascular macrophages reside in the perivascular
(Virchow–Robin) space of cerebral vessels and are likely to
be exposed to HIV-1 that crosses the BBB. In contrast, cho-
roid plexus macrophages are located in the stroma of the
choroid plexus on the peripheral side of the BCSFB. Thus,
choroid plexus macrophages are likely exposed to HIV-1 in
the blood being used to form CSF and meningeal macro-
phages would be exposed to HIV-1 that reaches the CSF. It
is unclear whether HIV-1 migrates readily between these
macrophage populations or whether they represent indepen-
dent sites of viral replication. These questions have been
addressed by experiments infecting macaques with highly
neurotropic SIV. One study identified genetically distinct viral
lineages in the meninges and brain parenchyma of animals
with normal disease progression, but failed to detect compart-
mentalization in animals that progressed rapidly (Matsuda
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et al. 2013). This indicates that viruses can replicate indepen-
dently at different anatomical sites or mix freely throughout
the CNS, and it provides suggestive evidence that these viral
states are associated with different outcomes.

Most of what we know about the susceptibility of CNS
macrophages to HIV-1 is based on immunohistochemistry of
autopsy tissue, which most often identify infection of
perivascular macrophages (Cosenza et al . 2002;
Fischer-Smith et al. 2001). Their position in the perivascular
(Virchow–Robin) space of cerebral vessels may increase their
exposure to HIV-1 and increase their probability of being
infected. This is consistent with the observation that
perivascular macrophages are productively infected more of-
ten than microglia both in humans with HAD (Fischer-Smith
et al. 2001) and inmacaques infected with SIV (Williams et al.
2001). Similarly there is some evidence of HIV-1 infection in
the meninges, although it is often localized to the perivascular
region (Lamers et al. 2011), suggesting that perivascular mac-
rophages are more often infected than other meningeal cells.
Two studies observed that 50 % of HIV+ subjects had infected
choroid plexus macrophages (Falangola et al. 1995; Petito
et al. 1999), but another study failed to find infected cells in
the choroid plexus (Zhou et al. 2008). Further, we (Joseph
et al. 2014; Schnell et al. 2011) and others (Gorry et al. 2001,
2002; Koyanagi et al. 1987; Li et al. 1999; Peters et al. 2004)
have shown that some CNS-derived HIV-1 Env proteins can
enter monocyte-derived macrophage in culture, though it is
unclear how closely cultured MDMs represent macrophage
in vivo. Together, these findings suggest that HIV-1 infects
different types of CNS macrophages in vivo and that HIV-1
can adapt to replication in these cells.

Astrocytes

Astrocytes are the most abundant cell type in the brain
(Nedergaard et al. 2003) and they express little or no CD4
(Harouse et al. 1989; Liu et al. 2004); also, there is no obvious
functional reason for this cell type to express CD4, so its
absence could be expected based on first principles. However,
several groups of researchers have identified the presence of
viral DNA in astrocytes, especially in autopsy samples taken
from subjects with HIV-associated neurological disease
(Nuovo and Alfieri 1996; Bagasra et al. 1996; Takahashi
et al. 1996). These initial observations were confirmed in
subsequent studies that showed in some areas of the brain up
to 10–20 % of astrocytes have viral DNA (Churchill et al.
2009), although in a non-productive infection (Churchill et al.
2006; Gorry et al. 2003; Thompson et al. 2004). These obser-
vations represent a challenge to put in the context of a virus
that requires the presence of CD4 for entry, including the M-
tropic variants (Joseph et al. 2014). One possible explanation
may lie in the recently appreciated capacity of astrocytes to
engage in phagocytosis in the context of removal of neuronal

debr is (Cahoy et a l . 2008; Chung et a l . 2013;
Tasdemir-Yilmaz and Freeman 2014). If these pathways were
also active in the context of cell death during CNS infection,
then evidence of HIV-1 in astrocytes could be coming from
cell debris of infected CD4+ cells.

