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Abstract. Nanodiscs are a promising system for studying gas-phase and solution
complexes of membrane proteins and lipids. We previously demonstrated that
native electrospray ionization allows mass spectral analysis of intact Nanodisc
complexes at single lipid resolution. This report details an improved theoretical
framework for interpreting and deconvoluting native mass spectra of Nanodisc
lipoprotein complexes. In addition to the intrinsic lipid count and charge
distributions, Nanodisc mass spectra are significantly shaped by constructive
overlap of adjacent charge states at integer multiples of the lipid mass. We
describe the mathematical basis for this effect and develop a probability-based
algorithm to deconvolute the underlying mass and charge distributions. The

probability-based deconvolution algorithm is applied to a series of dimyristoylphosphatidylcholine Nanodisc
native mass spectra and used to provide a quantitative picture of the lipid loss in gas-phase fragmentation.
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Introduction

Membrane systems play a critical role in biology by
regulating the chemical, energy, and information flow

into the cell and its various compartments. Native mass
spectrometry (MS), which seeks to preserve solution
structures and noncovalent interactions, has emerged as a
powerful technique to study membrane systems owing to its
low sample requirements and unique structural information
on complex structure and lipid binding [1–6]. Nanodiscs are
nanoscale discoidal lipid bilayers encircled by two amphi-
pathic membrane scaffold proteins (MSP) [7–9]. Nanodiscs
offer a promising technology for native mass spectrometry
of membrane systems because they are monodisperse,
homogeneous, and possess a native-like lipid bilayer
structure [10–12].

We previously demonstrated that intact Nanodiscs can be
studied in the gas phase by native electrospray mass spectrom-

etry [13]. The resulting mass spectra are characterized by broad
distributions of narrow peaks (see Figure 1a as well as
Figures S1 and S2 in the online Supplementary Information for
examples). Our initial interpretation was that the broad
distributions arose from two factors, the lipid count distribution
and charge state distribution. Each narrow peak is due to
Nanodiscs with a defined lipid count. We assumed each broader
peak results from the lipid count distribution at a single charge
state. Because the charge state was determined from the
difference between narrow peaks, fitting the broad peaks to
Gaussian distributions yielded the mean and standard deviation
of the lipid count in the Nanodisc.

Subsequent measurements and theoretical exploration, how-
ever, reveal an additional factor contributing to the broad
distributions observed. In addition to the lipid count and charge
state distributions, the constructive overlap of adjacent charge
states may play a dominant role in shaping the spectra. Similar
effects have been observed in mass spectra of protein complexes,
including amyloid and heat shock protein oligomers [14, 15]. For
the Nanodisc system, overlap occurs specifically at m/z values
near integer multiples of the lipid mass. Constructive overlap
complicates peak assignments and demands a more sophisticated
deconvolution of the underlying mass and charge distributions.

Electronic supplementary material The online version of this article
(doi:10.1007/s13361-013-0782-y) contains supplementary material, which
is available to authorized users.

Correspondence to: Stephen G. Sligar; e-mail: s-sligar@uiuc.edu

http://dx.doi.org/10.1007/s13361-013-0782-y


We addressed this problem with an improved model for
interpreting Nanodisc native mass spectra and a probability-
based algorithm for deconvolution. The deconvolution
algorithm is applied to a representative series of native mass
spectra from dimyristoylphosphatidylcholine (DMPC)
Nanodiscs fragmented by both in-source collisionally acti-
vated dissociation (ISCAD) and infrared multiphoton disso-
ciation (IRMPD).

We anticipate that the theory and algorithms described
herein will aid in future studies of Nanodisc complexes
containing more complex lipid and membrane protein
systems and will facilitate the application of Nanodiscs to
the compelling challenges of quantitating and studying
membrane proteins. The strength of the algorithm presented
herein is that it provides an unbiased deconvolution, which
does not rely on a particular model of oligomeric or charge
state distribution, while still factoring in the probabilities of
neighboring charge and oligomeric states. This influence
from neighboring states is crucial to solving the problem of
overlapping peaks. As such, the probability-based
deconvolution approach will likely find direct application
to other systems with overlapping charge state and oligomer

distributions, such as heat shock proteins [14, 16, 17] and
amyloid oligomers [15], or for complex spectra with
multiple overlapping components, such as fragments of
large protein complexes with multiple subunits [6, 18]. We
envision that probability-based deconvolution may also be
broadly applicable to heterogeneous native mass spectrom-
etry systems such as antibody–antigen complexes [19, 20]
and may prove to be useful in the analysis of proteins such
as antibodies that contain complex glycosylation patterns
[20, 21].

