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Innate immune response to La Crosse virus infection
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Abstract Viral encephalitis represents a significant, and
costly, public health threat particularly for high-risk pediatric
populations. An emerging mosquito-borne pathogen endem-
ic to the United States, La Crosse virus (LACV) is one of the
most common causes of viral encephalitis in children in the
United States. However, no licensed therapeutics or vaccines
currently exist for treatment. Hampering development ef-
forts, the host response to LACV and its role in disease
pathogenesis has only recently been examined. In this re-
view, we discuss the current understanding of innate immune
response in the context of viral pathogenesis and host sus-
ceptibility to LACV. In addition, we address the need for a
clearer understanding of the early host–virus interactions in
LACV infections as it relates to viral pathogenesis in the
central nervous system.
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Introduction

La Crosse virus (LACV) is a member of the genusOrthobunya-
virus, family Bunyaviridae that circulates throughout the eastern
and mid-western United States. LACV typically causes a mild,
febrile disease in the majority of infections; however, a subset of
pediatric patients develops acute meningeoencephalitis. LACV
represents the primary cause of viral encephalitis in children in
the United States with reported rates ranging from 5 to 8 % of
acute central nervous system (CNS) disease (Balfour Jr. et al.
1973; Haddow et al. 2009; Haddow and Odoi 2009). Incidence

of CNSmanifestations is highest in children under the age of 15,
and severe disease is associated with long-lasting neurological
sequelae. Adult infections may be limited to the periphery by an
earlier, more robust anti-viral immune response. However, de-
spite the well-established age-based susceptibility for LACVand
other encephalitic viruses, the means of preventing pediatric
susceptibility to viral invasion of the CNS is limited by poor
mechanistic understanding of age-related viral pathogenesis/
protection.

While annual incidence of human disease is between 20
and 30 cases per hundred thousand (Balfour Jr. et al. 1973;
Haddow et al. 2009; Haddow and Odoi 2009), the mild
nature of the majority of infections combined with the high
prevalence of LACV antibodies in human populations in-
dicates that infections are underreported (Grimstad et al.
1984; Szumlas et al. 1996a). Interestingly, analysis of HLA
diversity in patients with acute, LACVencephalitis indicates
an immunogenetic component may contribute to susceptibil-
ity to encephalitis (Case et al. 1993). However, other factors
including exposure to vector, dose of virus, and age of the
host also influence incidence, morbidity, and mortality
(Calisher 1994).

Viral genome and structure

LACV has a trisegmented negative strand RNA genome
which encodes small, middle, and large segments responsible
for production of the structural and non-structural proteins
(Schmaljohn and Nichol 2007). The L segment encodes the
RNA-dependent RNA-polymerase necessary for viral RNA
replication and mRNA synthesis. The M segment encodes the
viral glycoproteins, G1 and G2. The two glycoproteins enable
viral attachment and entry into the host cell and are considered
important determinants of virulence (Gonzalez-Scarano et al.
1988; Gonzalez-Scarano et al. 1985). The S segment encodes
the nucleocapsid protein (N) and the non-structural protein
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(NSs). NSs inhibits the host anti-viral response (Gonzalez-
Scarano et al. 1988; Gonzalez-Scarano et al. 1985). The
genome of LACV is genetically stable; however, specific
amino acid differences in RNA polymerase have been asso-
ciated with human isolates and may influence viral pathogen-
esis in humans (Bennett et al. 2007).

Viral transmission and dissemination

The widening geographic range of host and vector combined
with the severe clinical symptoms in pediatric populations
make LACVan important emerging infectious disease in the
United States (Lambert et al. 2010; Leisnham and Juliano
2012). LACV circulates between the primary mosquito vec-
tor Aedes triseriatus and several small mammal species
(Scheidler et al. 2006; Szumlas et al. 1996b; Watts et al.
1974). Recently, other mosquito vectors including Aedes
albopictus and Aedes japonicus have been identified indicat-
ing potential for an expanded geographic range for LACV
infections (Jones et al. 1999; Lambert et al. 2010; Leisnham
and Juliano 2012; Reese et al. 2010).

