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Abstract Infection with various human polyomaviruses
(HPyVs) is prevalent, with rates as high as 80 % within the
general population. Primary infection occurs during childhood
through respiratory or urino-oral transmission. While the ma-
jority of individuals exhibit asymptomatic latent infection,
those immunocompromised persons are at risk for viral reac-
tivation and disease progression resulting in conditions such
as progressive multifocal leukoencephalopathy (PML),
trichodysplasia spinulosa, Merkel cell carcinoma, and poly-
omavirus associated nephropathy. Individuals with altered
immune systems due to HIV, organ transplantation, lympho-
proliferative diseases, and monoclonal antibody therapy are
particularly susceptible to reactivation of various HPyVs.
While the specific factors that induce lytic infection have yet
to be defined, it is evident that dysfunctional host cellular
immune responses allow active infection to occur. Immuno-
suppressant conditions, such as in chronic alcohol abuse, may
serve as added risk factors for reactivation of HPyVs. Since
the human HPyV family is rapidly expanding, continuing
studies are needed to characterize the role that known and
newly discovered HPyVs play in human disease.
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Introduction

Human polyomaviruses (HPyVs) are small non-enveloped
double stranded DNAviruses believed to be acquired through
the respiratory system during childhood. Evidence of early
infection is seen in age related seroprevalence rates of Wash-
ington University polyomavirus (WUV), which infects 69 %
of the population with 44.6 % of children age 5 years and
younger carrying the virus (Kean et al. 2009). Overall, HpyVs
are prevalent in the general population, with seroprevalence
rates in adults as high as 90 %; however, disease only mani-
fests in immune compromised individuals (Carter et al. 2009;
Nguyen et al. 2009). HpyVs share common characteristics,
such as genome size and organization, but are unique in their
tissue tropism and associated pathology. The first two mem-
bers of the viral family, JC polyomavirus (JCV) and BK
polyomavirus (BKV), were discovered in 1971 from brain
and kidney tissues of immunosuppressed individuals
(Gardner et al. 1971; Padgett et al. 1971). Significant time
elapsed before additional viruses were discovered with the
help of newly developed techniques, such as rolling circle
amplification and transcriptome subtraction in conjunction
with high throughput sequencing (White et al. 2013). Current-
ly 12 distinct human-specific HPyVs have been discovered
(Korup et al. 2013).

Polyomavirus and diseases

The most frequently observed members of the viral family are
the BKV, JCV, Karolinska Institute polyomavirus (KI), WU, and
Merkel cell polyomavirus (MCV), but not all have been linked to
disease (Kean et al. 2009). A correlation exists between immu-
nosuppression and reactivation of JCV, BKV, MCV, and
trichodysplasia spinulosa-associated polyomavirus (TSV), lead-
ing to disease pathogenesis. BKV has been associated with acute
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interstitial nephritis and hemorrhagic cystitis in stem cell trans-
plant recipients (Kalvatchev et al. 2012). JCV DNA is signifi-
cantly increased in the kidneys and central nervous system
(CNS) in immunosuppressed individuals, with 42 % of immu-
nosuppressed patients having detectable JCV as compared to
21 % of immunocompetent patients (Delbue et al. 2010). JCV
is primarily associated with progressive multifocal
leukoencephalopathy (PML), a debilitating opportunistic infec-
tion that affects AIDS patients, and in rare cases occurs in
individuals undergoing immunosuppressive therapy. PML man-
ifests as dementia, confusion, and vision impairment resulting
from demyelination in the CNS (Bellizzi et al. 2012; Berger and
Houff 2006; Van Assche et al. 2005). BKV has been associated
with acute interstitial nephritis and hemorrhagic cystitis in stem
cell transplant recipients (Dalianis and Hirsch 2013). MCV, one
of the most recently discovered polyomaviruses, has been asso-
ciated with cellular transformation and development of an ag-
gressive form of skin cancer—Merkel cell carcinoma (Spurgeon
and Lambert 2013). An additional dermatrophic pathology re-
sults from TSV infection of hair follicles in immunocompro-
mised individuals and is characterized by facial spines and
papules often in conjunction with facial hair alopecia (van der
Meijden et al. 2010b).

