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Abstract Despite effective and widely available suppressive
anti-HIV therapy, the prevalence of mild neurocognitive
dysfunction continues to increase. HIV-associated neurocog-
nitive disorder (HAND) is a multifactorial disease with
sustained central nervous system inflammation and immune
activation as prominent features. Inflammatory macrophages,
HIV-infected and uninfected, play a central role in the
development of HIV dementia. There is a critical need to
identify biomarkers and to better understand the molecular
mechanisms leading to cognitive dysfunction in HAND. In

this regard, we identified through a subtractive hybridization
strategy osteopontin (OPN, SPP1, gene) an inflammatory
marker, as an upregulated gene in HIV-infected primary
human monocyte-derived macrophages. Knockdown of OPN
in primary macrophages resulted in a threefold decrease in
HIV-1 replication. Ectopic expression of OPN in the TZM-bl
cell line significantly enhanced HIV infectivity and replica-
tion. A significant increase in the degradation of the NF-κB
inhibitor, IκBα and an increase in the nuclear-to-cytoplasmic
ratio of NF-κB were found in HIV-infected cells expressing
OPN compared to controls. Moreover, mutation of the
NF-κB binding domain in the HIV-LTR abrogated enhanced
promoter activity stimulated by OPN. Interestingly, compared
to cerebrospinal fluid from normal and multiple sclerosis
controls, OPN levels were significantly higher in HIV-infected
individuals both with and without neurocognitive disorder.
OPN levels were highest in HIV-infected individuals with
moderate to severe cognitive impairment. Moreover, OPN
was significantly elevated in brain tissue from HIV-infected
individuals with cognitive disorder versus those without
impairment. Collectively, these data suggest that OPN
stimulates HIV-1 replication and that high levels of OPN are
present in the CNS compartment of HIV-infected individuals,
reflecting ongoing inflammatory processes at this site despite
anti-HIV therapy.
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Introduction

Despite suppressive anti-HIV therapy, the prevalence of
mild HIV-associated neurocognitive disorder (HAND)
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continues at high levels (Heaton et al. 2010; Simionia et al.
2010). There is a critical need to identify biomarkers and
better understand the molecular mechanisms leading to
cognitive dysfunction in HAND. Systemic activation of the
immune system remains a prominent feature of HIV infection
and also affects the inflammatory state of the central nervous
system (CNS; Kraft-Terry et al. 2010; Roberts et al. 2010).
Activated and/or HIV-infected monocytes trafficking across
the blood–brain barrier (Fischer-Smith et al. 2008) and
microbial translocation as a result of HIV infection and
damage to gut mucosa is thought to be a major source of
activating factors (Brenchley et al. 2006) and may play a role
in the development of HAND (Fischer-Smith et al. 2008;
Ancuta et al. 2008). Moreover, the effectiveness of anti-HIV
drug combinations to cross the blood–brain barrier varies
significantly and may contribute to viral persistence at this
site (Letendre et al. 2008; Best et al. 2009). HIV-1 has
evolved an array of strategies to counteract the host immune
response. HIV-infected monocytes and viral particles enter
the brain where they play a key role in the development of
HAND (Giulian et al. 1990; Pulliam et al. 1991; Kaul et al.
2001). While much has been learned about the neurotoxic
viral and host factors released from HIV-infected macro-
phages, a more complete understanding of key cellular
pathways that modulate HIV-macrophage interactions and
negatively impact neuronal function is needed.

