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Abstract
The black-footed cat (Felis nigripes) is the smallest felid of Southern Africa, endemic to the arid steppe and savannah habitats.
However, though threatened and characterized by decreasing sizes of its populations, a number of ecological, demographic,
sanitary, and genetic aspects, essential for the long-term conservation of the species, still remain poorly known. Non-invasive
genetic samplingmay represent an appropriate and cost-effective tool to fill this lack of information. Thus, for the first time so far,
we developed a protocol for species and individual identification of black-footed cats, starting from markers originally designed
for the domestic cat and from 23 non-invasively collected samples of captive-bred individuals. We then tested its genotyping
efficiency and reliability for future applications in non-invasive genetic monitoring programs of the wild populations. Most of the
samples (65%), corresponding to 15 individuals, were successfully genotyped at 316 bp of the mtDNA ND5 and at nine
autosomal microsatellites. We detected two black-footed cat mtDNA ND5 haplotypes that were clearly distinguishable from
all the other wild and domestic felids. All microsatellites were polymorphic and showed low error rates, probabilities of identity
< 0.001 and a mean observed heterozygosity HO = 0.68. Subsequent approximate Bayesian computation simulations confirmed
that black-footed cats and African and European wildcats likely experienced sequential population splittings that started during
the Late Pliocene and continued through the Early Pleistocene. Our study provided the first reliable and cost-effective molecular
multilocus characterization of non-invasively collected samples of black-footed cats. Though solely tested on captive-bred
individuals, our method could be applied to design and implement effective long-term monitoring and conservation plans of
poorly investigated black-footed cat wild populations.
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Non-invasive genetic sampling

Introduction

The black-footed cat Felis nigripes (Burchell 1824) belongs to
the order Carnivora, family Felidae, genus Felis (O’Brien and
Johnson 2007) and, based on genomic analyses (Li et al. 2016),
has been recently listed in the domestic cat lineage, which in-
cludes the African (Felis s. lybica; Felis margarita), Asian (Felis
s. bieti; Felis chaus) and European (Felis s. silvestris) wildcats,
together with the domesticated subspecies (Felis s. catus).
Conversely to the African and European wildcats, for the
black-footed cat to date, there are no evidences of inter-specific
hybridization in the wild (Sliwa et al. 2016), whereas there are a
few confirmed cases of black-footed cat x domestic cat hybrids
documented in captive conditions (Leyhausen 1979). The black-
footed cat is described as the smallest and rarest felid of Southern
Africa (Nowell and Jackson 1996; Sliwa 2008; Sliwa et al.
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2016), being distributed only in South Africa, Namibia, and
Botswana, with sporadic and marginal sightings in Zimbabwe
and Southern Angola (Macdonald and Loveridge 2010; Sliwa
et al. 2016). These factors, combined with the elusive and cre-
puscular behavior of this wild cat, have made it one of the least
studied African carnivores (Sliwa 2004): only few research pro-
jects have been conducted so far and some of the available data
are extrapolated solely from observations from captive individ-
uals (Wells and Egli 2004; Sliwa 2008; Oh et al. 2017).
Additionally, there is a still open debate about the possibility that
two morphologically distinct subspecies exist (Meester et al.
1986): a northern subspecies, Felis nigripes nigripes
(Shortridge 1931), native to the Kalahari, comprising South
Africa, Namibia, and Botswana, and a southern one, Felis
nigripes thomasi (Meester et al. 1986), described from the
Eastern Cape of South Africa (Olbricht and Sliwa 1997).
However, there are neither geographical nor ecological demarca-
tions between their ranges (Olbricht and Sliwa 1997; Renard
et al. 2015) and the differences in color, body size, and tail length
used to distinguish them could represent individual variation
detected in both captive and wild black-footed cats, rather than
indexes of taxonomic differentiations (Olbricht and Sliwa 1997).

Despite these knowledge gaps, the species is currently de-
scribed as vulnerable according to the International Union for
Conservation of Nature (IUCN) red list and included in the
Appendix I—threatened with extinction—by the Convention on
the International Trade of Endangered Species (CITES), mainly
due to the diffusion of overgrazing and extensive agriculture
throughout its distribution range, which can cause fragmentation
and degradation of its natural habitats and non-negligible declining
trends of the abundance of wild populations (Sliwa et al. 2016).

Thus, reliable data about black-footed cat presence, distribu-
tion, and population structure are fundamental to design sound
conservation strategies and effectivemanagement plans (Hedrick
and Miller 1992; Bonin et al. 2007). However, monitoring a
species so difficult to detect by classical surveyingmethods, such
as direct counting, camera trapping, telemetry, and genetic anal-
yses from captured individuals, is challenging because of the
difficult individual identifications and the low trapping success
(Caniglia et al. 2014; Kraus et al. 2015; Norman and Spong
2015; Viglino et al. 2016; Granroth-Wilding et al. 2017).
Moreover, the application of techniques that require animal cap-
ture and handling can represent an additional source of distur-
bance when frequently or incorrectly carried out, with possible
detrimental conservational consequences. Non-invasive genetic
sampling (NIGS) approaches, though they require accurate field
sampling strategies and are often based on low-quality or quan-
tity DNA, can provide a safe, efficient, and cost-effective alter-
native tool (Lukacs et al. 2007; Beja-Pereira et al. 2009), as
widely demonstrated for a number of other elusive species
(Wultsch et al. 2014; Velli et al. 2015; Kubasiewicz et al. 2017;
von Thaden et al. 2017; Verkuil et al. 2018). Well-planned and
extended NIGS programs allow to obtain from biological

