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Abstract
The recently introduced ion trap for FT-ICR mass spectrometers with dynamic harmonization
showed the highest resolving power ever achieved both for ions with moderate masses 500–
1000 Da (peptides) as well as ions with very high masses of up to 200 kDa (proteins). Such
results were obtained for superconducting magnets of very high homogeneity of the magnetic
field. For magnets with lower homogeneity, the time of transient duration would be smaller. In
superconducting magnets used in FT-ICR mass spectrometry the inhomogeneity of the
magnetic field in its axial direction prevails over the inhomogeneity in other directions and
should be considered as the main factor influencing the synchronic motion of the ion cloud. The
inhomogeneity leads to a dependence of the cyclotron frequency from the amplitude of axial
oscillation in the potential well of the ion trap. As a consequence, ions in an ion cloud become
dephased, which leads to signal attenuation and decrease in the resolving power. Ion cyclotron
frequency is also affected by the radial component of the electric field. Hence, by appropriately
adjusting the electric field one can compensate the inhomogeneity of the magnetic field and
align the cyclotron frequency in the whole range of amplitudes of z-oscillations. A method of
magnetic field inhomogeneity compensation in a dynamically harmonized FT-ICR cell is
presented, based on adding of extra electrodes into the cell shaped in such a way that the
averaged electric field created by these electrodes produces a counter force to the forces
caused by the inhomogeneous magnetic field.
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Introduction
Fourier transform ion cyclotron resonance mass-spectrome-
try is a well established powerful experimental technique for
solving a wide range of problems in analytical chemistry and
biochemistry, such as determination of the composition of

complex mixtures, identification of biological compounds,

and accurate mass measurement [1–6].
The main part of the ICR mass spectrometer is a

measuring cell, which is in fact the Penning ion trap in
which ions are trapped by a combination of electric and
magnetic fields. In order to measure the masses of the ions
after they are trapped in the cell, cyclotron motion of the
ions is excited by the rf field and the frequency of this
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motion is determined by measuring the current induced in
the external electric circle connected to the detection
electrodes of the cell. After the Fourier transform of this
time domain signal one obtains its frequency spectrum and
after calibration a mass spectrum.

The configuration of the electric field inside the ion trap
strongly influences the analytical characteristics of the ICRmass
spectrometer, its resolving power and mass accuracy [7, 8].

Recently performed supercomputer simulations of ion
clouds motion in a Penning trap showed that the hyperbolic
field is the best for achieving long duration of synchronous ion
motion and obtaining high resolving power [9–11]. Making the
electric field distribution inside the FT ICR cell close to the
field in a hyperbolic cell we call cell harmonization.

Our approach to cell harmonization is based on the so-
called dynamic harmonization of the electric field [12]. The
cell field becomes hyperbolic after being averaged by the
cyclotron motion. The principal design of such a cell was
previously described in [12] and is presented in Figure 1a.

As described in [12] this cell is a cylinder segmented by
curves along axial (magnetic field) direction

a ¼ 2p
N

n� b 1� z

a

� �2
� �

; n ¼ 0; 1:::;N � 1 ð1Þ

Here the z-axial coordinate of the cell, b ¼ p
N � p

60 ; a – is
half the length of the cell, α– the angle coordinate of a point

on the curve, N – number of electrodes of each type. The
original experimentally tested ion trap with dynamic
harmonization had eight segments with width decreasing to
the center of the cell and eight grounded electrodes with
width increasing to the center, four of which are divided into
two segments, each of which belongs to either excitation or
detection groups of electrodes. The trapping potential V is
applied to first group of electrodes and to trapping electro-
des. Other electrodes are grounded to DC voltage; rf
voltages are applied via capacitors to excitation groups of
electrodes and detection group electrodes are connected with
each other and with preamplifier by capacitors of appropriate
value of capacity.