In this regard, we used PCR-mediated subtractive
hybridization to enrich for mRNAs upregulated in HIV-
infected macrophages. Osteopontin (OPN, protein; SPP1,
gene), a cytokine-like phosphoprotein whose over-
expression in brain, cerebrospinal fluid (CSF) and plasma,
has been associated with neurodegenerative diseases
including Parkinson’s (Maetzler et al. 2007; Iczkiewicz
et al. 2006), Alzheimer’s (Wung et al. 2007; Comi et al.
2010), multiple sclerosis (Comabella et al. 2005; Vogt et
al. 2004), and non-human primate SIV models of HIV
infection (Roberts et al. 2003; Burdo et al. 2008) was
identified in this screen. We investigated the impact of
OPN on HIV replication using knockdown studies in
primary macrophages and in a surrogate cell culture model
that recapitulates the macrophage phenotype to study the
mechanisms by which OPN modulates the viral life cycle.
In addition, ex vivo analyses of OPN expression levels in
the CSF and brain tissue from HIV-infected individuals
with and without cognitive disorder as well as controls
was performed. We found that OPN plays a positive role
in HIV replication likely through a mechanism leading to
an increase in NF-κB activity. Moreover, we found that
OPN levels in the CSF of HIV-infected individuals were
significantly elevated compared to HIV negative control
subjects with non-inflammatory conditions. A significant
difference in the level of OPN in the CSF of HIV+

individuals with mild or moderately severe dementia was

found. Moreover, in HIV+ individuals with moderately
severe dementia, OPN levels were greater than that seen in
HIV-uninfected individuals with relapsing remitting mul-
tiple sclerosis. Western blot analyses on brain tissue
extracts revealed that OPN is significantly elevated in
those with moderate to severe cognitive disorder com-
pared to unimpaired subjects. Recent reports show that the
receptor for OPN is expressed on specific subsets of
neurons (Glezer et al. 2009). Collectively, these data
demonstrate that HIV infection leads to an increase in
OPN expression that is highest in the CSF and brain of
HIV-infected individuals with moderate to severe cogni-
tive impairment suggesting that OPN may play a role in
the development of neuronal dysfunction.

Results

OPN message is upregulated in HIV-infected macro-
phages Using a PCR-based subtractive hybridization ap-
proach we identified the candidate gene SPP1 encoding OPN
as an upregulated gene in HIV-infected macrophages. To
confirm the differential expression of SPP1, quantitative
PCR was performed on RNA isolated from HIV-infected and
uninfected macrophages using primers for SPP1 and 18S
rRNA as a normalization control for RNA input. OPN
mRNA was increased 1.5–1.8-fold in HIV-infected macro-
phages (one sample t test, p=0.0001, Fig. 1a). These results
confirm the subtractive hybridization results and suggest that
SPP1 message is upregulated in HIV-infected macrophages.

Knockdown of OPN in primary human macrophages inhibits
HIV-1 replication To determine the role of OPN in HIV
replication we used siRNAs directed against OPN to
knockdown its expression in primary human MDM. Two
of the anti-OPN siRNAs (SPP1 & SPP3) were not effective
in diminishing OPN expression and served as internal
negative controls for the Western blot analyses (Fig. 1b).
Two out of the four siRNAs (SPP4 and SPP6) used nearly
completely suppressed OPN expression as assessed by
Western blot (Fig. 1b). A scrambled siRNA control (Ctr)
was included to rule out inhibition of HIV replication due to
any non-specific type 1 interferon response. Under these
conditions, HIV replication was decreased nearly threefold
(p=0.0071, Fig. 1c) suggesting that OPN plays a positive
role in enhancing virus replication in primary MDM.

OPN enhances HIV-1 replication Our knockdown studies
suggested that OPN might have a stimulatory role in HIV
replication. To test this directly, we developed a rapid assay
to assess the impact of OPN on HIV replication by
expressing OPN in TZM-bl cells using recombinant
adenovirus. In contrast to macrophages, TZM-bl cells do
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not constitutively express OPN (Fig. 1d). Adenoviral
particles expressing the red fluorescent protein (RFP)
served as a negative control. HIV infectivity as reflected
by the number of GFP+cells and syncytium formation was
enhanced 2-fold in the presence of recombinant adenovirus
expressing OPN (Ad-OPN; p=0.0084, n=7; Fig. 1e and f).