samples such as hair follicles, feces, urine, saliva, and blood
traces, collected without any direct human contact with the ani-
mals; reliable individual multilocus genotypes which can be suc-
cessively used to estimate temporal trends of demographic (abun-
dance and survival); and genetic (genetic variability, gene flow,
inbreeding, relatedness, hybridization) parameters that would be
almost impossible to achieve with traditional field methods
(Waits and Paetkau 2005; Caniglia et al. 2014; Arandjelovic
and Vigilant 2018). Moreover, non-invasive genetic data can be
also used to clarify the systematic status of taxa and detect even-
tual cryptic species, subspecies, significantly differentiated pop-
ulations, or prioritymanagement units (Oliveira et al. 2010; Ruiz-
González et al. 2013; Adrados et al. 2018). Most non-invasive
genetic monitoring studies on felids were based on DNA obtain-
ed from trapped hair samples (García-Alaníz et al. 2010; Steyer
et al. 2013; Velli et al. 2015), which can be more easily collect-
able even by non-specialists (e.g., volunteers and park rangers)
with the aid of olfactory attractants (Jerosch et al. 2010), are less
prone than scat, urine, and saliva samples to DNA degradation
caused by environmental factors (Ruell and Crooks 2007) and
can represent a good quality DNA source also for genome-wide
SNP genotyping (von Thaden et al. 2017; Steyer et al. 2018).

In this pilot study, for the first time to date, we developed a
reduced panel of mitochondrial and nuclear molecular
markers, originally characterized in the domestic cat (Felis
silvestris catus; Menotti-Raymond and O’Brien 1995 and
Menotti-Raymond et al. 1999) and successfully amplified
across several felid taxa (Randi et al. 2001; Pierpaoli et al.
2003; Mattucci et al. 2013), and tested it on a small number
of hair DNA samples available from captive-bred black-foot-
ed cats aiming at their species and individual identification.

We further evaluated the reliability and efficiency of such small
multilocus marker panel in providing a preliminary description of
the genetic variability and substructure of this poorly studied spe-
cies. Since black-footed cats, European wildcats (Felis s.
silvestris), African wildcats (Felis s. lybica), and domestic cats
(Felis s. catus) are thought to have started to diverge during the
last three million years with a progressive decrease of their effec-
tive population sizes (Johnson et al. 2006), we tried to reconstruct
their phylogenetic relationships, past demographic scenarios, and
divergence times, comparing the genetic profiles of the analyzed
black-footed cats with published felid mtDNA sequences and
microsatellite genotypes of a representative sampling of these
three domestic cat lineage taxa (Li et al. 2016), previously typed
at the same nuclear marker panel (Mattucci et al. 2013).

Materials and methods

Sample collection and DNA extraction

Twenty-three shed hair tufts containing a large number of folli-
cles and found on the floor of their fences were individually
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collected from 23 captive-bred black-footed cats of unknown
geographical origins hosted at the Cat Conservation Trust
(Cradock) and at the Hoedspruit Endangered Species Centre
(Kapama Private Game Reserve) of the Republic of South-
Africa, for which no morphological data were provided by col-
lectors. No animals were hurt nor sacrificed for the purposes of
this study. Samples were stored at room temperature in dry boxes
containing regularly desiccated silica gel (Table 1). Total DNA
was automatically extracted in a MULTIPROBE IIEX Robotic
Liquid Handling System (Perkin Elmer, Heidelberg, Germany)
using the Qiagen DNeasy Blood & Tissue Kit (Qiagen Inc.,
Hilden, Germany) and following the manufacturer’s instructions
but with an initial overnight digestion at 56 °C with Protease K
and ATL lysis buffer and a final elution in 100 μL of the 10 μM

AE buffer. To check for robustness in the extraction, sequencing,
and genotyping procedures, two different hair samples were in-
dependently analyzed for two individuals.

Mitochondrial DNA sequencing

Each DNA sample was amplified by polymerase chain reac-
tion (PCR) at a 316-bp fragment of the mtDNA NADH dehy-
drogenase subunit 5 (ND5) containing diagnostic mutations
used by Johnson et al. (2006) to resolve the modern phylog-
eny of modern felid. Amplifications were performed in 10 μL
total reactions containing 2 μL of DNA solution, 1× PCR
buffer with 2.5 mM Mg2+, 0.3 μM of primers F2B (5′-
TGCCGCCCTACAAGCAAT-3′) and R3B (5′-TAAG

Table 1 Genetic identification of the DNA extracted from the black-footed cat hair samples

ID ISRAa ID sampleb Genderc ND5 mtDNAd Genotypee qi (90% CI) at K2f qi (90% CI) at K3g qi (90% CI) at K4hh

1683 Sample1 M H1 nd nd nd nd

1684 Sample2 M nd nd nd nd nd

1685 Sample3 M H2 nd nd nd nd

1686 Sample4 M H1 Bfc1M 0.998 (0.994–1.000) 0.996 (0.979–1.000) 0.994 (0.967–1.000)

1687 Sample5 M H2 nd nd nd nd

1688 Sample6 F H2 nd nd nd nd

1689 Sample7 F H1 Bfc2F 0.998 (0.993–1.000) 0.996 (0.977–1.000) 0.994 (0.964–1.000)

1690 Sample8 M H2 Bfc3M 0.997 (0.989–1.000) 0.994 (0.963–1.000) 0.991 (0.947–1.000)

1691 Sample9 F H1 Bfc4F 0.998 (0.994–1.000) 0.997 (0.980–1.000) 0.995 (0.969–1.000)

1692 Sample10 M H1 Bfc5M 0.998 (0.994–1.000) 0.996 (0.979–1.000) 0.995 (0.967–1.000)

1693 Sample11 M H2 Bfc6M 0.998 (0.993–1.000) 0.996 (0.978–1.000) 0.994 (0.966–1.000)

1693b Sample11b M H2 Bfc6M 0.998 (0.993–1.000) 0.996 (0.978–1.000) 0.994 (0.966–1.000)