Experimental
Nanodisc Preparation

Nanodiscs were prepared as previously described [7, 9, 13].
Briefly, the lipid, 1,2-dimyristoyl-sn-glycero-3-
phosphocholine (DMPC), purchased from Avanti Polar
Lipids (Alabaster, AL, USA), was solubilized in chloroform,
dried under nitrogen, and resuspended in sodium cholate
(Sigma Aldrich, St. Louis, MO, USA). Cholate-solubilized
DMPC was combined with a membrane scaffold protein

Figure 1. Native mass spectrum (a) of DMPC Nanodiscs at 70 V ISCAD. Broad peaks occur at integer multiples of the lipid at
n = 9, 10, or 11, near m/z 6102, 6780, and 7458, respectively, and halfway in between the integer values. An expansion of the
boxed region in (a) is presented in (b). The position of the nearest Nanodisc ions are marked with vertical lines below the
spectrum, and ions with an even charge are annotated. Ions on peak 1 at 10L are very closely spaced and, hence, not labeled.
Because each peak is not perfectly Gaussian, other possible species are marked above peak 2 for the center peak with the
adduction of one or two Tris molecules or the loss of a phosphocholine fragment. The mass and charge values for peak 2 are
marked as black boxes in the deconvolution matrix (c). The blue contour plot (c) presents the deconvoluted lipid count and
charge distributions. Projection of deconvolution into m/z space is shown in (d) with offset charge states for the most abundant
charges
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variant, MSP1D1(−), in a 180:90:1 cholate:DMPC:MSP
ratio at 25 °C. Cholate was removed by adding Amberlite
XAD-2 hydrophobic beads (Sigma Aldrich). Removal of
detergent drives Nanodisc self-assembly. Nanodiscs were
purified by size exclusion chromatography by using a 0.1 M
ammonium acetate (Sigma Aldrich) running buffer at pH =
6.8. The Nanodiscs were collected by pooling the central
fractions of the chromatographic peak. The final concentra-
tion of Nanodiscs was 10–15 μM.

Mass Spectrometry

Mass spectrometry was performed on a Bruker Solarix 12 T
Fourier transform ion cyclotron resonance (FTICR) mass
spectrometer using PicoTip (New Objective, Woburn, MA,
USA) capillary needles for nano-electrospray ionization.
Instrumental parameters were as previously described [13].
In-source collisionally activated dissociation was performed
by using skimmer cone voltages ranging from 10 to 160 V.
Infrared multiphoton dissociation was performed by using a
10.6 μm CO2 laser (SYNRAD 48-2KAL, Mukilteo, WA,
USA) at 25 % full power (32 W) varying the laser pulse
duration from 0.1 to 1.5 s. All IRMPD spectra were
collected by using the minimum 10 V ISCAD voltage.
Several thousand scans were averaged for each spectrum and
were collected at the 128 k data size. Data were exported as
raw spectra in a table of x/y values and imported directly
into Mathematica 8.0.4, where they were linearized and
normalized. Data analysis was performed with a custom
algorithm (described below) written in Mathematica 8.0.4.

Theory
Overlap of Adjacent Charge States

In addition to the intrinsic lipid count and charge state
distribution, Nanodisc native mass spectra are significantly
shaped by the constructive overlap of adjacent change states.
This section mathematically demonstrates that Nanodisc ions
with an m/z value close to integer multiples of the lipid mass
will overlap with Nanodisc ions with a different number of
lipids in an adjacent charge state.