In the reporter virus, GFP expression is under the control of
the HIV promoter and thus serves as a surrogate marker for
viral transcriptional activity (Brown et al. 2005). Analysis of
the mean fluorescent intensity of GFP expression revealed
significant increases (1.5–2-fold, p=0.0190, n=7) in HIV-
Ad-OPN- compared to HIV-only infected cells suggesting
enhanced transcription of the viral genome (Fig. 1f). TZM-bl
cells contain an integrated HIV-LTR promoter fused to the
beta-galactosidase gene hence allowing the quantification of
promoter activity. In HIV-Ad-OPN-expressing cells com-

pared to HIV-only or HIV-RFP infected cells, a two- to
threefold (p=0.0001) increase in HIV-LTR promoter activity
was detected (Fig. 1f). These data suggest that OPN plays a
positive role in stimulating HIV replication.

NF-κB activity is increased in HIV-infected cells expressing
OPN The HIV-1 LTR contains two conserved binding sites
for NF-κB that function to stimulate HIV transcription
(Nabel and Baltimore 1987). The induction of NF-κB in
HIV-infected TZM-bl cells expressing OPN could provide a
mechanistic explanation for the increases in viral replication
observed. To explore this possibility, the activation of NF-
κB was measured by examining the degradation of its
inhibitor, IκBα at the single-cell level to determine changes
in HIV-infected GFP+ cells (Fig. 2a–d; Noursadeghi et al.
2008). Quantitative image analyses showed that in HIV-
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Fig. 1 The role of osteopontin in HIV replication. a Quantitative PCR
for SPP1 and 18S rRNA message was performed on cDNA prepared
from HIV-1 SF162, and BaL and infected macrophages and controls.
A representative of two independent experiments with mean and
standard deviation with three different donors is shown. b Western
blot analysis for OPN and actin 48 h after transfection of macrophages
with anti-OPN siRNAs (SPP1, 3, 4, 6). c Scatter plots and graph:
quantification of GFP+ cells by flow cytometry. A representative of
two independent experiments with mean and standard deviation with
three different donors is shown. d Western blot analysis for OPN on

uninfected TZM-bl cells or cells infected with HIV and recombinant
adenovirus expressing OPN or red fluorescent protein (RFP). e
Increased replication and syncytia formation in TZM-OPN-
expressing cells infected with HIVR3Nef+GFP by fluorescent
microscopy and f quantified by flow cytometry (top graph). The
mean fluorescent intensity (MFI) of GFP expression in HIV-infected
cells or HIV-infected cells over-expressing OPN is shown in the
middle graph. Activation of the HIV-LTR-beta-galactosidase promoter
is shown in the bottom graph. Means and standard deviations are
shown

384 J. Neurovirol. (2011) 17:382–392



infected cells levels of IκBα were comparable to uninfected
cells. An 11% reduction of IκBα was seen in cells
expressing OPN suggesting that OPN alone can stimulate
signaling pathways involved in IκBα degradation (Fig. 2,
graph). In HIV-Ad-OPN infected cells a further reduction in
IκBα expression of 20% (p=0.0001) compared to unin-
fected cells was seen suggesting an additive effect of OPN
and HIV infection in the activation of IκBα degradation
(Fig. 2, graph). A threefold (p=0.001) decrease in IκBα
expression was also detected by Western blot analyses on
HIVSF162-infected, OPN-expressing cells compared to cells
infected with Ad-RFP (Fig. 2). Expression of OPN in HIV-
infected cells led to an 1.4-fold increase in the nuclear
translocation of NF-κB as reflected in the nuclear:cytoplas-
mic ratio of NF-κB in HIV-Ad-OPN infected cells
compared to uninfected cells (p=0.0001; Fig. 3a, graph).
To obtain more direct evidence for the putative modulation
of HIV transcription by OPN, HIV-LTR chloramphenicol
acetylase (CAT) reporter constructs having an intact or
mutated NF-κB site were co-transfected into TZM-bl cells

with control or a plasmid-encoding OPN. A significant
activation of CAT enzyme activity in the presence of OPN
expression was detected only when the LTR contained an
intact NF-κB site (Fig. 3b, p=0.0001). Together, these
results suggest that expression of OPN in HIV target cells
stimulates a signal transduction pathway leading to the
upregulation of NF-κB activity and, importantly, results in
the enhancement of HIV replication.