1694 Sample12 F H1 Bfc7F 0.998 (0.993–1.000) 0.996 (0.975–1.000) 0.994 (0.962–1.000)

1695 Sample13 M H1 Bfc8M 0.998 (0.993–1.000) 0.995 (0.974–1.000) 0.993 (0.958–1.000)

1696 Sample14 F H1 Bfc9F 0.998 (0.994–1.000) 0.996 (0.979–1.000 0.995 (0.967–1.000)

1696b Sample14b F H1 Bfc9F 0.998 (0.994–1.000) 0.996 (0.979–1.000 0.995 (0.967–1.000)

1697 Sample15 M H1 nd nd nd nd

1698 Sample16 F? H1 Bfc10F 0.998 (0.994–1.000) 0.996 (0.980–1.000) 0.995 (0.968–1.000)

1699 Sample17 M? H1 Bfc11M 0.998 (0.994–1.000) 0.997 (0.980–1.000) 0.995 (0.969–1.000)

1700 Sample18 F H1 Bfc12F 0.998 (0.994–1.000) 0.996 (0.979–1.000 0.995 (0.968–1.000)

1701 Sample19 F H1 nd nd nd nd

1702 Sample20I M H1 nd nd nd nd

1703 Sample21 M H2 Bfc13M 0.998 (0.994–1.000) 0.997 (0.981–1.000) 0.995 (0.969–1.000)

1704 Sample22 M? H1 Bfc14M 0.998 (0.992–1.000) 0.995 (0.972–1.000) 0.993 (0.954–1.000)

1705 Sample23 M H1 Bfc15M 0.998 (0.993–1.000) 0.996 (0.977–1.000) 0.994 (0.963–1.000)

nd indicates information not detectable
a ID ISPRA indicates laboratory sample identification number
b ID Sample indicates field sample identification number
c Gender indicates the sex of each sampled individual: F, female; M, male
d H1 and H2 indicate the two haplotypes identified amplifying the 316-bp fragment of the mtDNA NADH dehydrogenase subunit 5 (ND5)
e Individual genotype acronyms (Bfc = black-footed cat, F = female; M =male) of each DNA sample determined at the nine unlinked microsatellite
markers analyzed
f, g, and h Indicate the proportion of membership of individual genotypes (qi) and their credibility intervals (90% CI) obtained from Bayesian clustering
analyses performed in STRUCTURE with K = 2, K = 3, and K = 4, respectively
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AGACGTTTAATGGAGTTGAT-3′; Driscoll et al. 2011) and
0.25 units of Taq polymerase (5 PRIME Inc., Gaithersburg,
USA). Amplifications were performed with an initial DNA
denaturation step at 94 °C for 2 min, followed by 45 cycles
of denaturation at 94 °C for 15 s, annealing at 55 °C for 15 s,
extension at 72 °C for 30 s, and final extension at 72 °C for
10 min. PCR products were purified using the exonuclease/
shrimp alkaline phosphatase procedure (Exo-Sap; Amersham
Life Sciences, UK) and sequenced in both directions using the
ABI (Applied Biosystems, Foster City, CA) Big Dye
Terminator kit v.3.1 with the following steps: 96 °C for 10 s,
50 °C for 5 s, 68 °C for 4 min of final extension (25 cycles).
Sequences were analyzed in an ABI DNA Sequencer
3130XL, corrected with the ABI software SEQSCAPE v.2.5
and aligned with the complete black-footed cat mtDNA ge-
nome (Felis nigripes; NCBI reference sequence: NC028309;
Li et al. 2016) using CLUSTAL W (Thompson et al. 1997) in
BIOEDIT (Hall 1999). DNASP v.5.10.01 (Librado and Rozas
2009) was used to identify identical haplotypes and, taking
into account for the presence of indels, to estimate haplotype
(Hd) and nucleotide (π) diversity. Detected unique haplotypes
were then compared for possible correspondences with homo-
logue feline sequences available from GenBank using BLAST

(Altschul et al. 1990).

Phylogenetic analyses

The detected mtDNA haplotypes were aligned with 18 homo-
logue felid sequences downloaded from GenBank (Online
Resource 1, Table S1) to evaluate the efficiency of the amplified
short ND5 fragment to distinguish black-footed cats from close-
ly related felid taxa. Such alignment was run in JMODELTEST2
(Darriba et al. 2012) to estimate the best nucleotide substitution
model through the Akaike information criterion (AIC) and to
construct in MEGA v.7.0 (Kumar et al. 2016) a Neighbor-
Joining (NJ; Saitou and Nei 1987) phylogenetic tree, which
was rooted using a servaline genet sequence (Genetta
servalina, GenBank access number KJ624980.1; Hassanin
2014) as an outgroup and whose internode supports were ob-
tained by 10,000 bootstrap replicates (Felsenstein 1985).

Microsatellite genotyping and error rate analyses

Nine feline-unlinked autosomal microsatellites (Fca126,
Fca132, Fca23, Fca26, Fca43, Fca149, Fca58, Fca88, Fca08;
Menotti-Raymond and O’Brien 1995; Menotti-Raymond
et al. 1997), chosen for their high variability among different
marker panels applied in some of the most recent studies on
wildcat population genetics and hybridization in Europe
(Pierpaoli et al. 2003; Oliveira et al. 2008; Anile et al. 2012;
Mattucci et al. 2015), were used to test their cross-species
amplification success and polymorphism in black-footed cats.