Human polyomavirus replication and latency

Viral attachment requires specific cell surface receptors that
mediate entry into permissive cells and direct tissue trophism
(Schowalter et al. 2012). Permissive cells are capable of
supporting early and late stage viral protein production resulting
in active infection (White et al. 2013). Early and late coding
regions are initiated from a bidirectional regulatory region (Ault
1997). The early coding region is responsible for the production
of transforming proteins, large T-antigen, and small t-antigen,
which are produced in all HPyV members (DeCaprio and
Garcea 2013). The late coding segment is responsible for
structural protein production and, in the case of JCV and
BKV, a small multifunctional protein known as agnoprotein
(Khalili et al. 2013). The large T-antigen contains a DNA J
domain and an LXCXE motif which interact to promote effi-
cient viral replication and promote cell cycle progression
(DeCaprio et al. 1988). Viral replication is dependent on host
cell enzymes that are abundant in the S-phase of the cell cycle
(Traylen et al. 2011). In order to induce the expression of the
necessary enzyme, HPyV large T-antigen binds to the tumor
suppressor protein, p53, to induce proliferation and prevent
apoptosis associated aberrant cell cycle check points (Orba et
al. 2010). While this process can theoretically result in cellular
transformation, HPyVs generally induce host-cell lysis to re-
lease viral progeny. The mechanism of HPyV cell lysis has yet
to be characterized (White et al. 2009).

Not all cells that are infected with HPyVs undergo cell lysis;
in some of the virally infected cells, the virus remains in a latency
state with very low or no replication. Transcription of the late
coding region results in the production of viral capsid proteins,
VP1, VP2, and VP3. The transition from latency to active
replication can be detected by the presence of late transcription
genes, such as the viral capsid protein, VP1, and identification of
virons by electron microscopy (White et al. 2013).

The tissue tropism and mechanism of viral latency and
persistence remain poorly defined but likely vary within the
viral family, partially accounting for the differences in disease
observed upon reactivation. In cells unable to support late
coding products required for capsid formation, cellular trans-
formation can occur, as in the case of Merkel cell carcinoma
(MCC) cells, where knock-down of large T-antigen results in
diminished growth and cell death of transformed cells infected
with the MCV polyomavirus (Houben et al. 2010).

Human polyomavirus reactivation
and immunosuppression

While the primary infection with HPyVs is usually asymp-
tomatic, viral reactivation can occur in immunosuppressed
individuals resulting in active replication and disease devel-
opment. Reactivation of various HPyVs has been noted fol-
lowing immunosuppressive therapy (Chen et al. 2009). Ta-
crolimus and mycophenolate mofetil, immunosuppressive
drugs administered in coordination with organ transplants,
have been associated with increased polyoma reactivation
following transplantation (Hirsch and Steiger 2003). In addi-
tion, there was an increase in JCV from 19 % to 63 % in the
urine of patients after 12 months of natalizumab immune
suppressant therapy to combat symptoms of multiple sclerosis
and Crohn’s disease (Mengel et al. 2003).

Similar to other polyomaviruses, TSV reactivation occurs
under immune suppressed conditions resulting from lympho-
cytic leukemia and organ transplantation (Sadler et al. 2007;
van der Meijden et al. 2010a). Whereas reactivation is asso-
ciated with disease progression, increases in viral production
is not always associated with pathogenesis. For example,
asymptomatic viruria can occur in the late stages of pregnancy
and in the elderly who experience a decline in immune com-
petence (Vanchiere et al. 2009).

The exact facet of the immunosuppressive state responsible
for reactivation is yet to be characterized but probably relies
on a combination of replication-driven promoter rearrange-
ments and peripheral-stimulatory signals in concert with de-
creases in immune surveillance that manifest in the immuno-
compromised individual. Viral transcription is mediated by a
bidirectional promoter, known as the non-coding regulatory
region (NCCR), that contains binding sites for a multitude of
transcription factors (Ferenczy et al. 2012). Recombination
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events associated with the NCCR in JCVallow for adaptation
to different cell types and progression to virulence in the
context of immunosuppression (Johnson et al. 2013).
Rearrangment of NCCR sequences in JCV may occur within
lymphocytes, which are suspected to be viral reservoirs
(Chapagain and Nerurkar 2010). NCCR regulation of viral
replication is altered in MCV, which integrates into Merkel
cell carcinomas expressing a mutated large T-antigen gene
which disables viral replication due to the deletion of DBD
and Tag helicase domain. The resulting integrated viral ge-
nome is limited from replication but maintains expression of
oncogenic viral proteins such as the truncated large T-antigen
(DeCaprio and Garcea 2013; Feng et al., 2008).