OPN levels are significantly increased in the CSF of
HIV-infected persons and exacerbated in those with severe
cognitive disorder While our in vitro data suggested that
OPN is increased in HIV-infected macrophages, we wanted
to determine whether such a change could be detected in
plasma and CSF from HIV-infected individuals with and
without cognitive disorder. We used stored CSF from the
Northeast AIDS Dementia (NEAD) Cohort, a group
containing individuals with advanced disease (Marder et
al. 2003; Sacktor et al. 2002; Table 1). The NEAD Cohort
was a longitudinal multicenter cohort study in which
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individuals underwent serial examination with neurocognitive
testing and body fluid sampling as reported previously
(Marder et al. 2003; Sacktor et al. 2002). The degree of
cognitive impairment was assessed using the MSK (Price
and Brew 1988). CSF samples from HIV-uninfected individ-
uals with either non-inflammatory or inflammatory diagnoses
were used as controls (Table 1). No significant differences in
OPN plasma levels of HIV-infected individuals with and
without cognitive disorder were found, but differences in
mean OPN concentration in the CSF were detected
(Fig. 4a). Mean OPN levels were significantly higher in
HIV-infected persons without cognitive disorder (MSK 0)
than in the CSF from uninfected persons with non-
inflammatory conditions (Table 1; p=0.05, Fig. 4a). In
persons with moderately severe HIV-associated cognitive
disorder (MSK 2), mean OPN CSF levels were significantly
higher than those with no or less severe impairment (p=0.01
to 0.05; Fig. 4a). Moreover, mean OPN CSF levels in the
MSK 2 group were significantly increased compared to CSF
levels from HIV-uninfected patients diagnosed with inflam-

matory diseases including relapsing remitting and secondary
progressive multiple sclerosis (p=0.001; Fig. 4; Table 1). No
biologically significant associations were found between
OPN levels and plasma or CSF HIV viral load, CD4 T-cell
count or age (Fig. 5).

OPN is increased in brain tissue of HIV-infected persons
with cognitive disorder Frozen brain tissue samples from the
occipital lobes were obtained from the National NeuroAIDS
Tissue Consortium (NNTC, Table 2, supporting data;
Morgello et al. 2001; Everall et al. 2009). The NNTC uses
the Psychiatric Research Interview for Substance and Mental
Disorders to define cognitive disorder. The NNTC’s primary
diagnostic diagnosis equates to the MSK rating scales as
follows: MSK 0=neurocognitively normal, MSK 0.5=
subsyndromic, MSK 1=possible or probableminor cognitive
motor disorder (MCMD) and MSK 2 to 4=possible or
probable HIV-associated dementia ranked by neurological
severity. Western blot analyses revealed a marked and
significant increase in OPN levels of persons with more
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Fig. 2 Single-cell analyses reveal that the NF-κB inhibitor IκBα is
decreased in HIV-infected cells expressing OPN. TZM-bl cells
infected with HIVR3Nef+GFP (green) were fixed and immunostained
for IκBα (red), nuclei with DRAQ5 (blue). a TZM-bl cells only; b
TZM-bl infected with Ad-OPN; (c) HIV-infected TZM-bl; d HIV-
infected TZM-bl expressing OPN. The relative normalized pixel
intensity of IκBα is shown (top right graph). All pictures were taken
on a LSM 510 Meta at the same pinhole and intensity settings. The

means and standard deviations of a representative of two independent
experiments are shown. Western blot analysis for IκBα is shown in
the middle panel and quantification shown in the bottom graph: HIV-
infected TZM-bl cells only (HIV) or co-infected with Ad-RFP
(HIVRFP) or Ad-OPN (HIVOPN); HIV-uninfected cells and exposed
to Ad-RFP (RFP) or Ad-OPN (OPN). A representative of two
independent experiments is shown
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severe HAND compared to HIV-infected individuals without
or with mild cognitive impairment (p=0.0387; Fig. 4b, c).
The HIV Nef protein plays an important role in viral
pathogenesis. However, we found that the increase in OPN
detected in brain tissues was not related to the presence or
absence of HIV Nef expression as no significant differences
in Nef levels were found between groups (Fig. 4b).