The ion trap with dynamic harmonization showed the
highest resolving power ever achieved on peptides and
proteins [13]. The time of transient duration reaches 300 s
and seems to be limited only by the vacuum inside the FT
ICR cell and magnetic field inhomogeneity [14]. Such
results were obtained on a solenoid magnet of high
homogeneity (less than 1 ppm of magnetic field in the
central region [6 cm in diameter and 6 cm length]). In order
to obtain a long time domain signal using the dynamically
harmonized cell on the other systems, the magnetic field of
their magnets should be corrected correspondingly. Among
the systems of interest are FT ICR mass spectrometers on
permanent magnets, with inhomogeneity of the magnetic
field about 500 ppm in a 1 cm3 cube [15], and on cryogenic

Figure 1. (a)- The ICR cell with dynamic harmonization [12] (a). Trapping electrodes with surface geometry close to spherical
(b). Segments for electrostatic field harmonization (c). Grounded segments (d). Line separating detection electrodes assembly
from excitation electrode assembly (b)- The designs of the compensation ICR cell with dynamic harmonization (a). Trapping
electrodes with surface geometry close to spherical (b). Extra electrodes for compensation of magnetic field inhomogeneity by
average radial electrostatic field (c). Segments for electrostatic field harmonization (d). Grounded segments electrodes are
connected into groups for excitation and detection (not shown of the figure). (c)- Magnetic field near center for two 7 Tesla
Bruker magnets. Black, installed in Bremen, red, installed in Moscow. Magnetic field [T]. (d)- Magnetic field for 7 Tesla Bruker
magnet installed in Bremen. Magnetic field [T]
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free magnets with inhomogeneity of 100 ppm in a
cylindrical volume 25 mm in diameter and 40 mm in length.
These instruments demonstrated the resolving power of
about 100,000 for m/z around 500. For such ICR mass
spectrometers the inhomogeneity of the magnetic field is the
main factor influencing the time of signal acquisition and
resolving power. The inhomogeneity of the magnetic field
was also the main limiting factor for an ICR mass
spectrometer equipped with a 25 Tesla resistive magnet
[16]. The inhomogeneity of the magnetic field in a 1 cm in
diameter sphere was approximately 50 ppm for this magnet.
Correction of the magnetic field to achieve higher inhomo-
geneity is an expensive and complicated procedure.

Recently it was demonstrated that in the case of Gabrielse’s
type FT ICR cell, the influence of the inhomogeneity of the
magnetic field could be decreased by compensating the electric
field by accurately adjusting the compensation voltage on one
of the electrodes of seven segment cell [1, 8, 17].

Here the same idea is applied to the dynamically harmo-
nized cell. We present a design of the ICR cell with magnetic
field inhomogeneity compensation based on the principle of
the dynamic field creation. Additional segments with a
potential different from that on the main segments are
introduced into the original ion trap with dynamic harmoniza-
tion [12, 13], thus creating an additional electric field inside the
cell. These segments are shaped by the curves of fourth order to
z-coordinate (axial). Such electrodes can create a fourth order
correction to the electric field and by turning voltage on them it
is possible to compensate 2-nd order inhomogeneity of the
magnetic field (see Figure 1b. Computer experiments were
performed with additional segments shaped by curves of even
higher orders: sixth and eighth to z-coordinate for correction of
higher order magnetic field inhomogeneity.)

It was shown that by varying the voltage on these additional
electrodes it is possible to make the disturbances of the
cyclotron frequency from the magnetic field inhomogeneity
independent of the z-oscillation amplitude. The inhomogeneity
of the magnetic field for the two Bruker magnets is represented
in Figure 1c, d. It can be seen that in a small region near the
center the magnetic field has a mainly linear inhomogeneity
and for a larger z the quadratic homogeneity dominates.

Theory
It was shown [18, 19] that only the inhomogeneity of the
magnetic field in its z direction has a considerable influence
on cyclotron frequency. The effects of the inhomogeneity in
radial directions are negligible. Therefore for a single ion
inside the FT ICR trap the general equation for radial force
balance for simplified case of circular motion is:

mw2r ¼ qB r; zð Þvþ qEr r; zð Þ ð2Þ

Where m - ion mass, q - ion charge, B(r,z) is the intensity
of magnetic field in the z direction, Er(r,z) - the radial

component of the electric force formed by the ion trap,
ω - the cyclotron frequency, r - cyclotron radius, z -
coordinate in the direction along the magnetic field, v -
velocity. Divided by the cyclotron radius this equation
becomes:

