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High-resolution MALDI mass spectra

Abstract. High-resolution mass spectrometry (HRMS) continues to play an

important role in the compositional characterization of larger organic molecules.
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In the field of polymer characterization, however, the application of HRMS has
PEO made only slow progress because of lower compatibility between matrix-assisted
laser desorption/ionization (MALDI) and ultrahigh-resolution Fourier transform ion
cyclotron resonance mass spectrometry (FT-ICRMS). In this study, a newly
developed type of MALDI high-resolution time-of-flight mass spectrometry
(TOFMS) with a spiral ion trajectory (MALDI spiral-TOFMS) was applied to the
structural and compositional characterization of polymers. To create a graphical

distribution of polymer components on a two-dimensional plot converted from
complex mass spectra, we adopted a slightly modified Kendrick mass defect (KMD) analysis based on
accurate masses determined using spiral-TOFMS. By setting the Kendrick mass scale based on the mass of
the repeating units of a given polymer, components with common repeat units lined up in the horizontal
direction on the KMD plot, whereas those components with different structures were shifted vertically. This
combination of MALDI spiral-TOFMS measurement and KMD analysis enabled the successful discrimination
of the polymer components in a blend of poly(alkylene oxide)s, the compositional analysis of poly(ethylene
oxide)/poly(propylene oxide) block copolymers, and profiing of the end-group distribution of poly(e-

caprolactone)s synthesized under different conditions.
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Introduction

olymer characterization has the potential to be particu-

larly useful in assisting the design of sophisticated
polymeric materials with dedicated functions. Matrix-
assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOFMS) is an important tool in
this technique [1, 2]. Currently, conventional TOFMS
instruments used for polymer characterization apply a
single reflector with a flight path of approximately 2 m.
A recently-developed high-resolution MALDI-TOFMS
with a spiral ion trajectory, termed “MALDI spiral-
TOFMS” [3, 4], has a long flight path of approximately
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17 m (2.1 mx8 turns) along the spiral ion trajectory, which
yields a high mass-resolving power of 80,000 at full width
at half maximum (FWHM) for m/z ca. 2500 of a peptide
sample. In a previous study, we applied MALDI spiral-
TOFMS to the detailed structural characterization of
polyphenols [5, 6] and radical-polymerized copolymers
[7]. In these former studies [5, 6], we were able to identify
the structures of repeating units of polyphenols. In the
latter study [7], copolymer compositions and several types
of end-group combinations could be identified, allowing
the compositional distribution to be evaluated. In both
cases, MALDI spiral-TOFMS could be used to provide an
accurate judgment of the mass differences at ca. 16 Da to
discriminate O and CH,4, between which the mass
difference is only 0.036 Da. We therefore anticipate
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MALDI spiral-TOFMS to make a significant contribution
to the development of the structural characterization of
polymers.

Since analysis of complicated samples by high-resolution
mass spectrometry necessarily deals with an enormous
collection of peak data, an effective data processing method,
preferably one that does not rely on peak assignments, is
required. Kendrick mass defect (KMD) analysis is a potentially
effective method of identifying homologous series differing
only by a number of base units [8—10]. The Kendrick mass is a
new mass scale designed to supersede the [IUPAC mass scale.
Usually the Kendrick mass of CH,, is defined as exactly 14, but
the Kendrick mass of a given compound can be obtained by
multiplication of the mass values by 14/14.01565, where
14.01565 is the IUPAC mass of CH,. However, the Kendrick
mass is not limited to the CH, base: other groups can also be
used to define the Kendrick mass to suit the task in hand. KMD
is defined as the difference between the exact Kendrick mass
and the nominal Kendrick mass (NKM). Two-dimensional
plots of KMD as a function of NKM display the distribution of
components, in which the components with common repeat
units line up in the horizontal direction, whereas the compo-
nents having different structures shift in the vertical direction.