Discussion

Osteopontin is a 314-amino-acid protein first reported as a
secreted phosphoprotein (SPP1) upregulated in cells after
neoplastic transformation (Craig et al. 1988). It was also
described as the cytokine, early T-lymphocyte activation
marker-1 (Eta-1) involved in the induction of Th1-cell-
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Fig. 3 NF-κB activity is increased in HIV-infected cells expressing
OPN. TZM-bl cells infected with HIVR3Nef+GFP were fixed and
immunostained for NFκB (red) and nuclei with DRAQ5 (blue). a
TZM-bl cells only; b HIV-infected TZM-bl; c HIV-infected TZM-bl
expressing OPN; d TZM-bl infected with Ad-OPN; (I) the relative
normalized nuclear:cytoplasmic intensity of NFκB is shown. All
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LTR-CAT reporter constructs encoding an intact (pHIV-CAT) or
mutated NFκB (pDkB-HIV-CAT) binding domain and control (pRC)
or OPN-expressing plasmid (OPN). CAT protein was measured by
ELISA. The means and standard deviations of a representative of two
independent experiments are shown

Table 1 Clinical samples of the Northeast AIDS Dementia (NEAD) Cohort and the Johns Hopkins CSF Tissue Bank

Category Age (years)
Avg (dev)

Race (White/Black/
Hispanic/Other)

OPN ng/ml
mean (Dev)

CD4 cells/ml
Mean (Dev)

Plasma viral load log RNA
copies/ml Mean (Dev)

CSF viral load log RNA
copies/ml mean (Dev)

MSK 0 (n=21) 39.8 (5.0) 9/10/2/0 7,841 (2244) 107 (75) 4.6 (4.8) 2.5 (2.8)

MSK 0.5 (n=35) 38.3 (5.3) 10/22/3/0 7,862 (3059) 143 (93) 5.0 (5.3) 3.7 (4.1)

MSK 1 (n=33) 43.1 (7.4) 9/22/1/1 7,921 (4734) 149 (106) 5.1 (5.7) 3.2 (3.6)

MSK 2 (n=13) 45.8 (6.4) 1/12/0/0 12,317 (7023) 110 (100) 5.4 (5.7) 3.6 (4.2)

Inflammatory (n=30)a 51.8 (14.8) 23/6/1 5,765 (1471) n/a n/a n/a

Non-inflammatory
(n=27)b

43.4 (19.9) 16/9/1/1 4,805 (1558) n/a n/a n/a

aMultiple sclerosis (MS), relapsing remitting MS, secondary progressive MS, meningitis, and brachial neuritis
b Intracranial hypertension, pseudotumor cerebri, hydrocephalus, headaches, and migraine. Avg average, Dev standard deviation, n/a not applicable
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mediated immunity (Patarca et al. 1989). OPN is modified
post-translationally generating proteins in the range of
44–75 kDa on denaturing SDS-PAGE (Denhardt and Guo
1993). A thrombin cleavage site, when used, generates two
halves of OPN that retain distinct biological functions
(Ashkar et al. 2000). Interestingly, while OPN function
confers cellular immunity to intracellular pathogens such as
mycobacterial species, Rickettsia tsutsugamushi, Listeria
monocytogenes, Flavivirus, Rotavirus, and herpes simplex
virus type 1, its over-expression in autoimmune disorders
and hepatitis infection exacerbates disease (Lampe et al.
1991; Sato et al. 2005; Wong et al. 2005; Saito et al. 2007).
Interestingly, OPN was shown to promote the survival of
myelin-reactive T-cells by inhibiting the transcription factor
Foxo3a, activating NF-κB, and blocking genes regulating
apoptosis (Hur et al. 2006). Our study is the first to show that
OPN has a direct effect on HIV-1 replication. We found that
knockdown of OPN in macrophages significantly impairs