Microsatellites were amplified in three multiplexed reactions
using the QIAGEN Multiplex PCR kit (Qiagen Inc., Hilden,
Germany). Amplifications were carried out in 10 μL total vol-
ume, including 2 μL of DNA solution, 5 μL Qiagen Multiplex
PCR mix (Qiagen Inc., Hilden, Germany), 1 μL Qiagen Q solu-
tion, 0.3μL of 10μmol primermix for each primer pair (forward
and reverse) and RNase-free water up to the final volume.
Multiplexed amplifications were performed using an ABI
GeneAmp©PCR System 9700 and the following thermal pro-
files: 94 °C for 15 min, 94 °C for 30 s, 57 °C for 90 s, 72 °C for
60 s (45 cycles), followed by 5 min of final extension at 72 °C.

PCR products were analyzed on an ABI 3130XL automat-
ed sequencer and the allele sizes of the STR loci were estimat-
ed using the ABI ROX 350 size standard and the ABI soft-
ware GENEMAPPER v.4.0. DNA extraction, amplification, and
post-amplification procedures were carried out in separate
rooms reserved to low-template DNA samples, adding a blank
control (no biological material) during DNA extraction, and
blank (no DNA) and positive (known European wildcat-DNA
sample) controls during DNA amplification.

Following the multiple-tube approach described in Viglino
et al. (2016), hair DNA samples were amplified at the autoso-
mal STRs from four to eight independent times per locus.
After the first four replicates at the nine autosomal STR loci,
samples showing ≤ 50% positive PCR (PCR+) were
discarded. A reliability analysis was performed by the soft-
ware RELIOTYPE (Miller et al. 2002) on samples showing >
50% PCR+, and unreliable loci (at threshold R < 0.95) were
additionally replicated another four times. Only samples reli-
ably typed at all loci (R ≥ 0.95) were definitively accepted.

Consensus genotypes were reconstructed from the four–
eight replicates using GIMLET v.1.3.3 (Valière 2002), accepting
heterozygotes only if both alleles were seen in at least two
replicates, and homozygotes only if a single allele was seen in
at least four replicates. GIMLET was also used, following
Pompanon et al. (2005), to estimate PCR success rate (the num-
ber of successful PCRs divided by the total number of PCR
runs across samples), allelic drop-out (ADO) and false allele
(FA) and to match the detected genotypes to each other. The
probability of identity (PID) and the expected PID among full
sibling dyads (PIDsib; Mills et al. 2000; Waits et al. 2001) were
computed by GENALEX v.6.5 (Peakall and Smouse 2012).

Assignment tests and variability analyses

In order to evaluate the resolution power of our small STR
marker panel to distinguish closely related felid taxa belonging
to the domestic cat lineage (Li et al. 2016) and to confirm the
absence of any inter-specific introgression signal in the captive-
bred black-footed cat genomes, assignment tests and variability
analyses were performed together with themultilocus genotypes
of 18 domestic cats (Felis s. catus), 19 European wildcats (Felis
s. silvestris), 21Africanwildcats (Felis s. lybica; including seven
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Saharan and 14 Sardinian individuals), which were typed at the
same nine STR marker panel (Mattucci et al. 2013).

Patterns of differentiation among individual genotypes
were visualized through a multivariate analysis of principal
(PCA) and discriminant (DAPC) components computed with
the ADEGENET package (Jombart et al. 2008) implemented in
R v.3.4.4 (www.r-project.org, last accessed March 1,2017).

Additionally, multilocus genotypes were assigned to their
most likely taxon of origin using a Bayesian clustering model
(minimizing departures from HWE and LE in the genetic clus-
ters) implemented in STRUCTURE v.2.3.4 (Pritchard et al. 2000;
Hubisz et al. 2009). Four independent runs were performed for
increasing values of K (K from 1 to 10) using 1,000,000
Markov chain Monte Carlo (MCMC) iterations, after a burn-
in of 100,000 iterations, assuming no prior information (option
usepopinfo not activated), and choosing the admixture and in-
dependent allele frequencymodels, which are the most suitable
ones to describe populations whose allele frequencies are ex-
pected to be reasonably different from each other (Pritchard
et al. 2000; Hubisz et al. 2009). The highest rate of increase
in the posterior probability LnP(K) between consecutive K was
used to estimate most likely number of genetic groups K at
which we assessed the average (Qi) and individual (qi) propor-
tions of membership to each different cluster (Falush et al.
2003). The software CLUMPP v.1.1.1 (Jakobsson and
Rosenberg 2007) was used to concatenate the data from the
ten independent runs for each K value, and DISTRUCT v.1.1
(Rosenberg 2004) to graphically display the results. Based on
the mtDNA results, to search any eventual substructure, clus-
tering analyses were performed also running the black-footed
cat genotypes alone with K from 1 to 5, 1,000,000 Markov
chain Monte Carlo (MCMC) iterations, a burn-in of 100,000
iterations, the admixture and independent allele frequency
models, and the option usepopinfo activated or not activated.
In the former case, we assumed that individuals havingmtDNA
H1 andH2 (see BResults^) were a priori correctly identified and
assigned to their own clusters (popflag = 1).

Allele frequency by locus and group, observed (HO) and ex-
pected unbiased (HE) heterozygosity, mean (NA) and expected
(NE) number of alleles per locus, and number of private alleles
(PA) were estimated using GENALEX. F statistics and deviations
from Hardy-Weinberg (HWE) and Linkage (LE) equilibria were
computed in GENETIX v.4.05 (Belkhir et al. 1996–2004) using
10,000 random permutations to assess significance levels.