mw2

q
r ¼ B r; zð Þw þ Er r; zð Þ

r
ð3Þ

In case of the electric fields created by hyperbolic
electrodes cyclotron frequency does not depend on z.
The dependence of the magnetic field B(r,z) and the
radial component of the electric field Er(r,z) on the z
coordinate causes the cyclotron frequency dependence on
the z coordinate. As a consequence ions with different
amplitudes of z oscillation have different cyclotron
frequencies and the ion cloud will experience dephasing
during its cyclotron rotation. To prevent such dephasing
the cyclotron frequency should be made independent of
the z coordinate. Mathematically this means that its first
derivative by z is equal to zero. The first derivative of
Equation 3 by the z-coordinate is:

m

q
2ww0

z ¼ B0
z r; zð Þw þ B r; zð Þw0

z þ Er r; zð Þ
r

� �0

z

ð4Þ

and by equalizing w0
z to zero we obtain:

B0
z r; zð Þw þ E r; zð Þ

r

� �0

z

¼ 0 ð5Þ

Taking into account that w ¼ qB
m , we can rewrite

Equation (5) in the following form:

q

m
B0

z r; zð ÞB r; zð Þ þ Er r; zð Þ
r

� �0

z

¼ 0 ð6Þ

This is the equation describing the required relationship
between the magnetic and the electric field in order for
compensation to take place.

It is possible to describe the z component of the magnetic
field for any magnet as a series of spherical functions as
proposed in [19]:

Bz ¼ A0
1 þ 2A0

2zþ 3A1
2xþ 3B1

2yþ 3A0
3 2z2 � x2 � y2
� �

2þ :::= ð7Þ

Current shims of different geometry (circular, rectangu-
lar) are used for shimming different terms in expansion (7).
Usually the main impact on the inhomogeneity of the
magnetic field is caused by the quadratic term.
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As a consequence we simplified our task and considered
only the inhomogeneity of the magnetic field in the
following form:

B ¼ B0 1þ gz2
� � ð8Þ

The effects of other terms were not included in our
current considerations. This field may be corrected by the
electric potential of the form:

V ¼ aþ b r2 � 2z2
� �þ c 8z4 � 24z2r2 þ 3r4

� � ð9Þ

This is a result of electric field representation as a series
of spherical harmonics. By inserting this into the Equation 6,
we obtain:

0 ¼ B0g2zw þ 2br þ c �48z2r þ 12r3ð Þ
r

� �0

z

ð10Þ

This equation can be satisfied for

c ¼ eB0
2g

48m
ð11Þ

So, the quadratic term of the magnetic field inhomoge-
neity can be compensated by the fourth order spherical
harmonics of the electric field.

The design of an ion trap capable to create such electric
field is presented in Figure 1b. Additional segments shaped
by the fourth order curve were introduced to the original ion
trap with dynamic harmonization. The form of the curve
obeys the equation:

a4 ¼ 2p
8
n� b0 1� z

k � a
� �4

� �
ð12Þ

with b0 ¼ p
7:2 � p

60 ; k ¼ 1:15 .
If the potential on the compensation electrodes is set

equal to the potential of the housing and trapping
electrodes then the compensated cell becomes similar to
the original cell with dynamic harmonization. So the same
cell design may be successfully used for magnets of
different homogeneity of the magnetic field. For magnets
of high homogeneity the potential on the compensation
electrodes will be close to the potential on the housing
electrodes.

In the original ion trap with dynamic harmonization
[12] the trapping electrodes are shaped by following the
equipotentials of harmonic field. In the proposed cell
with compensation electrodes the position of the trapping
electrodes remained the same. This means that when the
potential on the compensation electrodes is not equal to
the potential on the housing electrodes the trapping
electrodes do not fit the equipotential of the compensated

field. This leads to the presence of additional corrections
of a higher order in the electrostatic field.

It is possible to create an exact averaged compensated
field of the form (9) by segmenting the trapping electrodes.
See Appendix I for more details.

Computer Simulations
Simulation of ion cloud dynamics in the cell with dynamic
harmonization is a challenging problem. The time of transient
duration for such a cell could reach 300 s [13]. During this time
the ion accomplishes hundreds of millions rotations. As a
consequence for such long times even slight numerical errors in
the calculated electromagnetic field or in the integration of ion
motion equations will lead to a considerable difference
between computer simulation results and experiment.