HIV replication suggesting, in contrast to several other
intracellular pathogens, a positive role for OPN. Indeed, our
data show that OPN significantly enhances HIV replication
and suggests that HIV has hijacked an OPN-mediated
signaling pathway leading to the activation of NF-κB to
enhance viral replication and spread. Based on our findings,
we would expect that OPN is acting on cellular pathways that
activate cells and in turn create a microenvironment more
efficient for reverse transcription and viral transcription. A
better understanding of the molecular mechanisms governing
OPN-HIV interactionmay allow the development of strategies
to interfere with virus replication in macrophages, a cell type
that serves as a persistent viral reservoir.

Inflammation is a prominent component of Parkinson’s,
Alzheimer’s, and multiple sclerosis CNS diseases that may
either proceed or result from the progression of neurodegen-
erative processes. HIV CNS disease is also characterized by
an enhanced inflammatory response with increased MCP-1,
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with stable neuropsychological diagnoses from the NNTC (Table 2,
supplemental data) were analyzed by Western blot for OPN and β3-
tubulin and quantified (c). HAD HIV-associated dementia, MCMD
minor cognitive motor disorder, Sub subsyndromic, Normal neuro-
cognitively normal, Cont control TZM-bl lysate. The Westerns were
also probed for the HIV Nef protein. A representative of three
independent experiments is shown
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IL-1β, IL-6, IFN-γ, IL-15, and glia cell activation (Kraft-
Terry et al. 2010). Evidence demonstrating that lentiviral
infection of the brain induces an increase in OPN was
recently reported for non-human primate models of SIV/HIV
infection (Roberts et al. 2003; Burdo et al. 2008). One study
reported that increased OPN levels in the plasma of HIV-
infected individuals correlated with cognitive impairment
compared to those without HAND, however, OPN levels in
the CSF did not differ between the groups (Burdo et al.
2008). In contrast to this study, we saw no significant
differences in levels of plasma OPN between neurocognitive
groups, but did observe increased levels in the CSF,
particularly in those HIV-infected persons with mild (MSK
1) and moderate cognitive disorder (MSK 2). One potential
explanation for the disparate results is that the OPN
transcript is subject to alternative splicing and can also be
cleaved into biological active N-terminal and C-terminal
halves. Commercially available ELISA kits used in the
Burdo et al. study are not designed to differentiate between
OPN variants. Indeed, we found significant variations in the
ability of commercially available mouse monoclonal anti-
bodies to serve as efficient capture agents in our ELISA.
Extensive variation in quantifying OPN levels using has
been reported (Anborgh et al. 2009).

Our finding that HIV infection of macrophages upregulates
OPN would suggest a potential mechanism by which OPN is
increased in vivo. In several pathological conditions in which
activated T-lymphocytes and macrophages play a role such as
rheumatoid arthritis, multiple sclerosis, inflammatory bowel
disease, and atherosclerosis, all are associated with high tissue
and plasma OPN. Monocytes, particularly the CD14+CD16+

subset, migrating from the bone marrow to blood to the
CNS, are believed to play a key role in seeding the brain

with HIV as well as contributing to inflammation at this
site (Koenig et al. 1986; Fischer-Smith et al. 2001;
Pulliam et al. 1997; Crowe et al. 2003). In this regard,
OPN is a known chemoattractant for monocytes and
additionally can prevent monocyte recirculation and
apoptosis (Burdo et al. 2007). Interestingly, Marcondes
et al., found that increased expression of the OPN receptor
CD44v6 on both CD14+CD16low and CD14+CD16hi

monocytes could distinguish among groups of animals
with or without SIV encephalitis (Marcondes et al. 2008).
These findings suggest a possible role of OPN in the
recruitment of activated monocytes to the brain. In this regard,
we found that OPN is significantly increased in brain tissue of
HIV-infected patients with cognitive disorder compared to
those with normal cognition. The cells responsible for
increased OPN expression in the brain would include macro-
phages and microglia; however, neurons can also produce the
protein (Yasuto et al. 2009). Moreover, specific subsets of
neurons were recently shown to express the OPN receptor,
CD44 suggesting the real possibility that OPN can directly
modulate neuronal function (Glezer et al. 2009).