Humans become infected following the bite of an infected
mosquito. The two viral glycoproteins mediate host cell at-
tachment and the initial steps of viral replication. In mamma-
lian cells, LACVenters via clathrin-mediated endocytosis and
Rab-5-mediated trafficking to early endosomes (Hollidge
et al. 2012). Dissemination of virus to the CNS is hypothe-
sized to occur following robust replication in peripheral tissue
leading to serum viremia that transmits virus to the brain
(Griot et al. 1994; Janssen et al. 1984a). Although the route
of LACV entry to the CNS is not clearly defined, one entry
mechanism may be the direct infection of the olfactory epi-
thelium (Bennett et al. 2008).

Most of the current understanding of transmission, dis-
semination, and pathogenesis of LACV in mammals has
been derived from murine models, although a few studies
have been completed in non-human primates (Bennett et al.
2008; Bennett et al. 2011). Suckling and weanling mice
develop encephalitis via multiple routes of infection includ-
ing intraperitoneal (ip), subcutaneous (sc), intranasal (in), or
intracerebral (ic) inoculation (Bennett et al. 2008; Hammon
et al. 1952; Janssen et al. 1984a; Johnson and Johnson, 1968;
Johnson 1983). However, mice older than 30 days are gen-
erally asymptomatic following peripheral routes of inocula-
tion mimicking age-related resistance seen in human popu-
lations (Table 1). Interestingly, direct ic inoculation in older
mice results in similar clinical disease to that seen in suckling
mice (Bennett et al. 2008; Johnson 1983). These models
suggest that limiting peripheral virus replication and/or access
to the CNS are key steps preventing LACV neurovirulence in
adults.

Generation and regulation of the type I IFN response
to LACV infection

The ability of the host to initiate an anti-viral environment is
a critical step in the prevention of viral pathogenesis. One of
the key antiviral events during LACV infection is the pro-
duction of type I interferons (IFN) including IFNα and
IFNβ. Both adult and weanling mice deficient in the type I
IFN receptor 1 (Ifnar1) are more susceptible to LACV-
induced neurological disease than wild-type mice (Table 2)
(Hefti et al. 1999; Operschall et al. 1999; Pavlovic et al.
2000). Furthermore, our recent studies demonstrate that de-
ficiency in the signal transduction molecules, interferon re-
sponse factors (IRF) 3 and 7, also leads to earlier onset of
LACV-induced neurological disease (Mukherjee et al.
2013). IRF3 and IRF7 are activated following stimulation of
pattern recognition receptors (PRRs), membrane bound or
cytoplasmic cellular receptors that recognize foreign particles
such as viral RNA, viral DNA, or bacterial components.
Studies in HEK cells and in cultured neurons demonstrate that
the cytoplasmic RNA-helicase PRR, RIG-I, is induced fol-
lowing LACV infection (Mukherjee et al. 2013; Verbruggen
et al. 2011). RIG-I binds to mitochondria anti-viral signaling
protein (MAVS) which then leads to the activation of IRF3,
IRF7, and NFκB, resulting in the production of type I IFN and
proinflammatory cytokine responses.

The type I IFN response is the best-characterized cytokine
response to LACV infection and has a direct anti-viral effect
reducing viral load and preventing neurological disease.
Early studies on LACV indicated that virus replication was
inhibited by stimulation of cells with poly I:C, a molecule
that activates PRR and leads to type I IFN production, or by
direct addition of IFN in primary human fetal glial cell
cultures (Luby 1975). IFN can induce anti-viral activity
through production of MxA, a GTPase with antiviral activity
against RNAviruses. MxA is a dynamin-like protein that has
multiple cellular functions including maintenance of cellular
homeostasis. MxA in cell culture reduced LACV viral titers
preventing accumulation of both viral transcripts and proteins
indicating an early mechanism of action (Frese et al. 1996;
Miura et al. 2001). In vivo, MxA confers resistance to
Ifnar1−/− mice to LACV infection and restricts LACV entry
to the central nervous system (Hefti et al. 1999).