For example recently performed computer simulations
of ion cloud motion in the original ion trap with
dynamic harmonization [12] showed a dephasing rate
which was much faster than that observed experimental-
ly. Further investigations showed that this dephasing
occurred due to the dependence of the radial component
of the electric force on the z coordinate. Such depen-
dence occurred because of errors of the electrostatic
potential calculations.

The potential distribution has been calculated by several
methods: finite difference method (FDM) in cylindrical and
Cartesian coordinates and finite element method (FEM). We
performed a multi-grid successive over-relaxation with optimal
parameter method for FDM in Cartesian coordinates and multi-
grid Gauss-Zeidel method for FDM in cylindrical coordinates.
Seven-point stencil was used for approximation of the Lap-
lasian. To obtain high accuracy the size of the mesh, number of
intermediate meshes and number of iterations were varied.
Also SIMION 8 (David Manura Scientific Instruments
Services, Ringoes, NJ, USA) has been applied for comparison.

The accuracy of our calculations was controlled by
comparing the analytically obtained averaged field with the
field obtained for the case when the voltage on the
compensation electrodes was equal to the voltage on the
housing and trapping electrodes. The comparing procedure
was the following. For the original ion trap with dynamic
harmonization with radius R and half length Z the field
averaged over the angle can be obtained as a solution for the
system of equations:

V r; zð Þ ¼ aþ b r2 � 2z2
� �

V R; 0ð Þ ¼ p
60

V

V R; Zð Þ ¼ V

ð13Þ

Cylindrical symmetry of the cell suggests that the field
averaged by the angle of rotation must be the solution of the
averaged boundary problem [12]. Here, V is the voltage on
housing and trapping electrodes, and p

60 - the angle width of
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the housing electrode in the center of the cell. By solving
this system of equations we can easily calculate the averaged
by angle theoretical field. It is convenient to compare the
obtained results with the field given by Equation (13) on the
central axis because the averaging procedure may cause
additional errors.

The results obtained for field accuracy using different
methods are shown below. Simulations have been performed
for a cell with the following dimensions [12]: radius of
28 mm, half-length - 75 mm, radius of the trapping electrode
- 148.7 mm. In the center of one of the trapping electrodes a
circular hole of 6 mm in diameter for ion inlet was placed.
We defined an error as the largest discrepancy between the
numerically calculated field and the field given by (13) on
the central axis.

� FDM Cylindrical coordinates – Error 0 1.3 %. Mesh
corresponds to 2 points per 1 mm.

� FDM Cartesian coordinates – Error 0 0.075 %. Mesh
corresponds to 12 points per 1 mm.

� FEM – Error 0 0.65 %. Mesh corresponds to 2 points per
1 mm.

� SIMION – Errors 0.56 %. Mesh corresponds to 10 points
per 1 mm.

For all methods different mesh sizes limited only by
available computer memory and different number of
iterations were tried.

Also, comparison of the solutions in the whole volume of
the cell has been performed. The numerically obtained field
potential was averaged by the angle and compared to the
field given by Equation (13). All methods showed close
accuracy: for radii less than 70 % of the cell the error is
about 1 %; for large radii the error is about 1.5 %–2 %.

Additional details are placed in the Appendix II.
The other possible source of errors is integration of ion

motion equations. This integration was performed using a
fourth order Runge–Kutta method with frequency correction.
Realization of the frequency correction was similar to the
one used in the Boris integration method [20]. Time step of
integration was chosen from the condition, that there are
around 3000 calculation steps per one cyclotron period. For
calculation of the electrostatic field inside the mesh element
a trilinear interpolation method was used [21]. Also,
numerous simulations in the hyperbolic field were per-
formed in order to make sure that the integration procedure
is not the source of errors.

To estimate the dephasing time of an ion cloud the
following numerical experiment was carried out. The
cyclotron motion during detection of ions with different m/q
in a 7 T magnetic field with different cyclotron radii and
oscillation amplitudes was simulated.

The initial conditions for the equation of ion motion were
the values of z coordinate, radius r, and corresponding
cyclotron velocity v. The phase was the same for all of the
experiments.

The z- oscillation amplitude was varied from 2 mm to
30 mm with 1 mm steps. Moments of ion intersection with
the plane x00 were recorded. Such method gives us the
possibility to monitor the evolution of the cyclotron
frequency.