KMD analysis has been used chiefly to characterize
petroleum [9, 11], natural organic matter [12, 13], and lipid
samples [14, 15] by means of ultrahigh-resolution Fourier
transform ion cyclotron resonance MS (FTICR-MS) combined
with electrospray ionization (ESI). FTICR-MS can separate
isobaric peaks at a resolution over 100 k. However, the
observation of molecular weight distribution of polymers using
a combination of MALDI and FTICR-MS encounters prob-
lems, mainly caused by mass discrimination when ions are
trapped and stored in the ICR cell [16-19]. Although the
superb resolving power and mass accuracy of FTICR-MS
make it an eminently useful technique, MALDI-FTICR-MS is
not ideal for polymer analysis at this stage. In fact, only a few
polymer characterizations by MALDI-FTICR-MS have been
described [20-23], and, to our knowledge, no use of KMD
analysis for polymer characterization has yet been reported.

Because MALDI spiral-TOFMS should be sufficient to
determine each peak with a high-mass accuracy of within a few
ppm, even for isobaric peaks, in this study we applied MALDI
spiral-TOFMS combined with KMD analysis to polymer
characterization. Since KMD analysis is powerful means to
differentiate similar mixtures, this study has demonstrated
structural distribution analyses, which include discrimination
of the polymer components in the blend, compositional analysis
of copolymers, and the profiling of end-group distribution of
polymers synthesized under different conditions.

Experimental
Polymer Samples

Several types of poly(alkylene oxide) and poly(e-
caprolactone) (PCL) were used as model samples. The
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chemical structures, molecular weights, and suppliers are
summarized in Table 1. Diol and triol types of poly(propyl-
ene oxide) (PPO) were purchased from Wako Pure Chemical
Industries (Osaka, Japan). Poly(ethylene oxide) (PEO) and
triblock copolymer, PEO-block-PPO-block-PEO [P(EO-b-
PO)], were purchased from Sigma-Aldrich Japan (Tokyo,
Japan). Four types of PCL synthesized under different
conditions (PCL-1-4) were purchased from Sigma-Aldrich
or Polymer Source (Montreal, Canada). All samples were
used as received. The methanol solutions of PEO, PPO-diol,
and PPO-triol (ca. 1 mg/mL) were prepared and mixed with
1/1/1 (v/v/v) to make a blend sample. P(EO-b-PO) was
dissolved in methanol (at ca. 1 mg/mL). Each PCL sample
was dissolved in tetrahydrofuran (THF) at a concentration of
ca. 1 mg/mL.

MALDI Spiral-TOFMS Measurement

As the matrix for sample ionization, 2,5-dihydroxybenzoic
acid (DHB) purchased from Wako was employed. About
10 mg of DHB was dissolved in methanol for the
poly(alkylene oxide) samples or THF for the PCL samples.
Next, about 1 pL of the sample/matrix (1/10 v/v) mixture
was pipetted onto the stainless steel target plate, which was
then dried in air. MALDI mass spectra were observed using
a JEOL JMS-S3000 Spiral-TOFMS (JEOL, Tokyo, Japan).
The details of the instrument’s configuration are described in
reference [3]. lons generated by irradiation with a 349-nm
Nd:YLF laser were accelerated at 20 kV. The ions then
passed along a spiral ion trajectory with a flight length of
approximately 17 m. The settings of delay time and grid
voltage were optimized to maintain AM < ca. 0.03 Da at
FWHM over the range of m/z 800-3000. Mass calibration
was made using a poly(methyl methacrylate) (PMMA)
standard (peak-top molecular weight, M,=1310) purchased
from Polymer Laboratories (Church Stretton, UK).

Data Processing Procedure on Kendrick Mass
Defect Analysis

In the Kendrick mass defect analysis, at the beginning the
observed accurate mass values on the [IUPAC mass scale are
converted to the Kendrick mass (KM) according to the
following equation:

nominal mass of base unit
IUPAC mass of base unit

(1)

KM = observed IUPAC mass X

In many cases, the methylene unit is set as the base unit
(i.e., CH,=14.01565 Da is converted to 14) [8, 9]. In
polymer analyses, however, the Kendrick mass scale based
on the mass of the repeating units of a given polymer would
be useful for easily depicting the distribution of homologous
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Table 1. The Names of the Polymer Samples Used in this Study Together with Probable Chemical Structures, Average Molecular Weight, and Suppliers