The evolution of macrophage tropism in the CNS

There is clear evidence that HIV-1 replication in the CNS is
associated with neurocognitive impairment. However, our
understanding of this relationship has been limited by the fact
that HIV-infected cells can only be directly observed in au-
topsy tissue and may be difficult to detect if they are latently
infected, producing low levels of virus, and/or buried deep in
the tissue. Despite these limitations, a study of autopsy sam-
ples from 39 HIV+ subjects both on and off antiretroviral
treatment found that most had HIV-associated encephalitis
(HIVE) as characterized by features including multinucleated
giant cells, microglial nodules, astrocytosis, and myelin pallor
(Cherner et al. 2002). Of those subjects with neurocognitive
impairment in their last 18months of life, almost all had HIVE
(95 %) at autopsy (Cherner et al. 2002), and other studies have
shown that neurocognitive impairment is more common in
HIV+ subjects than in HIV− subjects (Antinori et al. 2007).
Thus, HIV-1 infected individuals often have elevated CNS
damage and neurocognitive impairment.

Macrophages and microglia are the predominant CD4-
expressing cells in the CNS and are known to be infected by
HIV-1 (see above). Further, we have shown that between 40%
and 70% of subjects with HAD havemacrophage-tropic HIV-
1 in their CNS (Schnell et al. 2011; Joseph and Kincer unpub-
lished data). This strongly suggests that infection of macro-
phages and/or microglia contributes to neurocognitive impair-
ment, making it essential to understand how and when
macrophage-tropic variants evolve and to develop methods
for identifying these variants.

As soon as 8 days after transmission, HIV-1 RNA can be
isolated from the CSF (Valcour et al. 2012), but it is unclear
whether the CNS is initially colonized by free virus or by
infected cells that subsequently release virus into the CNS/
CSF. In a subset of infected individuals, there is minimal CNS
viral burden early (Spudich et al. 2011; Sturdevant et al. under
review); thus, HIV-1 is likely entering the CSF/CNS at low
levels via incomplete partitioning of virus at the BBB, or
background levels of trafficking of immune cells, including
small numbers of infected CD4+ T cells. Often, HIV-1 viral
RNA loads within the CNS are elevated during primary
infection, and this can be associated with higher levels of
CSF pleocytosis (Sturdevant et al. under review). Thus, the
CNS viral burden early may result from the release of virus
from increased numbers of infected CD4+ T cells trafficking
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from the periphery into the CNS in response to local HIV-1
replication in the CNS or another inflammatory condition.

In the CSF of a subset of HIV-infected subjects, it is
possible to detect compartmentalized CSF viral populations
that are undergoing independent replication (Dunfee et al.
2006; Harrington et al. 2009; Ohagen et al. 2003; Pilcher
et al. 2001; Schnell et al. 2009). These CSF viral populations
are genetically distinct from virus in the periphery. Studies
using both heteroduplex track assays and single genome am-
plification have shown that compartmentalized CSF popula-
tions can be detected during primary infection (Harrington
et al. 2009; Schnell et al. 2010; Sturdevant et al. under
review), suggesting that viruses can begin replicating in the
CNS very early and in the absence of overt neurological
symptoms. CNS viral populations detected early are often
clonally amplified populations, observed in the CNS as early
as 2 to 6 months post-infection (Sturdevant et al. under
review), but can also be characterized by more genetically
diverse variants, indicative of persistent replication beyond a
single clonal amplification event (Schnell et al. 2010;
Sturdevant et al. under review). Additionally, in both vertical
(Sturdevant et al. 2012) and horizontal transmission
(Sturdevant et al. under review), CNS compartmentalization
can also be established via the early sequestration of one of
multiple transmitted variants in the CNS shortly after trans-
mission, with replication of a second transmitted variant

occurring predominantly in the periphery. We have shown
that viruses in the CSF during primary infection are unable
to efficiently infect cells expressing low levels of CD4
(Sturdevant et al. under review) and so are not adapted to
infect macrophages/microglia. Little is known about how viral
populations in the CSF transition from being R5 T cell-tropic
during primary infection to being macrophage-tropic in some
subjects late in disease.

Many groups have used env sequences from HIV-1
genomes isolated from macrophages or from the CNS of
patients with HIV-associated neurocognitive disorders to
locate the genetic determinants of macrophage tropism.
Although these studies have had some success in iden-
tifying genetic determinants that work in patient-
matched viruses, these same genetic changes do not
occur in all or even most other macrophage-tropic env
genes (Table 1), and a previous study found that the
genetic determinants of macrophage-tropism can be
complex and/or do not translate between patients (Rossi
et al. 2008). Because of this complexity, comparisons of
much larger sets of patient-matched macrophage- and
R5 T cell-tropic env sequences will need to be compiled
with differences tested as functional determinants before
we are able to develop a full understanding of the
evolutionary pathway(s) that create the macrophage-
tropic phenotype.