The time of complete ion cloud dephasing is defined as
the time corresponding to the moment in the cloud
evolution when the head of cloud touches its tail. One
rotation cycle for ions with different oscillation amplitudes
takes different times. If one denotes the mean length of the
cyclotron period for these ions as t and the standard
deviation which corresponds to the ion cloud dephasing
rate as Δt, then the number of rotations required for
complete dephasing is Ndeph ¼ t Δt= . And the time of
dephasing is:

Tdeph ¼ Ndeph � t ¼ t2

Δt
ð14Þ

Results of the simulations are presented in Figure 2.
The voltage on the compensation electrodes does not

depend on the amplitude of ion oscillation in the
potential well along the magnetic field (Figure 2c, d).
Also no dependence on cyclotron radius was observed
(Figure 2d, e, f).

An inversely proportional dependence of the optimal
voltage on the compensation electrode from m/q (Figure 2a,
b, c) and a linear dependence from the value of inhomoge-
neity of the magnetic field were observed as predicted by
theory.

For example, for an inhomogeneity coefficient γ04⋅10−9

mm−2 the optimal compensation voltage is equal to 13 V for
m/q 0 300, 8 V for m/q 0 500 and 6 V for m/q 0 700. The
width at half height of the peaks on Figure 2 is equal to
approximately 1 V. This means that it can be expect that the
proposed cell will effectively align the cyclotron frequency
in an m/q range of about 100 Da for moderate m/q and for
the whole upper m/q range.

The dependence of the dephasing time from the oscilla-
tion amplitude and radius, which can be seen in Figure 2,
can be explained by numerical errors in the simulations of
the electric field.

Simulations performed for the conventional ion trap with
dynamic harmonization revealed an important rule that the
accuracy of the electric field is the main factor influencing
ion cloud dephasing [22].

It is also possible to compensate the linear ingomo-
geneity of the magnetic field using the proposed cell. For
this it is necessary to set different potentials on the left
and right compensation segments. The voltages on the
compensation electrodes were changed in accordance
with the following condition: V l þ Vr ¼ 2 � V trap , where
Vl,r - are the voltages on left and right sets of compensation
electrodes and Vtrap is the voltage on the housing electrodes.
Thus the compensation voltages on the left and right
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Figure 2. Dependence of the ion cloud dephasing time on the compensation electrode voltage for different values of the z-
oscillation amplitude (zero to peak), radius and m/z. Red γ01⋅10−9mm−2, Green γ02⋅10−9mm−2, Blue γ03⋅10−9mm−2, Milky Blue γ0
4⋅10−9mm−2. See Equation 8

Figure 3. Dependence of the ion cloud dephasing time on the compensation electrode voltage for different values of the z-
oscillation amplitude (zero to peak), radius and m/z. Linear inhomogeneity. Time of synchronic motion vs. voltage on right set of
compensation electrodes. Vl+Vr02*Vtrap. B0B(1+γz). Black γ01⋅10−7mm−1, Red γ03⋅10−7mm−1, Green γ05⋅10−7mm−1, Blue γ07⋅10
−7mm−1, Milky Blue γ09⋅10−7mm−1
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electrodes are symmetric with respect to the trapping
voltage.

In Figure 3 the results of such compensation are
shown. It can be seen that for linear inhomogeneity it is
possible to correct the cyclotron frequency and increase
the time of synchronous ion motion. Also the inverse
proportionality of the dependence from m/q and linear
dependence from the inhomogeneity coefficient can be
seen. The compensation works only for a certain m/q
range. The average order of such m/q range is approxi-
mately hundreds of Da. The complete compensation could
be done for much narrower m/q range (what is enough in
case of fine structure resolution and isotopic patterns of
proteins).

In order to compare these results with the compensation
theory the following computational experiment was done.
The z coordinates were frozen and the values of the
magnetic field, electric force and current coordinates of the
ions during their rotation were recorded. Approximately 150
records per cyclotron period were made.

For each z coordinate the mean radial component of
the electric field Er(z) was calculated. The compensation
theory predicts that in order for compensation to occur,
(as follows from Equation 6) the following condition
must be met:

wcB
0
zðzÞ þ E0

zðzÞ
r

¼ 0 ð15Þ

If derivative E0
zðzÞ is replaced with a finite difference

ΔEðzÞ ¼ EðzÞ�Eð0Þ
z and similar is done for B0

zðzÞ , it may be
concluded that curves wc BðzÞ � Bð0Þð Þ and EðzÞ�Eð0Þ

r should
match in order to meet the compensation condition. From
Figure 4 it can be seen that by adjusting the compen-
sation electrode voltage one can almost satisfy these
conditions.