Each Nanodisc contains two molecules of MSP and a
variable number of DMPC lipids. The mass of the
MSP1D1(−) construct, MMSP, is 22,044 Da. Because each
Nanodisc contains two copies of MSP, we can define the
mass of the protein belt component, B, as B = 2MMSP. The
mass of the DMPC lipid, L, is 678 Da. Adding the protein
and lipid components together gives the mass of a single
Nanodisc complex with k1 lipids as B + k1L. We will refer to
this complex as ion 1. For convenience in this derivation, the
masses of the protons added in the electrospray process are
disregarded because the error introduced by the added
proton mass is negligible compared with the overall mass.

Because there is a distribution of lipid count values, we
can also consider a separate Nanodisc complex, ion 2, with

k2 lipids where k1 9 k2. Because k1 and k2 are integers, k1 − k2 =
n, where n is also an integer. Assume the first ion has a charge z
while the second has a charge of z − 1. Using simple arithmetic
rearrangement, we can demonstrate that:

Bþ k1L

z
¼ Bþ k2L

z − 1
⇔

Bþ k1L

z
¼ nL ð1Þ

In other words, if Nanodiscs of adjacent charge states
have the same m/z value, the m/z value is nL, where n is
equal to the difference in lipid count and L is the mass of the
lipid. The converse of this statement is also true; an m/z
value equal to nL implies a potential ion in an adjacent
charge state with the same m/z value. An analogous
argument shows that Nanodisc ions at charge z will overlap
with Nanodiscs of charge z − 2 halfway between integer
values.

In this idealized case, B þ k1L
z ¼ nL implies thatB = L(zn − k1).

Because z, n, and k1 are all integers, Bmust be an integer multiple
of L, and the entire system simplifies to the principle that
230L
23 ¼ 220L

22 ¼ 10L. With DMPC and MSP1D1(−), B
L ¼ 65:03.

The mass of the protein component is very close to an integer
multiple of the lipid mass, so there will be nearly perfect
overlap of ions 1 and 2.

However, it is not necessary for B to be an exact integer
multiple of L. Consider the case where B = L(zn − k1) + ε =
L(zn − n − k2) + ε, where ɛ is some error such that ɛ G L.
Simple rearrangement shows:

B − ε þ k1L

z
¼ B − ε þ k2L

z − 1
ð2Þ

Bþ k1L

z
−

ε
z
¼ Bþ k2L

z − 1
−

ε
z − 1

ð3Þ

Bþ k1L

z
¼ Bþ k2L

z − 1
−

ε
z z − 1ð Þ ð4Þ

The difference between the m/z values of ion 1 and ion 2
is ε

z z − 1ð Þ G
L

z z− 1ð Þ. The error introduced by the protein

component is bounded and scales roughly with the inverse
square of the charge state. Thus, constructive overlap can
occur for any B or L masses.

This model of constructive overlap between adjacent
charge states suggests a strategy to minimize the effect.
Lowering the charge shifts the ions to higher m/z values and
increases the value of n. At high n, the difference in the
number of lipids in ions 1 and 2 (recall that k1 − k2 = n) may
be larger than the intrinsic lipid distribution. In other words,
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the lipid distribution is not wide enough that the adjacent
charge state contributes significantly to the peak at nL. An
example of this phenomenon is discussed below.

Probability-Based Deconvolution of Nanodisc
Spectra

Peak assignment and interpretation of Nanodisc native MS
spectra are complex and must take into account the overlap
of adjacent charge states demonstrated above. To
deconvolute the overlapping charge states and determine
the underlying lipid count and charge distribution of the
Nanodisc ions, we developed a probability-based
deconvolution (PDB) algorithm.

The central goal of the algorithm is to deconvolute the
one-dimensional mass/charge spectrum into a two-dimen-
sional matrix of mass and charge values. To simplify the
problem, mass is quantized by lipid count and limited to a
specific range. We assume that mass is equal to B + kL,
where k ∊ {75,76,…225} = K. Charge is also quantized and
limited to z ∊ {3,4,…,32} = Z. These limitations are
empirically set at the beginning of the algorithm and are
centered around previously established values for Nanodisc
lipid counts and charge [8, 13].