While sequence alterations in the viral genome are charac-
teristic of JCV prior to the onset of PML, they have also been
detected in individuals who do not suffer from that debilitating
disease (Bag et al. 2010). This suggests that an additional
trigger is required for reactivation of JCV and, most likely,
all HpyVs. Immune mediators secreted by peripheral immune
cells may also modulate viral expression. SF2/ASF is an
alternative splicing factor that suppresses viral expression in
glial cells through binding of specific tandem repeats located
within the viral promoter. Secretory products from induced
peripheral immune cells increase expression of SF2/ASF,
limiting viral gene expression and replication (Khalili et al.
2013; Uleri et al. 2013). In addition, the NCCR also contains
binding sites for pro-inflammatory cytokines, suggesting a
possible mechanism for cytokine release in reactivation of
various HPyVs (Romagnoli et al. 2009).

An important aspect of immunosuppression that allows for
unmitigated viral reactivation is the decrease in the cellular
immune response. Studies investigating T-cell response to
JCV in PML have shown a correlation between impaired
CD8+ cytotoxic T-cell responses and a fatal progression of
PML (Du Pasquier et al. 2004; Gheuens et al. 2011). Another
study indicated that the number of JCV specific CD4+ T-cells
as well as immunoglobulin G (IgG) antibody responses were
significantly increased in PML survivors suggesting that T-
cell responsiveness and antibody production are essential to
combating polyomavirus infection (Khanna et al. 2009). A
correlation between T-cell response and IgG against TSV in
seropositive individuals also suggests the importance of both
facets of the immune response in control of TSV infection
(Kumar et al. 2012). Similarly, MCV specific CD8+ cells
appear to inhibit MCV reactivation thus, limiting progression
of oncogenesis through immune surveillance and IFN-γ
release (Iyer et al. 2011).

Human polyomaviruses and HIV

Human polyomaviruses have been associated with individuals
infected with the human immunodeficiency virus-1 (HIV-1)

(Degener et al. 1997). HPyVs are more prevalent in the
peripheral blood of immunocompromised HIV-positive pa-
tients compared to healthy individuals (Behzad-Behbahani
et al. 2004). HIV infection remains the primary risk factor
for JCV disease. JCV can be reactivated in patients with HIV-
1, leading to PML which predominantly affects individuals
afflicted with HIV, and characterizes some of the
neurocognitive impairments associated with AIDS. Addition-
ally, BKV viral load has been shown to increase as the levels
of CD4+ decrease in HIV infected individuals (Jiang et al.
2009; Knowles et al. 1999). The correlation between the
increase in PML and the AIDS pandemic suggests that the
reduction in CD4+ T-cells characteristic of HIV infection
could lead to a parallel unregulated JCV infection (Holman
et al. 1991).

The prolonged and severe nature of immune suppression in
the context of HIV is a primary factor in the increased occur-
rence of polyomavirus reactivation (Dörries 2002). Both the
CD8+ and CD4+ T-cell responses are suboptimal in the HIV
afflicted individual, allowing reactivation of latent infection
(De Gascun and Carr 2013). Reduced numbers of CD4+ TH1
cells are detrimental to anti-viral defense. Activated TH1 cells
produce a number of cytokines, including IL-2, IFN-γ, and
TNF-α, which defend against viruses either directly, by in-
ducing anti-viral state in nearby cells, or indirectly, by activat-
ing cytotoxic T lymphocytes (CTL) or natural killer (NK)
cells.

Another component of HIV that promotes opportunistic
infection is the transactivating viral protein, Tat, which in-
creases JCV transcription (Mischitelli et al. 2005). Addition-
ally, activation of JCV infection in the brain may involve
transcriptional activation caused by factors such as NF-κB
and C/EBPβ, which are persistently active in immune pathol-
ogies such as HIV (Romagnoli et al. 2009; Wollebo et al.
2011). The observed increase in cytokines, cell adhesion
molecules, and blood–brain barrier (BBB) defects induced
by HIV progression in the CNS may also facilitate the move-
ment of JCV-infected lymphocytes across the BBB
(Chapagain and Nerurkar 2010).

While no specific treatment exists against JCV reactivation
in HIV-positive patients, the use of highly active antiretroviral
therapy (HAART) is associated with immune reconstitution
and improved survival rates in individuals suffering from
PML (Kraemer et al. 2008). The introduction of HAART
improves immune response through increases in CD4 T lym-
phocytes and decreases in HIV viral load. The rise in CD4 T
cells is relevant to overall immune functioning and improved
outcome in PML patients but does not appear to be the only
contributor to positive PML outcome since many patients still
show limited improvement in neurological symptoms of PML
following HAART thearapy (Du Pasquier et al. 2001). Addi-
tionally some cases of PML develop after starting HAART
treatment, a phenomena known as unmasking (Sidhu and
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McCutchan 2010). It is likely that the initiation of a JCV
specific cellular immune response mediated by CTL’s, in
addition to the rise in CD4 T cells, is essential in prevention
of disease progression. Long-term clinical improvement in
parallel with JCV DNA clearance has been observed follow-
ing virus specific CTL infusion, illustrating the importance of
the CTL response in controlling JCV (Balduzzi et al. 2010).