It can be clearly seen that for each z coordinate the
inhomogeneity of the magnetic field was compensated by a
correction in the electric force.

Conclusions
The theory of compensation of the magnetic field inhomo-
geneity inside an FT ICR cell with dynamic harmonization
by introducing specific electric field corrections is pre-
sented. An ICR cell design is proposed in which the
inhomogeneous component of the magnetic field of the
second order is compensated by an electric field, created by
incorporated into the housing electrode assembly special
electrodes which borders are shaped by a 4-th order curve.
By setting different voltages on left and right set of
compensation electrodes, it also possible to compensate a
linear inhomogeneity. Computer simulations have shown
that in the proposed cell design the inhomogeneity of the
magnetic field can be effectively compensated in relatively
large mass to charge ratio range and a considerable increase
in the resolving power in the case of low homogeneity of the
magnetic field could be obtained.
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Appendix I
The idea to crate a cell providing an averaged field
Equation 9 is based on the principle of a dynamic field. A
schematic design is presented on Figure 5. Only the

Figure 4. Compensation conditions for the case of γ02⋅10−9mm−2, Z [mm]. B[T], w[s-1], E/r[V/m2]
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second and fourth corrections of the electric field were
considered. The consideration of higher harmonics is the
same. Instead of a circular trapping electrode a segmented
flat trapping electrode was proposed. The cylindrical
surface is the same as in the original cell with dynamic
harmonization. The trapping electrode is flat but is
segmented into sectors by curves of the second and
fourth order. The schematic design of the cell does not
include gaps between electrodes. Also for the case of
simplicity the width of housing electrodes in the center of
the cell considered to be zero.

To determine the relationship between the voltages and
parameters of the field Equation (9), the field must be
averaged by angle. Using definitions from Figure 5 on the
cylindrical surface one can obtain:

V R; zð Þ ¼ aþ b R2 � 2z2
� �þ c 8z4 � 24z2R2 þ 3R4

� � ¼
N

p
V 4

p
N

L4
z4 þ V 2

p
N

L2
z2 �

p
N

L4
z4

� �
þ V 0

p
N

�
p
N

L2
z2

� �� �

ð16Þ

An averaged field on the trapping electrode:

V r; Lð Þ ¼ aþ b r2 � 2L2
� �þ c 8L4 � 24L2r2 þ 3r4

� � ¼
N

p
V 0

4

p
N

R4 r
4 þ V 0

2

p
N

R2 r
2 �

p
N

R4 r
4

� �
þ V 0

0
p
N

�
p
N

R2 r
2

� �� �

ð17Þ

By equalizing Equations (16) and (17), the following system
of equations for the potentials on the electrodes can be obtained:

V 4�V 2ð Þ
L4

¼ 8c
V 2�V 0ð Þ

L2
¼ �2b� 24cR2

V 0 ¼ aþ bR2 þ 3cR2

8><
>:

V 4
0�V 2

0ð Þ
R4 ¼ 3c

V 2
0�V 0

0ð Þ
R2 ¼ b� 24cL2

V 0
0 ¼ a� 2bL2 þ 8cL4

8><
>:

ð18Þ

As can be seen by solving this system of equations it is
possible to adjust the potentials on the electrodes to create a
field of the exact form (Equation (9)). The same technique is
applicable to create a field of any other cylindrically
symmetric form by introducing additional segments shaped
by curves of higher order.

Appendix II
In this section a detailed discussion of the calculations of the
electrostatic field are presented.

Several different methods were applied to obtain a very
high accuracy in the procedure of the electric field
simulation. The simplest one is the FDM method in a
Cartesian coordinate system. The main disadvantage of this
method is the error of approximation of the electrodes on the
mesh. A simple shift method [23] was used for approxima-
tion the boundary conditions, so the approximation error is of

Figure 5. The schematic design of the ion trap with dynamic harmonization capable to create exact field of form (9).
Segmentation pattern for cylindrical surface and trapping electrode for N08 segment cell. Variables V0,V2,V4 are voltages
applied to segments on cylindrical surface. Variables V*0,V*2,V*4 are voltages applied to segments on flat trapping electrode.
Segments of the cell are shaped by curves of second and fourth order
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the order of the mesh size. But the important advantage is that
the mesh is uniform and iterative methods for solving the
boundary problem can converge very fast. A seven-point
stencil was used for approximating the Laplace operator on the
mesh, and also experiments with a 19-point stencil [24] were
carried out and no considerable difference was found.