We define the matrix of (k, z) pairs arising from sets
K and Z as M. Each element of M has an m/z value
defined by the function μ as μ k; zð Þ ¼ B þ kL þ z

z for (k, z)
∊ M. Note that the mass of the ESI protons are now
included in the overall mass for the deconvolution
algorithm. Other adducts are discussed below. The
probability matrix, P, is defined with the same dimen-
sions as M. We will refer to the probability of any
element, (k, z) ∊ M, as P(k, z).

In preparation for analysis, the experimental spectrum is
linearized and normalized. No other manipulation of the data
is required, and no prior peak picking is necessary to apply
the algorithm. For clarity, we define the function, β(m/z), as
the intensity of the experimental spectrum at m/z.

The simplest deconvolution strategy would be to set the
probability in P of any given (k, z) ∊ M as the intensity of the
spectrum at that m/z value:

P k; zð Þ∝ β μ k; zð Þð Þ ð5Þ

Normalization of matrix, P, corrects for the proportionality
and converts P into a true probability distribution. This simple
strategy is foiled, however, by the constructive overlap of
adjacent charge states because the peak at a given m/z value can
be assigned to a number of potential (k, z) pairs.

To correct for the overlap effect, another factor is added
to Equation 5:

P k; zð Þ∝ β μ k; zð Þð ÞC k; zð Þ ð6Þ

where C(k, z) is the proportion of the spectra intensity, μ(k,
z), which should be assigned to the particular (k, z) pair. C(k,
z) is defined by three separate factors:

C k; zð Þ ¼ β μ k; zð Þð ÞN k; zð ÞX
i∈K

X
j∈Z

β μ i; jð Þð Þdist i; jð Þ; k; zð Þð ÞN i; jð Þ ð7Þ

where β was previously defined as the spectral intensity. The
dist term is a distance cutoff defined by a Gaussian
distribution centered at μ(k,z) with a standard deviation of
σd:

dist i; jð Þ; k; zð Þð Þ ¼ e
− μ i; jð Þ − μ k;zð Þð Þ2

2σd
2 ð8Þ

The value of σd defined in the distance cutoff has a
significant impact on the deconvolution. Some tuning is
required to find the optimal cutoff distance. When σd is
small, P is noisy with significant background signal. The
algorithm overcorrects for the overlap effect and distributes
the peak intensity across too many charge states. When σd is
too large, P is too smooth, and the algorithm does not
effectively account for the overlap effect. Too much of the
intensity is distributed to the most probable charge state. In
general, we found that a σd value around 1.5 times the
standard deviation of the narrow peaks gave the best fit.

N is a factor designed to capture the neighborhood of
each (k, z) pair. The central assumption is that the probability
of any given (k, z) pair is proportional to the probability of
neighboring pairs, including (k, z − 1), (k, z + 1), and (k − 1, z),
for example. We assume that there will be a low probability of
any (k, z) pairs showing up in isolation. Implementation of this
concept requires an iterative updating of the probability matrix,
P. For each iteration, the probability matrix, Pn, is calculated
based on the prior probability matrix, Pn − 1, and then
normalized. The first iteration, P0, is given a uniform
probability, so the probability for overlapping peaks is
approximately equally distributed. On each subsequent itera-
tion of the algorithm, the prior probability, Pn − 1, is blurred by
a Gaussian filter. In other words, the probability matrix is
convolved with a Gaussian function with standard deviations
(σ1,σ2) as given by:

N k; zð Þ ¼
X

x∈K

X
y∈Z

e
− x − kð Þ2

2σ1
2 e

− y − zð Þ2
2σ2

2 Pn−1 x; yð Þ
X

x∈K

X
y∈Z

e
− x − kð Þ2

2σ1
2 e

− y − zð Þ2
2σ2

2

ð9Þ

For this study, σ1 = 2 and σ2 = 1 were used as values for
the standard deviation. In general, larger σ1 and σ2 values
will yield a smoother fit that is more dependent on the
neighborhood, whereas smaller values will allow more local
variation. We recommend some optimization of these
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parameters to achieve the best fit. However, the algorithm is
relatively insensitive to the precise values of σ1 and σ2 or the
shape of the blurring filter. For example, taking the
arithmetic mean of the probabilities of all complexes plus
or minus one lipid and plus or minus one charge gives
similar results to the Gaussian filter described in Equation 9.
In any case, the algorithm typically converges to a final
solution within about eight iterations.