Human polyomaviruses and alcohol abuse

Alcohol mediated immunosuppression could serve as a po-
tential risk factor for HPyV reactivation. Alcohol abuse has
been shown to suppress multiple immune system responses,
including cell-mediated viral detection and clearance, which
could enable viral reactivation in individuals immune com-
promised due to alcohol abuse (Brown et al. 2006). Mono-
cytes, which differentiate into macrophage at the site of infec-
tion, play an important role in clearance of invading patho-
gens. Prolonged alcohol exposure has been shown to modu-
late the anti-viral activity of monocytes by reducing produc-
tion of Type 1 interferon (IFN) which acts by targeting viral
protein synthesis (Pang et al. 2011). In addition, these IFNs
can induce an antiviral response or resistance to viral replica-
tion by binding to the IFN-α/-β receptor, thereby activating
the JAK/STAT pathway and the production of new transcripts,
one of which encodes an enzyme that leads to viral RNA
degradation. Viral inhibition of BKV by IFN has been exhib-
ited in vitro cultures of infected renal proximal tubule epithelia
cells (Abend et al. 2007). Similarly, renal transplant recipients
lacking IFN producing BKV-specific T cells developed BKV-
associated nephritis and increased BKV viral load associated
with the decreased IFN response (Comoli et al. 2004).

The CD8+ cytotoxic T cell responses critical to viral detec-
tion are also inhibited by alcohol due to alcohol-mediated
dendritic cell dysfunction. Dendritic cells are critical to antigen
specific T-cell activation. Ethanol exposure inhibits antigen

presentation by dendritic cells which limits the virus specific
adaptive response gained through CD8+ T cell activation and
contributes to an immunosuppressed state (Szabo et al. 2004).
Furthermore, the ability of cytotoxic CD8+ T cells to secrete
perforins and granzymes upon recognition of virally infected
cells is compromised through chronic alcohol exposure. The
importance of the cytotoxic T cell response is demonstrated by
viral progression that results from T cell exhaustion in individ-
uals with residual JCV infection. T cell exhaustion is prevalent
in chronic viral infections and limits the ability of T cells,
specifically CD8+ cytotoxic T cells, to proliferate in response
to antigen and to produce antiviral cytokines (Wherry 2011).
The ability of JCV to cause T cell dysfunction, in conjunction
with alcohol’s impairment of immunity against viral infections,
could facilitate viral reactivation. The regulatory receptor, PD-1
(programmed cell death), modulates immune Tcell exhaustion.
The binding of the PD-L1 and PD-L2 ligands to PD-1 prevents
CD8+ expansion and the production of IL-2, allowing for
unregulated viral replication (Goldberg et al. 2007). The PD-1
receptor is increased in both CD4+ and CD8+ Tcells in patients
with PML. Additionally, JCV-specific CD8+ Tcells express the
PD-1 receptor more frequently than nonspecific CD8+ cells
(Blackburn et al. 2010). When the PD-1 receptor is blocked
in a subset of individuals with PML, the JCV-specific immune
response appears to be enhanced by increasing the number of
CD8+ and CD4+ T cells, suggesting that a limited CD8+ im-
mune response, augmented by T cell exhaustion, could play a
role in the progression of polyomavirus infection (Blackburn
et al. 2010; Tan et al. 2012).

In addition to its detrimental effects on cytotoxic T cell
populations, alcohol decreases NK cell activity, which can
interfere with an individual’s ability to fight viral infections
(Andoniou et al. 2006). As a result, alcohol abuse increases
the risk for and the progression of chronic viral infections,
such as HIV-1. Chronic alcohol consumption during HIV-1
infection increases the serum viral load and promotes the
progression of the disease (Poonia et al. 2006).