Approximate Bayesian computation

The efficacy of our nuclear marker panel was further tested by
performing approximate Bayesian computation (ABC) simula-
tions (Beaumont et al. 2002) implemented in the software
DIYABC 2.1.0 (Cornuet et al. 2014) using microsatellite
multilocus genotypes and excluding domestic cats, to model
plausible demographic scenarios and estimate divergence times

(in generations) among the black-footed cats, the European and
the African wildcat taxa used in the clustering analyses.
According to Johnson et al. (2006), the tree taxa diverged, with
a progressive decrease of their effective population sizes, ap-
proximately during the last three million years. Thus, we tested
three demographic scenarios (Fig. 1), assuming that the three
taxa split sequentially (i) without any bottleneck (scenarios 1),
(ii) with simultaneous bottlenecks after the split (scenario 2), or
(iii) with independent bottlenecks (scenario 3).

We ran 6 × 106 simulations for each scenario using uniform
prior distributions of the effective population size and time
parameters with default mutation settings. We selected the
following summary statistics for all the microsatellites: (a)
one sample: mean number of alleles, mean genetic diversity;
(b) two samples: mean number of alleles, mean genetic diver-
sity, FST (Online Resource 1, Table S2).

Scenarios were compared by estimating posterior probabil-
ities with the logistic regressionmethod in DIYABC using 1%
of the simulated datasets. For the best models, posterior dis-
tributions of the parameters were estimated with a logit-
transformed linear regression on the 1% simulated datasets
closest to the observed data. Scenario confidence was evalu-
ated by comparing observed and simulated summary statis-
tics. Finally, the goodness-of-fit of the posterior parameters for
the best performing scenario was tested via the model
checking option with default settings, and significance was
assessed after Bonferroni’s correction for multiple testing
(Rice 1989; Cornuet et al. 2014).

Results

Mitochondrial DNA analyses

From the 23 analyzed hair samples, we obtained 22 (96%)
reliablemtDNAND5 sequences of 316 bp that, after matching
in DNASP, corresponded to two haplotypes (Hd = 0.416; π =
0.013 ± 0.0063) differing for four polymorphic sites.
Haplotype H1 was shared by 16 individuals and perfectly
matched (pairwise identity 100%) to the black-footed cat hap-
lotype AF006400 described by Johnson and O’Brien (1997),
whereas the haplotype H2 was shared by seven individuals
and perfectly matched (pairwise identity 100%) to the black-
footed cat haplotype KP202277 described by Li et al. (2016).

The best fit evolutionary model for the alignment including
the 18 felid fragments and the two black-footed cat haplotypes
was the TrN + I + G with I = 0.4950, G category = 4, G
shape = 2.0620, and Kappa = 47. Though the limited number
of bp analyzed did not allow to achieve robust supports for
most internodes, the NJ tree clearly identified three main
clades roughly corresponding to the three main felid genus
Felis (clade A), Panthera (clade B), and Leopardus (clade
C), with the two black-footed cat haplotypes falling into the
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Felis subclade A2, but sharply distinguishable from all the
other taxa (Fig. 2).

Microsatellite genotyping and error rate

At the first step of the multi-tube protocol, three samples (13%)
were discarded showing PCR+ ≤ 0.50. Ten of the 20 samples
(50%) showing PCR+ > 0.50 were directly accepted showing
reliability scores R ≥ 0.95, whereas the other 10 samples (R <
0.95) were further amplified four times at unreliable loci, finally
allowing to obtain other five samples with R > 0.95. Thus, 15
samples (65%) were reliably genotyped at the nine autosomal
STRs and after regrouping procedures and error rate analysis
corresponded to 15 distinct genotypes (Table 1), showing an
average number of positive amplifications per locus of 0.71
(ranging from 0.87 to 0.40) and average error rates ADO =
0.073 (SD = 0.011) and FA = 0.021 (SD = 0.010). The nine an-
alyzed loci allowed to identify black-footed cat genotypes with
PID = 3.13 × 10−7 and PIDsib = 1.47 × 10−3, values low
enough to exclude to find by chance more individuals bearing
the same genotype in a small population. The pairwise similar-
ity analysis between individuals showed that no pair differed for

one or two allelemismatches, whereas at least two pairs showed
three mismatches, four pairs showed four mismatches, and the
other pairs more than 5 mismatches.

The genotypes of the two individuals that were reconstruct-
ed from two independent hair tuft samples regularly matched
one another (100%).

Assignment tests and variability analyses

The DAPC (Fig. 3) plot identified three main groups with the
black-footed cats clearly separated from the cluster of the
European wildcats and from the cluster including the
African wildcats and domestic cats, which were mostly over-
lapped (Fig. 3).