MxA acts to reduce viral replication by binding and relocating
the nucleocapsid protein of LACV into membrane-associated
perinuclear complexes in a subcompartment of the smooth en-
doplasmic reticulum. These MxA–nucleocapsid complexes are
found in conjunction with both caspase recruitment domain-
containing protein 16 (COP-I) and vesicular tubular membranes
in the smooth endoplasmic reticulum (Reichelt et al. 2004).
zutation of MxA at the carboxy terminus inhibits binding to
the nucleocapsid protein, resulting decreased antiviral activity
against LACV (Kochs et al. 2002). Thus, a direct anti-viral effect
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for IFN-induced MxA is a key component of the host anti-viral
response.

Due to the importance of type I IFNs in regulating virus
replication and spread in the host, arboviruses universally
encode non-structural proteins that interfere with the type I
IFN response. During LACV infection, the NSs protein

indirectly antagonizes type I IFN signaling (Blakqori et al.
2007; Verbruggen et al. 2011). LACV inhibits IFN induction
in mouse fibroblasts; however, LACV mutants lacking NSs
did not (Blakqori et al. 2007). LACV containing a NSs
mutation is highly attenuated in wild-type mice, but not in
Ifnar1−/− mice indicating that the NSs has an important role

Table 1 Age-related resistance to LACV is dependent on route of infection

Route Strain Virus (source) Dosea Neonatesb Weanlingc Weanedd Reference

i.c. BALB/c LACV, Thompson, 1965 1E–01 100 % 50 % Janssen et al. 1984a, b

CD-1 LACV, Thompson, 1965 7E+02 100 % Janssen et al. 1984a, b

Outbred LACV, 192 strain 1E+03 100 % 100 % Johnson and Johnson
1968

i.n. Swiss Webster LACV/human/1960 1E+01 0 % Bennett et al. 2008

Swiss Webster LACV/human/1960 1E+03 100 % Bennett et al. 2008

i.p. CD-1 LACV, Thompson, 1965 1E–01 50 % Janssen et al. 1984b

Swiss Webster LACV/human/1960 1E+01 õ20 % Bennett et al. 2008

BALB/c LACV, Thompson, 1965 1E+03 50 % Janssen et al. 1984b

C57BL/6 LACV/human/1978 1E+03 100 % Mukherjee et al. 2013

Outbred LACV, 192 strain 1E+03 100 % 20 % 0 % Johnson and Johnson 1968

Swiss Webster LACV/human/1960 1E+03 100 % Bennett, 2008

129sv LACV, Thompson, 1972 1E+05 0 % Pavlovic, 2000

BALB/c LACV, Thompson, 1965 1E+05 50 % Janssen et al. 1984a, 1984b

CD-1 LACV, Thompson, 1965 1E+05 100 % 0 % Pekosz et al. 1995

s.c. CD-1 LACV, Thompson, 1965 7E+02 100 % Janssen et al. 1984a, 1984b

Outbred LACV, 192 strain 1E+03 100 % 0 % Johnson and Johnson 1968

a PFU/mouse, TCID50 per mouse in italics
b Twenty-four hours to 8 days of age, less than 3 days of age in bold, 8 days of age in bold italics
c Three to 4 weeks of age
d Four weeks or older

Table 2 Immune deficiency alters LACV pathogenesis

Deficiency Strain Route Virus (source) Dosea Age % clinical MTDb Reference

wildtype C57BL/6 ip LACV/human/1978 1E+03 3 weeks 100 % 6 Mukherjee et al. 2013

Irf3−/−,Irf7−/− C57BL/6 ip LACV/human/1978 1E+03 3 weeks 100 % 4 Mukherjee et al. 2013

Myd88−/− C57BL/6 ip LACV/human/1978 1E+03 3 weeks 93 % 8 Mukherjee et al. 2013

Mavs−/− C57BL/6.129 ip LACV/human/1978 1E+03 3 weeks 90 % 6 Mukherjee et al. 2013