*EO=CH,CH,0, PO=CH(CH;)CH,0, CL=CO(CH;)sO

Sample name Probable chemical structure®

Molecular weight Supplier and product code

Poly(alkylene oxide) samples

PEO HO-(EO),-H
PPO-diol HO-(PO),-H
PPO-triol

H,C—O0—(PO),—H
|

HC—O0— (PO),—H

H,C—O0— (PO);—H

HO-(EO).-(PO),-(EO)-H
(a+c)/b=50/50 (w/w)=44/56 (mol/mol)
Poly(e-caprolactone) samples
PCL-1

P(EO-b-PO)

HO-(CL),-(CH,CH,0),-(CL),-H

PCL-2 (CH;3),CHO-(CL),-H
PCL-3 (CH;),CHO-(CL),-H
PCL-4 C,Hs0-(CL),-H

M,=2050 Sigma-Aldrich, 295906-5G
ca. 2000 Wako, 164-05895

ca. 1500 Wako, 164-17625

ca. 1900 Sigma-Aldrich, 435414-250ML
ca. 10000 Sigma-Aldrich, 440752-250G
M,=8000 Polymer Source,

M, =10000 P1302-CL

M,=7700 Polymer Source,

M,,=8900 P1933-CPL

M,=3500 Polymer Source,

M,,=5200 P1934-CPL

*EO=CH,CH,0, PO=CH(CH;)CH,0, CL=CO(CH,)sO

series. The KM values are composed of two parts (i.e.,
nominal Kendrick mass (NKM) and Kendrick mass defect
(KMD). The NKM is the nearest integer of KM, whereas the
KMD is the difference between NKM and KM.

KMD = NKM~KM (2)

The Kendrick plot is the two-dimensional graph with
NKM on the x-axis and KMD on the y-axis. In this plot,
homologous series having a common base unit should line
up in the horizontal direction.

PPO-triol

_~ PPO-diol
X

- PEO

|l.l. " ....JJIIML

1000 1200 1400 1600 1800/2000 2200 2400 2600 2800 3000
m/z

Figure 1. MALDI mass spectrum of the blend of PEO, PPO-
diol, and PPO-triol samples with a ratio of 1:1:1 (w/w/w)

Results and Discussion
Distribution of Polymer Components in the Blend

Poly(alkylene oxide)s such as PEO, PPO, and their modified
polymers are widely used in industrial, agricultural, and
domestic applications as moisturizing agents, emulsifiers,
surfactants, and so on. In many cases, several kinds of
poly(alkylene oxide)s are blended to achieve the desired
conditions. Understanding the blend conditions is important
from a quality control perspective.

Figure 1 shows the mass spectrum of the blend of PEO,
PPO-diol, and PPO-triol with a ratio of 1:1:1 (w/w/w). A
bimodal peak distribution can be observed with maxima at
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Figure 2. Two-dimensional plots of KMD versus NKM of the
blend sample using a mass scale based on PO units. The
size of each dot indicates peak intensity. The peaks with
more than 5% relative intensities were plotted
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Figure 3. Mass spectra of P(EO-b-PO). Broad-band mass spectrum (bottom); expanded mass spectrum in the range m/z

1303-1313 (middle); m/z 1307.7-1308.2 (top)

m/z ca. 1500 and m/z ca. 2000. The former distribution
corresponds to PPO-triol, with an average molecular weight
of ca. 1500. The latter distributions are likely to overlap with
the peaks of the PEO and PPO-diol samples. The obtained
mass resolution values were 46100 at m/z 1450 and 71500 at
m/z 2130, achieving almost constant AM at FWHM of ca.
0.03 Da over the observed mass range. Mass accuracy fell
within the range of 2 ppm. Resolving power and mass
accuracy of this degree is likely to be sufficient to perform
KMD analysis.