This study utilized a uniform initial probability matrix,
P0, to avoid biasing the deconvolution. It is possible,
however, to consider using a nonuniform P0 in the case
where it is justified by prior data or knowledge. To evaluate
this approach, several different biased P0 matrices were
evaluated. Distributions were chosen that were both similar
and dissimilar, which we will refer to as correctly and
incorrectly biased, to the final probability matrices deter-
mined from the uniform initial probability matrix. In general,
the correctly biased initial matrices converged quickly to
nearly identical distributions and fits. The incorrectly biased
initial matrices took longer but eventually converged to
similar distributions with similar but slightly poorer fits.
Thus, the algorithm was fairly robust with respect to the use
of nonuniform P0 matrices but appears to behave best with a
uniform starting distribution.

Following determination of P, the quality of the fit is
determined by projecting the probability matrix back into a
simulated mass spectrum in m/z space. This is accomplished
by summing Gaussian distributions centered at each m/z
value in M with the intensity of each determined from P.
Some care must be taken to find the appropriate width of the
distributions and to account for any adducts or fragments
(see below). The relative populations of adduct species and
an initial guess for peak widths are determined by fitting
only the overlap peaks at integer multiples of the lipid mass.
After determining the final P, the peak widths are optimized
for the best fit. The sum of squared errors (SSE) may then be
calculated between the experimental spectrum and the
simulated spectrum determined from the deconvolution.

Results and Discussion
To illustrate the effect of overlapping charge states on
Nanodisc native mass spectra and probability-based
deconvolution, we first focus on a single mass spectrum of
DMPC Nanodisc ions subjected to 70 V ISCAD. As shown
in Figure 1a, the spectrum contains a number of sharp
narrow peaks and five larger broad peaks. Three of the broad
peaks occur at integer multiples of the lipid at n = 9, 10, or
11, near m/z 6102, 6780, and 7458, respectively. Two other
broad peaks are found half way between these integer
multiples. These are the locations predicted by the charge
state overlap theory described above.

Zooming in to peak 1 at 10L (approximately 6780 Da)
and its neighbors, it is clear that the overlap effect precludes
assignment of the peak at m/z 6780. Potential Nanodisc ions
of various charge states are marked with vertical lines below

the peaks in Figure 1b. For peak 1, the potential ions are
very closely spaced (too close to label clearly). Even for
peak 2, which does not overlap perfectly, the difference
between many of the possible ions is small. The position of
some possible m/z pairs for peak 2 are marked with black
boxes in the mass/charge matrix in Figure 1c to illustrate the
wide range of charge states and lipid counts that could
contribute to peak 2. On the other hand, peak 3 is easier to
attribute primarily to the +22 charge state with a minor
contribution from the +23 charge state.

One notable feature of the spectrum is that the three peaks
are not perfectly Gaussian in shape but show a similar
pattern. Because all Nanodisc ions that contain integer
values of lipid, protein, and charge cluster closely at peak
1, it is impossible to attribute some of these shoulders to
Nanodisc ions containing only protein and lipid. One
possible assignment of these peaks is to various adducts
and fragments. The shoulder at lower m/z can be attributed
to loss of a phosphocholine fragment of 184 Da. This loss of
phosphocholine from phosphatidylcholine lipids is a well-
known fragmentation reaction [22, 23].

The shoulders at higher m/z are harder to assign. They are
likely due to heterogeneous adduction of water or ions from
solution. The largest potential adduct is one containing Tris
of 121 Da. Although we attempted to remove all Tris with
size exclusion chromatography, a small amount could
remain bound to the complex [24, 25]. For the
deconvolution algorithm, peak 1 along with peaks near 9L
and 11L were fit to four overlapping Gaussian distributions,
the pure protein/lipid complex, the ion formed by loss of
phosphocholine, and adducts with one or two Tris mole-
cules, to determine the relative population of each of these
species and an appropriate peak width. The peak widths are
used to determine the cutoff distance, σd, used in Equation 8.
It is possible to include adduct peaks in the probability-based
deconvolution by adding the spectral intensity of the adducts
to the spectral intensity of the bare ions in the β term, but we
found that this addition did not improve the algorithm
significantly for this system.