Sarm1−/− C57BL/6 ip LACV/human/1978 1E+03 3 weeks 60 % 9 Mukherjee et al. 2013

wildtype C57BL/6 ip rLACV 1E+04 3 weeks 80 % 6 Blakqori et al. 2007

Ifnar1−/− C57BL/6 ip rLACV 1E+04 3 weeks 100 % 4 Blakqori et al. 2007

Ifnb1−/− C57BL/6 ip rLACV 1E+04 3 weeks 80 % 5 Blakqori et al. 2007

Ifnar1−/− C57BL/6x SJL ip LACV, Thompson et al. 1965 1E+05 6 weeks 94 % 7 Hefti et al. 1999

Mxa+/+, Ifnar1 −/− C57BL/6x SJL ip LACV, Thompson et al. 1965 1E+05 6 weeks 44 % 8 Hefti et al. 1999

wildtype 129Sv ip LACV, Thompson, 1972 1E+05 6–8 weeks 0 % – Pavlovic et al. 2000

Ifnar1−/− 129Sv ip LACV, Thompson, 1972 1E+05 6–8 weeks 100 % 8 Pavlovic et al. 2000

Ifnar1−/− 129Sv ip LACV, Thompson, 1972 1E+05 6–8 weeks 100 % 10 Schuh et al. 1999

a PFU per mouse, TCID50 per mouse in italics
bMean time to disease, extrapolated from graph in bold
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in controlling IFN response in vivo (Blakqori et al. 2007).
NSs acts by degrading transcription of RNA polymerase II
subunit RBP1. RBP1 is induced following RIG-I recognition
of the virus, causing host cell transcriptional shutdown and
prevention of type I IFN production (Verbruggen et al.
2011). Thus, virus replication and spread in the host can be
regulated both by the host’s ability to mount an effective type
I IFN response to LACV infection as well as by the ability of
LACV NSs protein to limit the generation of that type I IFN
response.

Protective and pathogenic contributions of the innate
immune response to LACV in the CNS

Once the virus reaches the CNS, the precise role of type I IFN
is less well understood. In the CNS, LACV primarily infects
neurons ultimately causing cell death associated with neuronal
degeneration, apoptosis, and necrosis (Balfour Jr. et al. 1973;
Janssen et al. 1984a; Johnson and Johnson, 1968; Johnson
1983; Jortner et al. 1971; Kalfayan 1983; Pekosz and
Gonzalez-Scarano 1996; Pekosz et al. 1996; Thompson and
Evans 1965; Thompson et al. 1965). Neurons are equally
susceptible to infection regardless of age of the host though
distribution of viral antigen and lesions differs in the brain
(Hammon and Reeves 1952; Hammon et al. 1952; Janssen
et al. 1984b; Johnson and Johnson, 1968; Johnson 1983). CNS
glia do not appear to be susceptible to LACV infection. Type I
IFN expression correlates with the kinetics and distribution of
viral antigen (Delhaye et al. 2006; Lienenklaus et al. 2009). A
subset of neurons, macrophages, and ependymal cells can
produce type I IFN following LACV infection and recently
both astrocytes and microglia were identified as IFN-β-
producing cell types in the CNS of LACV-infected mice
(Delhaye et al. 2006; Kallfass et al. 2012). In addition, both
neurons and other CNS cells can respond to type I IFN
(Delhaye et al. 2006). However, our studies with cultured
cortical neurons from Ifnar1−/− or Irf3−/− Irf7−/−mice indicates
that neurons underwent LACV-induced cell death at a similar
rate to wild-type neurons suggesting that the type I IFN re-
sponse may not have an autocrine protective effect (Mukherjee
et al. 2013).