The values of NKM and KMD were calculated as
described in the Experimental section. In this case, we chose

PO units as the base unit in Equation 1 (C3HsO =
58.04187 Da was converted to 58). Figure 2 shows two-
dimensional plots of KMD versus NKM of the blend
sample. Here, the relative intensities (5%—100%) of the
observed peaks are scaled by dot diameter and concentra-
tion. The KMD plot shows that two types of PPO chains are
separately distributed in the horizontal direction, whereas the
PEO chains line up obliquely. The swelling of the
distribution lines is caused by isotope distribution. It is
noteworthy that the overlapping distribution of PEO and
PPO-diol between m/z 1500 and 2500 in Figure 1 can be
clearly separated on the KMD plot.
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Figure 4. KMD plot of P(EO-b-PO). The lines indicate the theoretical distribution of homologues with the same numbers of EO or
PO compositions. The size of each dot indicates peak intensity. The peaks with more than 10% relative intensities were plotted

The theoretical KMD value of PPO-diol ions ([HO-
(C5H(O0),-H+Na]") is obtained as 0.029, because the residual
mass of PPO-diol is 41.000 Da (H,ONa) and its KM and NKM
can be obtained as 40.971 and 41. In the same manner, the
theoretical KMD values of PPO-triol ions can be calculated as
0.046, attributed from the residual composition of C;HgOsNa.
Thus, the two horizontal lines in Figure 1 are specific to each
PPO homologue. As for PEO chains, the atomic composition
of the EO unit is C,H40, which corresponds to 44.026 Da or
KM = 43.994. In other words, the KMD value of PEO is
increased by 0.006 on increasing NKM = 44 for one EO unit,
with the result that the slope of the lines of PEO homologues is
theoretically the same, without depending on residual struc-
tures such as end-groups. The residual structures influence the
intercept value of the distribution lines. Thus, the slope and
intercept values of the distribution lines on the KMD plot are
specific to the atomic composition of polymers. KMD analysis
is thus useful not only for discriminating component polymers
but also for rapidly identifying the types of components if the
reference values are prepared beforehand.

Distribution of Copolymer Compositions

In general, block copolymers of poly(alkylene oxide)s show
surfactant properties that can be used in various industrial
applications, cosmetics, pharmaceuticals, and so on. The
chemical structures of copolymers, such as copolymer composi-
tion, distribution, and block length, are likely to have a strong

influence on surfactant properties. In this study, KMD analysis
was applied to the structural characterization of the P(EO-b-PO)
sample as an ABA-type triblock copolymer.

Figure 3 shows the mass spectra of P(EO-b-PO), illustrating
the broad-band mass spectrum and the expanded mass spectra.
The peaks are chiefly distributed in the range m/z 800-3000 with
the maxima at m/z ca. 1800. The mass spectra of P(EO-b-PO)
are composed of peaks with a 2-Da interval that corresponds to
the mass differences between EO,PO, and EO,4POy., as
shown in the expanded spectra in Figure 3. Each peak further
overlaps the second isotope peak. For example, close to the
monoisotope peak of EOgPO;5 at m/z 1307.8634, the shoulder
peaks can be seen at m/z 1307.8898, which is the second isotope
peak of EOsPOg. These mass differences in ca. 0.027 Da can be
resolved by using spiral-TOFMS.

Figure 4 shows the KMD plot based on the PO unit of the
P(EO-b-PO) sample. All of the observed peaks, including
isotope peaks, with more than 10% relative intensities were
collectively converted to a set of NKM-KMD values and
plotted without any peak-picking or de-isotoping procedures.
The components are clearly dispersed upward to the right,
reflecting their EO/PO compositional distribution. The copol-
ymer chains with the same numbers of EO units but different
numbers of PO units line up in a horizontal distribution at
intervals of 58. As for the copolymer chains with the same
numbers of PO units, NKM increases by 44 and KMD value
increases by 0.0055. The distribution of the components tended
to range between EO = 0-35 and PO = 13-23, as indicated by
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Figure 5. Mass spectrum of PCL-1 sample

the dotted lines in Figure 4. It should be noted that the string of
dots on the line of EO = 0 indicates the presence of the
homopolymer of PO. Thus, the resulting KMD plot suggests
that the PEO block would be elongated from both ends of the
core PPO block, of which the degree of polymerization was
distributed from n=13-23. The centroid of the dot distribution
was obtained as NKM = ca. 1870 and KMD = ca. 0.140. Here,
the NKM and KMD vales of P(EO-b-PO) can be calculated
according to the following equations,