With an appropriate distance cutoff, we can now consider
each factor contributing to P in the context of peaks 1, 2, and
3. For peak 1, the dist values will all be close to unity
because the possible m/z values are very close to each other.
The spectral intensity factor, β, will also be very similar for
all (m, z) pairs. Thus, the probability of each possible (m, z)
pair close to peak 1 is primarily determined by the
neighborhood factor, N. The N term is initially uniform for
each possible value but converges to the final solution. In
the case of peak 1, N converges to similar values for the +22
and +23 charge states and is nearly zero for all others.
Figure 1c shows the final distribution and illustrates why the
neighborhood factor would be small for all other charge
states in light of the final distribution.

For peaks 2 and 3, N behaves similarly to peak 1. The
spreading of charge states, however, causes differences in
the β and dist factors. The β term is highest for the +22 and
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+23 charge states, especially in peak 3. The dist factor will
limit the intensity from being assigned to charge states that
are far away from the central m/z. Thus, even when the
neighborhood factor is uniform in the first iteration of the
algorithm, the +22 and +23 charge states have the highest
probabilities. As shown in Figure 1d, the final solution
assigns probabilities to both the +22 and +23 charge state for
all three peaks.

Considering the whole spectrum in Figure 1a and d, we
see that the deconvolution algorithm reveals the overlap of
adjacent charge states contributing to the broader peaks. The
probability matrix, Figure 1c, shows a centralized distribu-
tion of mass and charge. Summing the columns of the matrix
yields the overall lipid distribution. For simplification, the
lipid count distribution may then be fit to a Gaussian to
determine the lipid count mean and standard deviation.

The same deconvolution algorithm was applied to mass
spectra of Nanodiscs where increasing levels of fragmenta-
tion occur. The deconvolution matrices for DMPC
Nanodiscs at various fragmentation energies with both
ISCAD and IRMPD are given in Figure 2a and b,
respectively. The overall lipid distributions from these
matrices are shown in Figure 2c and d. Plotting the lipid
count mean and standard deviation as a function of ISCAD
voltage or IRMPD laser duration (Figure 3) provides a
quantitative picture of Nanodisc fragmentation. The exper-
imental data and final fits for each spectrum are shown in
Supplementary Figures S1 and S2.

From these data, we observe that the lipid count is
slightly higher and the distribution is slightly broader than
previously reported [13]. The mean lipid count is 165 at the
10 V ISCAD, whereas the value that we previously reported
is 155 [13]. The higher lipid count may be the result of
improved data analysis and higher resolution spectra or
could be due to sample-to-sample variation. It is also
possible although unlikely that association with free lipid
molecules could give rise to elevated lipid counts. The lipid
count standard deviation varies from ±4 at low fragmenta-
tion energies to ±7 at the highest. Although there is some
background outside of these central distributions, especially
at higher fragmentation energies, these data suggest that
Nanodiscs undergo a rather well defined fragmentation
pathway, staying relatively tightly grouped as they lose
lipids.

One interesting feature observed in some of the IRMPD
spectra is that the constructive overlap of adjacent charge
states is relatively minor (Supplementary Figure S2). This
is due to charge reduction caused by the IRMPD
fragmentation. At lower charge, Nanodisc ions shift to
higher m/z, and the regions of potential overlap shift to
higher nL values. Because n = k1 − k2, where k1 and k2 are
the overlapping lipid counts, overlap is more likely at
lower values of n. For peak 1 at 10L, lipid counts that are
10 apart have the potential to overlap. Because the lipid
count distribution is ±5 at 70 V ISCAD, overlap is likely.
However, at 22L (the highest peak in the 0.9 s IRMPD

spectrum, see Supplementary Figure S2), lipid counts must
be 22 lipids apart to overlap. Because the central distribution is
±6 for this spectrum, overlap is unlikely. The weak overlap that
does occur can be attributed to the presence of background
peaks outside of the central distribution.