Instead of being protective, our recent studies indicate that
the activation of the RIG-I and MAVS signaling pathway in
neurons contributes to neuronal apoptosis during LACV
infection (Fig. 1). Activation of RIG-I leads to the activation
of MAVS at the mitochondria and mitochondrial-associated
membranes. The subsequent signaling pathway in LACV-
infected neurons leads not only to the production of type I
IFN, but also induces the upregulation of the adaptor mole-
cule SARM1 (Mukherjee et al. 2013). SARM1 is normally
expressed in the cell bodies of neurons and has an active role
in dendrite formation (Chen et al. 2011). However, increased

expression of SARM1 in neurons, during virus infection,
axonal damage, or oxygen glucose depravation, can result
in cell death (Kim et al. 2007; Mukherjee et al. 2013;
Osterloh et al. 2012). Neurons from Sarm1−/−-deficient mice
or treated with Sarm1 siRNA have reduced incidence of cell
death following LACV infection compared to neurons from
wild-type controls, despite similar amounts of viral RNA
(Mukherjee et al. 2013). Similar results were also observed
in vivo, where Sarm1−/−-deficient mice developed clinical
disease at a reduced rate compared to wild-type controls
(Table 2) (Mukherjee et al. 2013).

We found that SARM1-mediated cell death during LACV
infection is associated with mitochondrial localization of
SARM1, production of reactive oxygen species, mitochon-
drial damage, and apoptosis. Deficiency in SARM1 inhibited
the oxidative stress response to LACV infection both in vitro
and in vivo (Mukherjee et al. 2013). A mitochondrial medi-
ated mechanism of neuronal death by LACV correlates with
the finding that human BCL-2 expression, which inhibits
mitochondrial pathway of apoptosis, reduces the cytopathic
effects of LACV infection in cell culture systems (Pekosz
et al. 1996).

Other components of the innate immune response may
also influence viral pathogenesis following viral infection of
the CNS. A proinflammatory cytokine response is induced
following infection with LACV in both the periphery and the
brain with production of IL-6 and IL-12p40 in serum and
these in addition to IL1α, IL-1β, and several chemokines in
the brain (unpublished observations). Similar cytokine pro-
files have been demonstrated for other encephalitic viruses
and associated with viral pathogenesis particularly in the
CNS (Cho and Diamond 2012; Gray et al. 2012; Taylor
et al. 2012). Administration of IL-12 or GM-CSF encoded
by a plasmid prior to LACV infection Ifnar1−/− mice in-
creases survival rates suggesting a protective role
(Operschall et al. 1999; Pavlovic et al. 2000). However,
production of these factors may also contribute indirectly to
CNS infection. For example, proinflammatory cytokine ex-
pression may impact permeability of the blood–brain barrier
(BBB) and contribute to LACV infection of the CNS.
Compromising the BBBmay directly influence pathogenesis
by allow entry of virus or virus-infected cells into the brain.
Additionally, alterations to the BBB may influence the re-
cruitment of inflammatory cells to the CNS.

The types and mechanism of action of the cellular in-
filtrates in the brain may also be key in understanding the
pathogenesis of La Crosse virus infection of the CNS. His-
tological analysis of tissues from both mouse and humans
show leukocyte infiltration and perivascular cuffing of lym-
phocytes following LACV infection (Bennett et al. 2008;
Kalfayan 1983; Thompson et al. 1965). This includes focal
aggregates of macrophages and neutrophils as well as
perivascular cuffing of CD3+ lymphocytes (Bennett et al.
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2008; Thompson et al. 1965). The role of these cells in
LACV pathogenesis is not clear, although it may be similar
to other neurovirulent viruses. For example, in flavivirus
infection, both CD4+ T-cells and CD8+ T cells can control
virus infection and mediated viral clearance from the CNS
(Shrestha and Diamond 2004; Sitati and Diamond 2006). In
contrast, natural killer cells contribute to pathogenesis in a
murine model of alphavirus infection (Taylor et al. 2012).
Examining the recruitment of inflammatory cells into the
CNS and the effect of these cells on LACV replication and
neuronal damage in the brain and spinal cord will provide a
better understanding of how the innate immune response
influences viral pathogenesis.