NKM2n50X44+np0X58+18+23 (3)

KMD = 0.00551npo + 0.0293 4)
where ngo and npo are the numbers of the EO and PO units,
and the integral numbers (44, 58, 18, and 23) are the NKM
values of the EO and PO units, end-groups, and sodium cation.
In Equation 4, 0.0055 is the KMD value of the EO unit and
0.0293 is that of the sum of end-groups and sodium cation
(H,ONa). Thus, ngp and npp can be calculated using the

equations derived from Equations 3 and 4 as follows:
npo = (KMD—0.0293)/0.0055 (5)

nNpo = (NKM*HPO X 58*41)/44 (6)

According to Equations 5 and 6, the average
copolymer composition of this sample can be obtained
as EO;5oPO,g,. This value corresponds to an EO
composition of 42.6 mol%, which is in good agree-
ment with the value of ca. 44 mol% provided by the
supplier. As demonstrated above, the KMD plot can
accurately depict the compositional distribution of
copolymers.

Profiling of End-Group Distribution

End-groups (including initiators incorporated into
polymer chains) contain detailed information about
the synthetic process, degradation profiles, or chem-
ical modifications applied to enhance the functionality
of polymers. End-group determination using MALDI-
MS is thus a key element in polymer characterization.
The mass of end-groups (M.,q) can be given by

Mend - Mobs_annomer X n_Mcation (7)
where My, Mmonomers and M aion are the masses of the
observed ion, monomer unit, and cation, respectively, and n
is the degree of polymerization. Even if the sample is unknown,
M onomer €an be determined from the regular peak interval and
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Figure 6. KMD plot of PCL-1 sample (a) and RKM-KMD plot (b). The size of each dot indicates peak intensity. The peaks with

more than 2% relative intensities were plotted

M a0n can be known from the used cationization
reagent. Here, a difficulty arises in the determination
of n. In many cases, n is tentatively estimated on the
assumption of Mg < Mponomer- However, one should
allow for the possibility that Mcq > Mmonomer- I
addition, end-group combinations in a given polymer are not
always uniform, and it would be even more complicated to
determine the various M,,4 values of each end-group combination.
To solve this problem, we propose a modified KMD analysis to
depict the distribution of end-group combinations. In this paper,
we demonstrate the profiling of end-group distribution of PCL
samples synthesized using different procedures.

Figure 5 shows the MALDI mass spectra of the
PCL-1 sample. This polymer is synthesized by ring-
opening polymerization of e-caprolactone (CL) with
diethylene glycol as an initiator. As a result, the main
components of the PCL-1 sample contain a diethylene
glycol unit and two hydroxyl terminals (PCL-diol). In

addition, cyclic PCL (cyc-PCL) and linear PCL chains
end-capped with carbonic acid and hydroxyl groups
(carboxyl-PCL) are generated as by-products [24]. The
occurrence of sodium salts of carboxyl-PCL is an
artifact of MALDI-MS.

The mass spectral data with more than 2% relative
intensities were converted to make the KMD plot shown
in Figure 6a, in which the 114.06808 Da (C¢H;oO3) of
the CL unit is converted to 114. The dots on the plot are
chiefly distributed around the horizontal line of KMD =
ca. 0.024. These series have overlapping data for PCL-
diol, cyc-PCL, and carboxyl-PCL because the theoretical
KMD values of these components are close to 0.024.
The minor series at KMD = ca. 0.06 corresponds to the
sodium salt of carboxyl-PCL. When several polymer
chains with different end-group combinations have very
close KMD values, it is difficult to discriminate them on
the KMD plot. In a different approach, we have proposed
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Figure 7. RKM-KMD plots of PCL-2 (a), PCL-3 (b), and PCL-4 (c). Large blank circles are theoretical coordinate points of
several possible PCL structures as indicated in the figures. The size of each dot indicates peak intensity. The peaks with more

than 2% relative intensities were plotted

that the remainder of NKM (RKM) divided by the nominal
Kendrick mass of the repeating unit (in this case 114) was used
as the x-axis in the modified KMD plot. NKM of the observed
peaks (NKM,y,) can be given by