The electrostatic potential was calculated in the sector
8 2 0; p 2=ð Þ½ � on a uniform mesh. If the mesh approx-
imation of the potential on a mesh point with indexes
xn, ym, zk is denoted as un;m;k , then one step of the
numerical solution was setting the value in this point as
follow [25]:

un;m;k ¼ 1� wð Þun;m;k þ w
un�1;m;k þ unþ1;m;k þ un;m�1;k þ un;mþ1;k þ un;m;k�1 þ un;m;kþ1

6

� �
ð19Þ

Where parameter w is defined as:

w ¼ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 sin2 p

2N

� �þ sin2 p
2M

� �þ sin2 p
2K

� �� �q ð20Þ

And N, M, K - are the maximal numbers of points on the
mesh in the x, y and z directions.

One step of numerical solving a boundary problem is
applying formula (19) for all grid points. This is a well
known successive over-relaxation method with optimal
parameter [23, 25]. In order to increase the convergence a
multi grid method was used. First the solution was obtained
on a rough grid and then this solution was used as the initial

condition for an iterative method on a fine grid. Different

ways of choosing intermediate grids and different numbers

of iteration on them were used.
One way to escape approximation errors is by imple-

menting FDM in cylindrical coordinates. In addition rotation
symmetry allows to considerably save computer memory by
solving the problem only in the region 8 2 0; p N sec=ð Þ½ � ,
where Nsec is the number of sectors. As a consequence it is
possible to use finer meshes with more points in them. For
electrode approximation a simple shift method was used.
The approximation of electrodes on cylinder surface does
not contain errors except for the region around shaping
curve. And the trapping electrodes are still approximated
with errors of the order of mesh size.

Figure 6. The dependence of radial component of electric force in original ion trap with dynamic harmonization on z for
different radii. ErðzÞ r=

Er1 ð0Þ r=
1
� 1 , r106 mm
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A Gauss-Zeidel iterative method was used to solve a
system of algebraic equations. If the grid approximation of
the potential value in a certain point of the grid with indexes
rn, φm, zk is denoted as un;m;k then one step of the numerical
solution was setting the value in this point as follow [23]:

un;m;k ¼ b
2þ 4b

n2 un�1;m;k þ unþ1;m;k

� �þ n

2
unþ1;m;k � un�1;m;k

� �þ

þ 1

b
un;m�1;k þ un;mþ1;k

� �þ n2 un;m;k�1 þ un;m;kþ1

� �

0
B@

1
CA

ð21Þ

Here b ¼ p2

NSec
2M

, Nsec is the number of sectors (eight in our
case), and M - maximal number of points of angle discretiza-
tion. One cycle of the calculations (iteration) is applying
expression (Equation 21) to all mesh points. To increase the
convergence a multi grid method was used

But approximation of the trapping electrodes still con-
tains errors. We did not succeed in obtaining high accuracy
using this method because iterative methods did not
converge for large meshes. But in case of small meshes the
solution was more accurate, as compared to the one obtained
for FDM in Cartesian coordinates with equal mesh size.

A method that does not have approximation errors is FEM.
In addition to the surface elements corresponding to electrode
boundary especial curved cylindrical elements were used. But
the accuracy of this method also was not very high.

The best results were obtained using FDM in Cartesian
coordinates for very finemesh. On Figure 6, the variation of the
ratio ErðzÞ r= averaged over the angle along the central axis is
presented. In an ideal cell the ratio ErðzÞ r= should be
independent of both z and r. But because of the calculation
errors in the electrostatic field certain dependence is observed.

It can be seen that the variation of ErðzÞ r= considerably
depends on the accuracy of the calculated electric field. The
radial component of the electric field is the derivative of the
electric potential by the radius and derivation introduces
additional errors. The field from a rectangular mesh was
interpolated to a cylindrical and then a four-point derivative
was used to obtain the electric force in the radial direction.
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