Conclusion

The innate immune system supports both pathogenic and
protective mechanisms following infection and, as such, rep-
resents a paradigm for the host response to viral infection.
Complicating the functional picture of the innate immune
response, the same response may elicit different tissue-
dependent effects. For instance, peripheral stimulation of

anti-viral recognition pathways leads to production of type I
IFN responses which inhibit viral replication, control LACV
infection and possibly affect the ability of virus to infect the
CNS (Blakqori et al. 2007; Hefti et al. 1999; Pavlovic et al.
2000; Schuh et al. 1999). However, activation of the same
signaling pathway in the context of the CNS contributes to
neuronal cell death (Mukherjee et al. 2013). Thus, activation
of the same pathway in the periphery and CNS results in
protection or pathogenesis respectively, and exemplifies the
dual nature of the immune system in the CNS.

Understanding the contribution of the type I IFN response
to disease in specific tissues is critical and may explain key
epidemiological features of LACV infection. The protective,
peripheral type I IFN response may contribute to age-related
resistance. For instance, adult Ifnar1−/− mice are highly
susceptible to peripheral infection, and adult wild-type mice
are not (Table 2). Thus, age-related resistance to LACV may
depend on a strong peripheral type I IFN response. The cells
in the periphery producing type I IFN, the signaling mole-
cules and receptors inducing type I IFN signaling, and the
subsequent downstream effects have not been explored. Fur-
thermore, while NSs inhibits type I IFN, the more global
effects of LACV infection in vivo on the type I IFN system

ROS generation
mitochondrial damage

caspase 3

Mitochondrion

SARM1

JNK3 ATP
synthase

MAVS

cell death

LACV
Virus

Fig. 1 Bunyavirus infection activates RIG-I signaling pathways in
neurons. RIG-I activation leads to induction of the MAVS signaling
pathway MAVS signaling leads to upregulation of type I IFN and

SARM1 in neurons SARM1 localizes with MAVS at the mitochondria
inducing an oxidative stress response leading to neuronal apoptosis
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are poorly understood (Blakqori et al. 2007). Examining the
peripheral innate immune response between susceptible,
young mice and resistant, older mice may result in a greater
understanding of why LACV-induced neurological disease
is age restricted.

In contrast, the innate immune response in the CNS appears
to be a contributing factor to the disease process. In the CNS, as
opposed to the periphery, the activation of the innate immune
response leads to neuronal apoptosis through MAVS-induced
expression of SARM1(Mukherjee et al. 2013). Thus, themeans
or ability of the innate immune response in the CNS to protect
against neuronal damage requires further study. Understanding
this mechanism of innate immune-induced autonomous neuro-
nal damage should provide insight into potential therapeutic
targets to limit neuronal damage during virus infection. Fur-
thermore, determining if SARM1-mediated cell death is only
limited to infected neurons or whether activation of the innate
immune response also induces death pathways in uninfected
neurons through activation of other PRRs will be important.
Several studies have shown that TLR stimulation of neurons
can induce apoptosis in the absence of infection (Lehnardt et al.
2003; Ma et al. 2006). This suggests that a proinflammatory
environment may lead to the generation of damage-associated
molecular patterns that contribute to the disease process.

Some of the influence of the innate immune response on
LACV pathogenesis may be inferred from other encephalitic
viruses; however, distinctions between different encephalitic
viruses limit our ability to predict the influence of a particular
pathway to disease development. The ability of viruses to
manipulate the innate immune system through viral proteins
may partially explain the divergent nature of responses. Viral
proteins often target the type I interferon response, but they
inhibit this response using different mechanisms that may alter
the overall host inflammatory response to virus infection. Ex-
amining the influence of the host innate immune response to
different encephalitic viruses in the CNS will allow us to
develop a better understanding of inflammation in the brain.
While important in understanding the pathogenesis of individ-
ual viral infections, defining the innate immune responses in
the CNS will also provide a broader sense of the ability of cells
of the CNS to react to danger and damage signals as well as the
triggers that lead to specific protective or damaging pathways.
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