Multivariate analyses were clearly confirmed by the Bayesian
clustering procedures implemented in STRUCTURE that showed
progressive increase rates in the estimated posterior probability
LnP(D) of the clusters until K= 4 (Online Resource 2, Fig. S1).
AtK= 2, corresponding to the optimal number of genetic clusters,
the black-footed cats (mean estimated membership of population
to the assigned cluster Q1 = 0.998) were clearly separated from
the other three taxa (Fig. 4a), which clustered together (mean
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Fig. 1 Graphical representation of the three demographic scenarios in
simulated in DIYABC. Scenarios assumed that the three taxa split
sequentially (i) without any bottleneck (scenario 1; Fig. 1a), (ii) with
simultaneous bottlenecks after the split (scenario 2; Fig. 1b) or (iii) with
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Q2 = 0.997).AtK= 3 (Fig. 4b), the black-footed cats (Q1 = 0.996)
were clearly separated from both the European wildcats (Q2 =
0.993) and from the African wildcats and domestic cats (Q3 =

0.979), which were grouped in a same cluster. At K= 4 (Fig. 4c),
the black-footed cats were assigned to cluster 1 (Q1 = 0.994), the
Europeanwildcats to cluster 2 (Q2 = 0.988), the SardinianAfrican
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Fig. 2 Neighbor-joining (NJ)
mtDNA ND5 phylogenetic tree
computed in MEGA. The NJ tree
was obtained aligning the two
detected black-footed cat ND5
haplotypes with 18 homologue
felid sequences and was rooted
using a servaline genet sequence
(Genetta servalina) as an
outgroup. Bootstrap percentages
≥ 50% after 10,000 replicates are
shown. The four main clades A1,
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African wildcats and domestic
cats (bottom-left side of PC-I).
PC-I explains 85.29% of the total
genetic variability (see also the
PCA and the DA eigenvalue
histogram insert in the bottom
right side). PC-II, explaining
12.56% of the total genetic
variability, reinforces the main
distinction between the black-
footed cats and the other three
felid taxa (see also the density plot
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wildcats to cluster 3 (Q3 = 0.941), and the Saharan African wild-
cats together with domestic cats to cluster 4 (Q4 = 0.971). ForK>
4, the LnP(K) reached the plateau and no further interpretable
substructure was observed in the data (Online Resource 2, Fig.
S1). In any case, the analyzed black-footed cats showed no inter-
specific hybridization signal.

STRUCTURE results obtaining running the black-footed cat
genotypes alone did not show any trace of substructure or
correspondence with the two detected mtDNA haplotypes,
neither with the option usepopinfo activated nor with the op-
tion not activated (data not shown).

All the nine microsatellites were polymorphic in the four
sampled groups (Table 2) with a mean number of alleles per
locus of 8.67 ± 0.83 (range 5–13) in the domestic cats, 5.78 ±
0.46 (4–8) in the European wildcats, 8.33 ± 0.41 (6–10) in the
African wildcats, and 4.33 ± 0.37 (2–6) in the black-footed
cats (Table 2). Only 4 out of 135 identified alleles (2.96%)
were shared by all the four taxa, while the black-footed cats
shared 7 (5.18%) alleles with the domestic cats, 6 (4.45%)
with the European wildcats, and 4 (2.96%) with the African
wildcats. Conversely, among the 135 alleles described, 12
(8.89%) were species-specific for the domestic cats, 8
(5.93%) for the European wildcats, 13 (9.63%) for the
African wildcats, and 32 (23.70%) for the black-footed cats.

In a pairwise FST matrix of the genetic distances among
groups the black-footed cats were significantly (P < 0.001)

divergent from all the other felid taxa (FST > 0.40). The mean
HO was 0.68 ± 0.08 in the black-footed cats, ranging from
0.60 to 0.04 in the European wildcats to 0.73 ± 0.04 in the
domestic cats and 0.74 ± 0.03 in the African wildcats
(Table 2), all values not significantly (p values > 0.05; t test)
different from their expected heterozygosity values. No sig-
nificant departures from HWE were detected in the black-
footed cats and African and European wildcats, whereas mi-
crosatellite loci were significantly out of Hardy-Weinberg on-
ly in the domestic cats, due to fewer expected than observed
heterozygotes (significantly positive FIS; Table 2).

Approximate Bayesian computation

Approximate Bayesian computation simulations provided the
best support for scenario 1 (sequential population splitting with-
out bottlenecks), which clearly better performed than the other
two (Fig. 1; Online Resource 2, Fig. S2) and showed non-
significant P values for all the posterior parameters after
Bonferroni’s corrections (Online Resource 1, Table S3). The
posterior probability of the best scenario (Online Resource 2,
Fig. S2) was 92.65% (95% CI, 90.16–91.15) and did not over-
lap with scenarios 2 and 3 (Online Resource 2, Fig. S2) that
received equal, but considerably lower support (7.80, 95% CI,
7.34–8.25% and 1.55%, 95% CI, 1.41–1.69%). Under the best
scenario, the median values of the divergence time showed that
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Fig. 4 Bayesian clustering of the
black-footed cat, domestic cat,
and European and African wildcat
samples genotyped with nine
autosomal microsatellite loci
obtained by STRUCTURE assuming
a K = 2, b K = 3, and c K = 4
genetic groups. Each individual is
represented by a vertical line
partitioned into K colored
segments, whose length is
proportional to the individual
coefficients of membership in the
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number of genetic groups, the
black-footed cats and the other
three felid taxa cluster separately.
At K = 3, the three genetic groups
are composed by the black-footed
cats, the European wildcats, and
the domestic and African
wildcats. At K = 4, the Sardinian
African wildcats separate in their
own cluster, while the Saharan
African wildcats continued to
cluster together with domestic
cats
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the black-footed cats have been genetically isolated for the last
1.51 × 106 generations (5% quantile (q050) = 7.45 × 105 gener-
ations—95% quantile (q950) = 1.42 × 106 generations) and
African and European wildcats for the last 3.79 × 105 genera-
tions (5% quantile (q050) = 3.01 × 105 generations—95%
quantile (q950) = 6.41 × 105 generations; Online Resource 1,
Table S4). Assuming a cat generation time of 2 years (Nowak
and Walker 1999; Renard et al. 2015), the TMRCA of the
black-footed cats, European, and African wildcats corresponds
to 3.02 × 106 years ago, while the latter two taxa started their
divergence 7.58 × 105 years ago (Fig. 1; Online Resource 1,
Table S4), roughly consistent with divergence times of felid
lineages estimated by Johnson et al. (2006) to molecularly clar-
ify their Late Miocene radiation.