Table 1 Mutations proposed to confer macrophage tropism are not observed in a well-validated collection of macrophage-tropic clones

Env amino acid changes thought to convey macrophage tropism

Patient Tropism 153 167 238b 240 283 308 317 326 373 386 396

Consensus (sub. B) T cell E D P T T H F I M N* N*

Proposed mutation Macrophage Ga Na Kb Kb Nc,d Pe Ld (M→I)b Kf Xf, g, Xh

4013 T cell – – L R – P – – – – K

4013 Macrophage – – – – – – I – – – –

4051 T cell – – – – – P – – T – –

4051 Macrophage – – L K – P – – T T –

4059 T cell – N E K – N W – – – T

4059 Macrophage – N E K – S W – – – T

5002 T cell – – – – I – – T – – –

5002 Macrophage D – – – – – – – – – –

7115 T cell – – – K – – – – – – –

7115 Macrophage – – – K – – – – – – –

aMusich et al. (2011)
b Cashin et al. (2011)
c Dunfee et al. (2006)
d Duenas-Decamp et al. (2009)
e Thomas et al. (2007)
f Duenas-Decamp et al. (2008)
g Dunfee et al. (2007)
h Ouyang et al. (2014)
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Eradicating HIV-1 reservoirs in the CNS

HIV-1 infection of long-lived macrophage, microglia, and
astrocytes may present a major barrier to eradication strate-
gies. One such strategy for eradicating latent viral reservoirs is
to “shock and kill” them by inducing expression of latent
proviruses so that HIV-infected cells will be killed by virus
production or eliminated by the immune system (Archin and
Margolis 2014). The most promising method of inducing this
reservoir is the use of histone deacetylase inhibitors (HDACi)
(reviewed by Archin and Margolis 2014). Expression of HIV-
1 proviruses in latently infected cells is inhibited by
deacetylation of histones on the HIV-1 LTR (reviewed by
Wightman et al. 2012). The addition of HDACi facilitates
acetylation of histones and expression of the proviral genome.
A recent study found that addition of the HDACi vorinostat
increased HIV-1 expression approximately 5-fold in resting
CD4+ T cells isolated from the blood of HIV+ subjects who
were virologically suppressed by antiretrovirals (Archin et al.
2012). This finding suggests that HDACi may be able to
stimulate the latent reservoir which could subsequently be
targeted by “kill” strategies.

If a “shock and kill” strategy is developed that can effec-
tively induce latent reservoirs in the periphery, it is still unclear
whether the same strategy would be effective at eliminating
latent cells in the CNS. The first barrier will be the develop-
ment of therapeutics that can reach the CNS. Studies examin-
ing the ability of vorinostat to treat Huntington’s disease
(Hockly et al. 2003) and cancer (Palmieri et al. 2009) suggest
it is able to reach the CNS in mice, but it is unclear whether it
could reach to human CNS at concentrations necessary to
induce HIV-1 reservoirs. In contrast, the HDACi belinostat
penetrates the CNS very poorly in macaques (Warren et al.
2008). A more fundamental question is whether HDACi are
able to induce HIV-1 expression in CNS cells. Vorinistat has
been shown to stimulate host gene expression in astrocytes
(Nuutinen et al. 2010), but testing of HDACi for induction of
HIV-1 expression in HIV-infected macrophage, microglia, or
astrocytes has not been reported. A final concern is whether
the immune system would be capable of eliminating HIV-
infected cells from the CNS after induction. This may be a
problem given the low concentration of T cells in the CNS.
Further, efforts to target T cells to that compartment could
damage the CNS.

Conclusions

Anew assay that provides a more quantitativemeasurement of
the ability of HIV-1 to enter cells with low levels of CD4 has
now provided a clearer view of macrophage-tropic variants.
This new view is forcing a reassessment of the role of
macrophage-tropic HIV-1 variants in transmission and disease

progression. The molecular determinants of macrophage tro-
pism are as yet poorly understood. This more rigorous defini-
tion of macrophage-tropic HIV-1 will allow an assessment of
the role these viruses play in the persistence of HIV-1 during
suppressive antiviral therapy.
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