Collectively, our data lend support for the idea that OPN
levels in the CSF and brain are exacerbated in those with
moderate HIV-associated dementia and might reflect the
accumulation of persistent inflammatory insults that lead to
neurodegeneration and neuronal dysfunction. Indeed, our
assay results suggest that similar levels of OPN would be
expected in side-by-side comparisons of CSF of patients
with HAND or multiple sclerosis. Although the incidence
of HIV-infected persons with severe cognitive disorder has
greatly decreased, early changes in the level of OPN in the
CNS may be indicative of the progression of inflammation
at this site and could potentially be used in combination
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OPN levels and plasma or CSF
HIV viral load, CD4 T-cell count
or age. Correlation analyses were
determined assuming sampling
from a Gaussian distribution.
Pearson r and R2 are indicated
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with other markers as an early indicator for probable CNS
dysfunction. Moreover, as HIV-1 infection can increase
OPN, the detection of elevated levels of this cytokine in the
CNS may be indicative of high levels of ongoing viral
replication at this site. In the HIV-R3Nef+GFP reporter
virus, the GFP gene is located in the Nef position followed
by an IRES element driving Nef expression. We have
shown in long-term cultures (60–78 days) of primary
macrophages infected with this virus that a subpopulation
of cells remain transcriptionally active and continue to
express GFP and Nef although they make no capsid protein
(Brown et al. 2006). Indeed, the early gene HIV Nef was
readily detected in brain tissue. Future studies will focus on
testing and exploring these ideas.

Materials and methods

Macrophage culture and subtractive hybridization Primary
human monocyte-derived macrophages were infected with
HIVR3Nef+GFP and harvested as previously described
(Brown et al. 2006). Total RNA was isolated from sorted
cells and amplified by long-distance PCR as directed by the
manufacturer (PCR-Select cDNA Subtraction Kit, Clontech).
Subtracted cDNAs were size- fractionated and subcloned into
the vector pCR2.1 and sequenced.

Quantitative PCR Quantitative PCR for SPP1 (accession
number BCO17387) and 18S rRNA (accession number
NT_167214.1) was performed using 2.5 pmol of each of
the following primers SPP1-F: 5′AGCGAGGAGTT-
GAATGGTG, SPP1-R: 5′GCTTGTGGCTGTGGGTT;
18S rRNA-F: 5′CTCAACACGGGAAACCTCAC and
18S rRNA-R: 5′AGACAAATCGCTCCACCAAC in a
25 μl reaction with Power SYBR green and analyzed
on the ABI Prism 7000 Sequence Detection System
(Applied Biosystems).

Knockdown of OPN in primary human macrophages Ma-
crophages differentiated for 5 days were detached, washed
twice with PBS, and resuspended at 2×105 cells/well in
10 μl/well of resuspension buffer and 50–80 pmol of
anti-OPN or the Allstars scrambled negative control
siRNAs in triplicates (Qiagen) and transfected using the
Neon Transfection System (Invitrogen). Transfection of
rhodamine-labeled negative control siRNA was used to
monitor the efficiency of RNA uptake. The macrophages
were infected with HIVR3Nef+GFP overnight at 48 h
post-transfection and harvested 3 days later and analyzed
by flow cytometry.

HIV replication assays TZM-bl cells were obtained from the
NIH AIDS Research and Reference Reagent Program from J.

Kappes and X.Wu and Tranzyme Inc. and cultured in DMEM
medium containing 10% FBS. TZM-bl cells (105) were plated
on fibronectin-coated 24-well plates and the next day
infected in triplicate for 3 h with 106 adenoviral particles
per well. The cells were then infected with HIVR3Nef+GFP
in DMEM/2%FBS/4 μg/ml DEAE-dextran overnight. The
next day, the inoculum was removed and replaced with 1 ml
of DMEM/10%FBS. After 48–72 h post-infection, cells were
harvested for flow cytometry.