Discussion

During the last decades, habitat loss and other anthropogenic
factors determined decreasing trends of wild populations of the
black-footed cat (Sliwa et al. 2016; Oh et al. 2017). This species
is the smallest African cat species (Sliwa et al. 2010) and also
shows the most restricted range (Nowell and Jackson 1996),
being endemic to the arid steppe and savannah habitats of the
southern African sub-region (Sliwa 2004; Sliwa et al. 2016).
However, though threatened, a number of ecological, morpho-
logical, demographic, sanitary, and genetic aspects, essential for
its long-term conservation, still remain poorly known (Johnson
et al. 2006; Sliwa 2008; Renard et al. 2015; Sliwa et al. 2016; Oh
et al. 2017). In combination with other techniques, such as occa-
sional observations and camera trapping, non-invasive genetic
sampling (NIGS) may represent an appropriate tool to fill this
lack of information. Thus, in this pilot study, we developed a

multilocus detection method to molecularly characterize non-
invasively collected hair samples of captive-bred black-footed
cats at both mitochondrial and nuclear markers. Such approach
can thus be applied in future monitoring projects of wild-living
populations that could be based on the systematic analysis of hair
tufts trapped by olfactory-treated sticks or snares along selected
transects and integratedwith other widely used low-quality DNA
sources such as fecal, urine, and saliva samples that could be
opportunistically collected (Steyer et al. 2013; Velli et al. 2015).

To test the cross-species amplification efficiency and reliabil-
ity of ourmarker panel on different quality samples, we exploited
the possibility to analyze hair samples of black-footed cats from
zoo populations managed in captive breeding programs, which,
to simulate natural conditions and situations, were randomly and
non-invasively collected without a defined sampling strategy and
without any direct contact with the animals.

The first critical step of our analysis protocol consisted in a
preliminary quality screening of the non-invasively collected
materials and their unambiguous molecular specific identifica-
tion through the sequencing of a short fragment (< 400 bp) of
the mitochondrial DNA. Such reduced mtDNA portion con-
firmed to be sufficiently diagnostic to distinguish strictly related
felid taxa with potentially overlapping trophic niches or similar
ecological contexts, thus could be successfully applied to more
extensive non-invasive surveys. Almost all the analyzed hair
samples (96%), even if randomly collected, were successfully
sequenced at the selected mtDNA region, allowing to identify
two already described black-footed cat ND5 haplotypes. Our
rough phylogenetic reconstructions, although showing low sup-
port for the most basal nodes due to the short sequences they
were based on, well reflected the evolutionary relationships
described by Johnson et al. (2006), who tried to molecularly
clarify the Late Miocene radiation of modern felids. However,
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Table 2 Genetic variability results obtained from the nine autosomal short tandem repeat (STR) loci analyzed in domestic cats, European wildcats,
African wildcats, and black-footed cats

Group (N) NA
a NE

b NP
c HO

d HE
e uHE

e Ff FIS
g Ph

Domestic cats (18) 8.67 (0.83) 4.94 (0.62) 12 0.73 (0.04) 0.77 (0.03) 0.79 (0.03) 0.05 (0.03) 0.087 0.036

European wildcats (19) 5.78 (0.46) 3.24 (0.36) 8 0.60 (0.04) 0.66 (0.04) 0.68 (0.04) 0.09 (0.03) 0.117 0.090

African wildcats (21) 8.33 (0.41) 4.71 (0.22) 13 0.74 (0.03) 0.78 (0.01) 0.80 (0.01) 0.05 (0.03) 0.081 0.054

Black-footed cats (15) 4.33 (0.37) 2.86 (0.25) 32 0.68 (0.08) 0.62 (0.04) 0.65 (0.04) −0.06 (0.08) 0.048 1.899

Numbers of analyzed individuals for each group are in parenthesis (N)
a NA = average observed number of alleles per locus
bNE = expected number of alleles per locus
c NP = number of private alleles
d HO = observed heterozygosity
e HE and uHE = expected and unbiased expected heterozygosity
fF = fixation index
gFIS = inbreeding coefficient
hP = probability to obtain FIS values higher or lower than those observed after 10,000 random permutations of alleles in each population computed by
GENETIX (corresponding standard deviation values are in parentheses)