NKMobs = NKMmonomer Xn+ NKMend + NKMcution (8)
where NKMonomers NKMong, and NKM .0, are the
NKM of monomer unit, end-groups, and cation, respec-

tively. If the both sides of Equation 8 are divided by
M nonomer, WE cCan obtain

NKMabs —n+ NKMend +NKMcation
NKM yonomer

NKM nonomer
+ RKM and 0<RKM < NKM yonomer

—(+a) ()

where, (n+a) and RKM correspond to the integral quotient
and the remainder of NKM ,p5/NKM yopomer - Figure 6b

shows an RKM-KMD plot of the PCL-1 sample. In this plot,
the components with the same end-groups lined up the
horizontal distribution can be condensed into specific
(RKM, KMD) coordinate points. For example, PCL-diol,
cyc-PCL, and carboxyl-PCL were condensed into (RKM,
KMD) = (15, 0.024), (23, 0.024), and (41, 0.024),
respectively. This plot makes it possible to visually
recognize the distribution of different chemical structures
(mainly end-group distribution) that result from specific
synthetic processes.

The RKM-KMD plot analysis was further applied to
the profiling of several PCL samples synthesized through
ring-opening polymerization of g-caprolactone initiated
with a variety of catalysts, as shown in Figure 7. The
large blank circles on the plots indicate the theoretical
points of possible structures such as a-carboxy, o-
methoxy, a-ethoxy, and a-(iso)propioxy PCL and cyclic
PCL. According to the supplier’s information, PCL-2 and
PCL-3 were polymerized in the presence of aluminum
isopropoxide as an initiator, whereas PCL-4 was done
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using triethyl ammonium. In the ring-opening polymer-
ization in the presence of metal alkoxides as an initiator,
the alcohol moiety would usually be introduced at the o-
terminal of the PCL chains [25]. As expected, the plot of
PCL-2 (Figure 7a) reveals PCL chains with an
isopropoxide terminal (iPr-PCL) and carboxyl-PCL
predominating. As by-products, small numbers of PCL
chains with a methoxy terminal (Me-PCL) were also
detected, whereas no cyc-PCL was observed. However,
in spite of the use of the same catalyst, the main
components of PCL-3 (Figure 7b) were PCL chains with
a methyl terminal (Me-PCL) rather than iPr-PCL. The
formation of cyc-PCL and carboxyl-PCL could be
confirmed. These results suggest that the two PCL
samples might be synthesized under different conditions.
A possible reason for such differences might be the
presence of alcohols as a co-initiator [26]. As for PCL-4
(Figure 7c), the supplier states that the main components
are PCL chains with an ethoxy terminal (Et-PCL)
because the ring-opening polymerization was performed
in the presence of triethylalminum as a catalyst.
However, the plot of Figure 7c makes it clear that the
actual main components were Me-PCL together with cyc-
PCL and carboxyl-PCL as minor components, with no
Et-PCL detected. This sample might also have been
polymerized in the presence of methanol as a co-initiator.
As demonstrated above, the RKM-KMD plot revealed a
variety of end-group combinations. Because end-group
distributions tend to reflect the synthetic conditions of a
given polymer, a database containing a set of theoretical
RKM-KMD coordinates for possible polymer structures
synthesized under certain conditions would be useful for
quality control of the products.

Conclusions

The results in this study demonstrated that MALDI spiral-
TOFMS made it possible to perform KMD analysis for
polymer characterization, which included discrimination of
the polymer components in the blend, compositional
analysis of copolymers, and profiling of the end-group
distribution of polymers synthesized under different
conditions. MALDI spiral-TOFMS, with its high resolv-
ing power and sufficient mass accuracy, opens the way
to KMD analysis in the field of polymer characterization.
One of the key advantages of this method is that the
KMD plot visually represents patterns in the structural
distribution of a given polymer without the need to
perform peak assignment or peak picking. This feature is
potentially wuseful for high-throughput profiling (or
typing) of industrially-produced polymers, to inspect
how the polymer was made and processed. Another
possible utilization of KMD analysis for polymer
characterization would be the investigation of polymer
degradation processes, and an investigation along this
line is now in progress.
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