Cloning of recombinant adenovirus The full-length SPP1
cDNA (OPN; Origene, TC127388) was cloned into
pAd/CMV/V5-DEST to generate replication defective
adenoviral particles expressing SPP1 (Invitrogen). Adenoviral
particles were purified using the VivaPack AdenoPure kit
(Sartorius), titered with the Adeno-X Rapid Titer Kit
(Clontech) and stored in aliquots at −80°C. Adenoviral-RFP
particles expressing DsRed2 were obtained from Vector
Biolabs.

Confocal microscopy and quantitative image analysis TZM-
bl cells were immunostained with anti-NF-κB antibody
(#436700, Invitrogen), or IκBα (cat# 4814, Cell Signaling),
and incubated for 3–5 min with a 1:50 dilution of DRAQ5
(Biostatus Limited). The normalized intensity values for
IκBα staining were calculated for three fields of confluent
cells using Image J software. The nuclear:cytoplasmic ratio
of NF-κB signal was calculated as described (Noursadeghi
et al. 2008). A median filter was applied followed by the
creation of threshold masks for the nuclear and cytoplasmic
regions of interest. The normalized intensity values for the
nuclei and cytoplasm were calculated and used to generate the
nuclear:cytoplasmic ratios and to allow comparisons between
experiments.

CAT ELISA TZM-bl were transfected using lipofectamine
2000 (Invitrogen) according to the manufacturers suggestion
with pHIV-CAT or pDkB-HIV-CAT (obtained through the
AIDS Research and Reference Reagent Program, Division of
AIDS, NAID, NIH: from Dr. Gary Nabel and Neil Perkins)
and pRC-CMV or a plasmid-encoding osteopontin (pCMV-
OPN, TrueClone, Origene). CAT enzyme protein was
quantified using an ELISA method (Roche). Protein concen-
tration was determined by Bradford assay (Biorad) and used
to normalize the CAT assay results.

OPN ELISA Plasma and CSF samples were obtained from
the Johns Hopkins Neurology Plasma and CSF Tissue Bank
and stored in aliquots at −80°C. Monoclonal antibody to OPN
(MAB194, Maine Biotechnology) was used at 5 μg/ml to
coat 96-well plates (Immubulon). Rabbit anti-OPN (FL-314,
Santa Cruz) served as the detection antibody at 1:1,000.
Recombinant OPN (R&D Systems) was used to generate the
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standard curves. All antibody incubations were performed in
PBS-1%Tween containing a protease inhibitor cocktail.
Antibody binding was detected with goat-anti-rabbit-HRP
and developed with TMB substrate solution. Samples were
assayed in duplicate and repeated two to three times. Data was
analyzed with one-way ANOVA, and Dunn’s multiple
comparison post test using Graphpad PRISM. Correlation
analyses were determined assuming that the values were
sampled from populations that follow a Gaussian distribution
by Pearson r and R2.

Western analyses Brain tissue was obtained from the
National NeuroAIDS Tissue Consortium (NNTC; Morgello
et al. 2001; Everall et al. 2009) and handled under
biohazard level 2 safety conditions as approved by the
Johns Hopkins Institutions Biosafety Office. Frozen tissue
was solubilized in 50 mM Tris pH 8.0, 150 mM NaCl, 1%
Triton X-100, 0.1% SDS, 5 mM EDTA, 1% sodium
deoxycholate, 10% glycerol, 1 mM DTT, protease inhibitor
cocktail and 10 mM sodium vanadate. Aliquots were stored
at −80°C. NuPAGE 4–12% SDS Bis–Tris gels were run in
MOPS buffer and blotted to nitrocellulose membranes
using the iBlot System (Invitrogen). ECL Plus reagents
(GE Healthcare) were used to develop the blots.
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