though in our preliminary molecular phylogeny the two detect-
ed black-footed cat haplotypes were clearly distinguishable
from all the other wild and domestic felids included in the
Felis lineage, we could not provide additional insights on the
identification of the two hypothetical black-footed cat subspe-
cies since neither geographical nor morphological information
about the analyzed captive-bred animals were available.
Despite their high homoplasy rates and low inter-laboratory
comparability and interpretability, microsatellites are powerful
genetic markers to answer a variety of questions in population
genetics and ecology thanks to their high polymorphism
(Allendorf et al. 2013; Wultsch et al. 2014). The successful
cross-amplification of ninemicrosatellites, originally developed
for the domestic cat (Menotti-Raymond and O’Brien 1995 and
Menotti-Raymond et al. 1999), with three multiplexed PCRs of
DNA extracted from non-invasively collected samples of
black-footed cats, allowed a reliable and cost-effective resolu-
tion for both species and individual identification showing no
evidence of inter-specific hybridization in the captive-bred in-
dividuals we analyzed. Although an accurate selection of fresh
samples was not guaranteed due to the random sampling, and
despite their supposed low-quality DNA content, our genotyp-
ing success rates were close to 70%, considerably higher than
those usually obtained in most of the studies based on the anal-
ysis of non-invasive materials (Ruiz-González et al. 2013;
Caniglia et al. 2014; Viglino et al. 2016; Fabbri et al. 2018),
included those regarding felids (Lovari et al. 2009; Anile et al.
2012; Sugimoto et al. 2012; Velli et al. 2015; Steyer et al. 2018).
Moreover, we did not find any signal of cross-sample contam-
inations and the mean genotyping error rates were much lower
than in other non-invasive genetic studies performed on felids
with a similar number of microsatellites (Bhagavatula and
Singh 2006; Borthakur et al. 2011; Lovari et al. 2009;
Sugimoto et al. 2012; Rozhnov et al. 2013; Wultsch et al.
2014; Steyer et al. 2018) and on other carnivores (De Barba
et al. 2010; Caniglia et al. 2014; Stansbury et al. 2014;
Granroth-Wilding et al. 2017; Fabbri et al. 2018).
Additionally, the very low probabilities of identity, together
with the high number of allele mismatches among genotypes,
confirmed that the optimized panel of nine felid-diagnostic loci
can be used to distinguish without ambiguity black-footed cat
individuals, even when related, in future non-invasive long-
term monitoring projects and to estimate minimum population
sizes, being sure that matching genotypes can be considered
recaptures of the same individual (Mills et al. 2000; Waits
et al. 2001).

Concordantly with results obtained from the analysis of the
mtDNA, our preliminary genetic screening at nuclear DNA,
based on pairwise FST values, multivariate and assignment pro-
cedures, despite the limited sample size, showed that the ana-
lyzed black-footed cats were highly differentiated from all the
other analyzed felid taxa, consistent with other studies, based on
different types and number of markers, about the evolutionary

histories of modern felids (Johnson et al. 2006). Overall, the
analyzed black-footed cats were polymorphic at all the selected
microsatellites, though they were mostly designed on the do-
mestic cat variation, showing numerous species-specific alleles
and high values of autosomal genome-wide heterozygosity, very
similar to those observed in the other considered taxa. However,
all these comparisons should be treated with caution because
such estimates might have been inflated by the limited sample
size, not fully representative of the real wild populations of the
examined taxa. The multivariate and clustering procedures did
not find any substructure in the analyzed black-footed cats;
therefore, no correspondence between nuclear and mtDNAvar-
iation was possible, not allowing any further speculation on the
supposed subspecies. However, once again, our results cannot
be considered conclusive because a significant part of the genet-
ic variability might have been unsampled and only future
genotyping of a larger number of wild individuals sampled from
the whole distribution range of the species could confirm or
deny this apparent lack of genetic substructure.

Our demographic scenarios, even if they were based on a
restricted number of presumablymolecular markers and limited
sample sizes, roughly confirmed the evolutionary history of
genus Felis reconstructed by Johnson et al. (2006) analyzing
autosomal, X-linked, Y-linked, and mitochondrial markers.
Accordingly, our ABC simulations showed that black-footed
cats and African and European wildcats likely experienced se-
quential population splittings that started during the Late
Pliocene and continued through the Early Pleistocene during a
period of relatively low sea levels before the onset of the
Pleistocene glacial oscillations, with good statistical support
despite the low number of samples and coherently with infer-
ences from genome-wide data (Johnson et al. 2006).

Conclusions

This study provided the first application of a reliable and cost-
effective protocol to molecularly identify the species and in-
dividuals of black-footed cats from non-invasively collected
samples, as well as to preliminary characterize their genetic
variation. Though solely tested on captive-bred individuals,
our method revealed to ensure relatively high genotyping suc-
cess and low error rates, while well differentiating the inves-
tigated species from the other closely related felid taxa.

The genotyping of black-footed cat non-invasive DNA at
maternally inherited (mtDNA) and autosomal (STRs) loci
highlighted relatively high levels of genome-wide heterozy-
gosis and variability, although we did not detect any substruc-
ture in the analyzed samples.

Nonetheless, the easy applicability of our approach and the
robustness of the optimized multiple-tube protocol make it a
reliable tool for future non-invasive genetic monitoring projects
to achieve ecological and genetic information directly fromwild-
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living populations within the whole distribution range of the
species and to monitor its actual spatio-temporal trends in abun-
dance and density. In this way, it will be also possible to verify,
through landscape genetic analyses and habitat suitabilitymodels
(Milanesi et al. 2016; Reddy et al. 2017), any possible correlation
between the standing genetic variability of the extant black-
footed cat populations and different geographic habitats; detect
critical anthropogenic barriers to dispersal, whichmight fragment
the species ranges or limit gene flow; and identify zones with
high mortality risk due to direct or indirect human activities
where to concentrate conservation efforts and resources.
Additionally, the availability of entire genomes for a growing
number of taxa, including the domestic cat (Pontius et al.
2007), can allow future investigations on the whole genome
variation of the black-footed cat, providing essential information
to better address a number of evolutionary, selective, and adap-
tive questions and definitively clarify the taxonomic uncertainties
regarding the possible presence of two subspecies (Allendorf
et al. 2010;Montague et al. 2014). Moreover, genomic platforms
could soon allow the extensive and cost-effective screening of
thousands of single nucleotide polymorphisms (SNPs), which
represent the most widespread source of genome-wide variation
and promote the development of specific ancestry informative
markers (AIMs), overcoming the few limitations of
microsatellites, to reliably and routinely apply also in conserva-
tion genetics of endangered taxa or priority management units.
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