Table 1 Immunosuppressant
drugs associated with HPyV reac-
tivation and mechanisms of action
(Bayliss et al. 2011; Carson et al.
2009; Van Den Brande et al. 2002)

Therapy Disease Mechanism of action

Rituximab B cell dysfunction

Lymphoma

Leukemia

Rheumatoid arthritis

Binding the B cell receptor CD20+ resulting
in apoptosis of CD20+ B cells in the periphery

Infliximab Crohn’s disease

Rheumatoid arthritis

Ulcerative colitis

Antibody specific for TNF-α resulting in
reduction of the cytokine and the TH1 cells
that produce the chemical messenger

Natalizumab Multiple sclerosis

Crohn’s disease

α4b1 and α4β7 integrin inhibitor resulting in
limiting of cell migration and infiltration

Efalizumab Psoriasis (withdrawn from
market in May 2009)

Targets T cell receptor CD11a resulting in decreased T
lymphocyte trafficking, downregulation of adhesion
molecule VLA-4 and T cell hyporesponsiveness
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The mechanisms of action induced by immunomodulatory
agents associated with polyomavirus activation provide in-
sight into facets of immune regulation that are paramount in
active HPyV infection (Table 1). Many of these identifying
immunosuppressant characteristics have also been document-
ed in response to alcohol abuse.

For instance, alcohol has been shown to suppress TNF-α
messenger in humans and rhesus macaques (Friedman et al.
2003; Stoltz et al. 2000). In addition, chronic alcohol con-
sumption has been shown to reduce the TH1 response similar
to infliximab therapy. Impaired TH1 responses resulting from
excessive alcohol consumption have been shown to exacer-
bate hepatitis C in humans and the retrovirus LP-BM5 which
causes an acquired immunodeficiency in mice (Jerrells 2002;
Meyerholz et al. 2008).

Organs especially sensitive to alcohol insult have been docu-
mented as sites of HPyVreplication. The liver is a primary site of
alcohol induced damage and is also a host tissue for JCV, MCV,
and the newly discovered, HpyV12, whose role in human health
has yet to be defined (Korup et al. 2013). Development of PML
has been described in two HIV negative patients with alcoholic
cirrhosis, demonstrating that alcohol based immune suppression
and associated tissue damage could serve as an unconventional
risk factor for reactivation (Gheuens et al. 2011).

Alcohol can also damage the integrity of the BBB,
allowing the movement of JCV-laden lymphocytes into the
CNS, which may be one mechanism of JCV dissemination
prior to the onset of PML (Atwood et al. 1992). In addition to
JCV, polyomaviruses KI and WU have been detected in the
brain of HIV-positive individuals who also commonly exhibit
increased BBB permeability, a result of HIV-induced neuro-
degeneration (Barzon et al. 2009; Persidsky et al. 2011).
Damage to the BBB shows similar characteristics in both
HIV-positive individuals and chronic alcohol abusers (Shiu
et al. 2007). Membrane permeability in the CNS, resulting
from continual alcohol exposure, could allow for movement
of polyomaviruses, and their reservoirs into the brain as has
been suggested for HIV-induced BBB dysfunction. Taken
together, alterations in host immune functioning in concert
with alcohol induced tissue damage provide evidence that the
burden of disease incurred through alcohol abuse should be
further investigated to determine the potential for reactivation
of the HpyV family resulting from alcohol-induced immune
suppression. HIV infection, a significant risk factor for poly-
omavirus reactivation, and alcohol abuse often occur together,
with 50% of HIV-infected individuals surveyed having heavy
alcohol intake (Samet et al. 2004). Alcohol exposure in HIV
patients has been associated with accelerated AIDS wasting,
diminished circulating CD4+ T cells, and accelerated disease
progression (Marcondes et al. 2008; Persidsky et al. 2011).
The combined effects of these immunosuppressive states may
put individuals at increased risk for polyomavirus associated
disease and reactivation of various HpyVs.

Conclusions and future directions

Immunosupression appears to be paramount in HPyV reacti-
vation. Due to the increasing use of immunosuppressant ther-
apy in autoimmune diseases and organ transplantation, the
frequency of disease resulting from infection of various
HPyVs is expected to increase. In addition, immunosuppres-
sion, one of the consequences of chronic alcohol abuse, may
facilitate persistent infection of various HPyVs (Molina et al.
2010). However, further studies are needed to elucidate the
precise mechanisms that are paramount to viral progression.
For instance, the ability of polyoma viruses to evade immune
responses and cause direct immunosuppression via the down-
regulation of MHC class I molecules, secretion of comple-
ment neutralizing factors, or production of anti-inflammatory
cytokine analogues, such as IL-10, remains to be addressed.
The recent discovery of a multitude of HPyV members sug-
gests that many more HPvVs are likely to be discovered. The
polyomvirus family may play a more significant role in public
health than previously expected as additional studies shed
light on the role of HPyVs in cancer and disease pathogenesis.
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