A major advantage of the probabi l i ty-based
deconvolution algorithm is that it does not assume a given
model, such as a Gaussian distribution. Although the
algorithm considers the neighborhood, the probability of
each (m,z) pair is determined individually. This raises the
question of whether the number of independent variables
included in the probability-based deconvolution is justified.
Using the K and Z sets defined above, the probability matrix
contains 4530 elements. Removal of all elements of P with
probabilities smaller than 1 % of the maximum probability
in P, however, reduces the number of variables in the model
by a half to full order of magnitude without significantly
reducing the quality of the fit.

We used a Levenberg-Marquardt algorithm to fit other
models for the lipid and charge distributions, including
Gaussian, Cauchy, and skewed distributions. The best of
these was a Cauchy distribution in the lipid count and a
Gaussian distribution in charge, based on a modified square
root relationship to its mass [17]. None of these distributions,
however, fit the spectra well. F-tests comparing the reduced
probability-based model with the Cauchy distribution model
revealed that the probability-based model was significantly
better than the simpler models (additional details are provided
in the Supporting Information). Although improved models
and fitting strategies may emerge to describe the Nanodisc
charge and lipid count distributions, the probability-based
deconvolution approach provides a useful flexibility for initial
studies such as these where the distributions are not well
characterized.

A number of different algorithms have been developed
for deconvoluting electrospray mass spectra [26–32]. Al-
though a detailed comparison is beyond the scope of this
report, our probability-based deconvolution (PBD) has
conceptual and algorithmic differences from the entropy-
based methods such as MaxEnt [26, 27] and the algorithm
developed by Reinhold and Reinhold [30]. The biggest
difference is conceptual. Maximum entropy methods for-
mally recognize that a mass spectrum is just one realization
of an ensemble of spectra that could have been obtained.
The realized spectrum is not an exact copy of the “true”
spectrum, but is different owing to the uncertainty of
measurement. A probability model of the ensemble is
explicitly incorporated into maximum entropy methods, but
there is no a priori assumption about which mass-to-charge
values in the spectrum are important. Our PBD method, on
the other hand, uses probability to distribute spectral
intensity into idealized distributions of lipid count and
charge. Uncertainty in the experimental spectrum is trans-
formed into uncertainty in the distributions. As such, there is
a very strong a priori assumption about which mass-to-
charge values are important in the spectrum.

274 M. T. Marty et al.: Analysis of Native Mass Spectrometry Data



Figure 2. Deconvolution of lipid count and charge for DMPC Nanodiscs at a variety of fragmentation energies from both
ISCAD (a) and IRMPD (b). Summation of the columns from these matrices gives the lipid count distributions, which are plotted
in (c) and (d). Regions from the top contour plots correspond with the same color that is labeled in the bottom distributions. Fits
of each lipid count distribution to a Gaussian distribution are shown as black dashed traces in (c) and (d)

Figure 3. Lipid count distribution for DMPC Nanodiscs as a function of ISCAD voltage (a) and IRMPD laser duration (b). Error
bars are shown at 1 standard deviation. Mean and standard deviation are taken directly from the fits in Figure 2c and d
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Algorithmically, MaxEnt methods ultimately utilize a search
process to find the representative spectrum that produces an
extreme value for some information theory based evaluation
(entropy, for example). Our method utilizes a mapping
(constructed in two parts) that is recursively applied to its
own result. The mapping makes a correction that is designed
to remove the distortion and to produce a better approxima-
tion of the idealized distributions or lipid count and charge.
The mapping has a fixed point (the idealized distributions) to
which the recursive sequence converges.

Conclusion
We describe here the theoretical basis for the constructive
overlap of adjacent charge states in Nanodiscs and propose a
probability-based algorithm to deconvolute these overlap-
ping distributions. As demonstrated with DMPC Nanodisc
spectra at a range of fragmentation energies, charge state
overlap plays a significant role in shaping the spectra. The
probability-based deconvolution algorithm provides an
effective strategy for determining the lipid count and charge
states distributions. The theoretical work and algorithms
developed in this report will inform future studies of
Nanodiscs with membrane proteins and varying lipid
populations. Additionally, although our PBD method is not
a general method, the strategy could prove useful for the
study of a range of other protein complexes or synthetic and
biological polymers.
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