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Abstract
Data processing for three dimensional mass spectrometry (3D-MS) imaging was investigated,
starting with a consideration of the challenges in its practical implementation using a series of
sections of a tissue volume. The technical issues related to data reduction, 2D imaging data
alignment, 3D visualization, and statistical data analysis were identified. Software solutions for
these tasks were developed using functions in MATLAB. Peak detection and peak alignment
were applied to reduce the data size, while retaining the mass accuracy. The main morphologic
features of tissue sections were extracted using a classification method for data alignment. Data
insertion was performed to construct a 3D data set with spectral information that can be used for
generating 3D views and for data analysis. The imaging data previously obtained for a mouse
brain using desorption electrospray ionization mass spectrometry (DESI-MS) imaging have been
used to test and demonstrate the new methodology.
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Introduction

Mass spectrometry (MS) imaging brings the advantages
of MS to microscopy and provides the spatial

distribution of chemicals on a surface without the need for
fluorescent or radioactive labeling [1–4]. The development
of 2D-MS imaging of biological tissue analysis provides
highly specific molecular information on the distribution of
proteins [5–10], lipids [11–19], and therapeutic drugs [20–
24] in the material. This information serves as a powerful
tool for finding disease biomarkers as well as for under-

standing and developing drug delivery systems [25, 26].
While 2D-MS imaging has been widely applied to the
analysis of thin tissue sections, it has also been recognized
that it is highly valuable to acquire 3D spatial distributions
of the chemicals in a tissue volume or in an entire organ
[27–34]. The two basic approaches used for 3D-MS imaging
are, first, depth profiling using an ionization source that
ablates tissue and second, recording a sequence of 2D
images from serial sections taken from a tissue volume and
then combining this information. In the depth profiling
experiments, ablation of the tissue material is used to expose
lower layers of tissue for analysis; this has been achieved
with high energy ion beams in secondary ion mass
spectrometry (SIMS) imaging [29, 33, 35] or with lasers in
methods that include matrix assisted laser desorption
(MALDI) [5, 36, 37], laser ablation electrospray ionization
(LAESI) [28, 38], and laser ablation followed by atmospher-
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ic-pressure afterglow (LA-FAPA) [39]. In the alternative
serial-sectioning approach, a volume of tissue is sliced into
thin sections and each of the sections is imaged using
standard 2D-MS imaging. The information obtained from
the 2D images is then processed to construct the 3D
distributions of the chemicals. By appropriately selecting a
representative number of sections for analysis, a large
volume of tissue can be analyzed in a relatively short time
with adequate information being acquired to reconstruct the
3D chemical distributions. This approach has been imple-
mented using MALDI [27, 30, 32, 40] and desorption
electrospray ionization (DESI) [41].

Data processing for MS imaging is important and also
challenging since a large amount of raw data is acquired and
needs to be processed and analyzed. Software tools for 2D-
MS image data processing are readily available. In addition
to the software provided with commercial mass spectrom-
eters [42], free software such as BioMap [43, 44], Datacube
Explorer [45], and MITICS [46] have been used widely for
generating 2D-MS images. Currently there is no software
available for processing MS data to assemble 3D images
directly. In recent studies [32, 40, 41], 2D images for
selected ions on a series of sections were first generated
using 2D data processing software, and then the color
distribution information was further processed by image
software to generate the 3D images. Note that the m/z values
and corresponding ion abundance information for distribu-
tions of multiple compounds are not represented in the 3D
data set constructed in this approach. To obtain 3D images
for different ions, different 2D images have to be generated
first, and their color distributions are used to represent
difference for the 3D image construction. Application of
advanced data analysis methods to a 3D volume, such as
principal component analysis (PCA), is not possible because
the original mass spectral information is not retained through
the data processing. As discussed for a previous study of
peptide and protein imaging in rat brain [32], many more
extensive data processing procedures are required for true
3D data processing that retains the MS spectral information.
These methods could include, but are not limited to, spectral
smoothing, intra-section registration (2D image rotating and
rescaling), inter-section registration (alignment, quality
measurement), and validation (surface rendering), etc.

In this study, we explored the methods to reconstruct a
3D data set retaining the mass spectral information for 3D-
MS imaging. With the accurate masses and the abundances
of the ions representative for the compounds of interest, 3D
images can be instantly produced with arbitrary views, and
statistical analysis can be performed in the 3D volume. The
key steps necessary for the data processing were identified,
and solutions were developed and implemented using
selected capabilities of MATLAB so that they can be
integrated into a complete software package. The data set
previously acquired for 36 sections of a mouse brain with
DESI imaging was used here to test the methods and to
demonstrate the new software solutions. Data reduction,

tissue section alignment, data visualization, as well as
statistical analysis using PCA and cluster analysis (CA)
have been developed.

Data Registration and Storage
Similar to 2D-MS imaging, the spectra recorded for each
point in a 3D volume tissue needs to be co-registered with
the position of each sampling point. When using a series of
sections from a tissue volume, the x and y coordinates are
registered with the individual spectra acquired while 2D
imaging is being performed on each section. The actual z
coordinate value of a section needs to be registered together
with the data recorded for each point on that section. A point
close to the bottom-left corner of each tissue section is set as
the reference point (0, 0) in the program we developed,
while a relative x-y position system is used to register the
points in that section. There is a challenge in aligning the x-y
positions between different sections, for which a solution
will be discussed later in this paper. Typically, multiple
spectra are recorded for each point of the section and the
averaged spectra are used for data processing. The entire
data set can be stored in a data base defined in various ways.
The data used in our study were recorded using an LTQ
mass spectrometer (Thermo Fisher Scientific, Inc., San Jose,
CA, USA) equipped with a homebuilt DESI imaging source.
Thirty-six tissue sections of a mouse brain were imaged in
the negative ion mode, with a total of 50 rows of scans and
69 spectra recorded per row [41]. The x and y positions
corresponding to each spectrum were determined by the
scanning speed and step length of the moving stage in the x
and y directions, respectively. An index file was created to
correlate each file name with the x-y coordinates. During the
data processing, the peaks were identified and a single file
was created for each analyte with its intensities at every
point in the 3D volume.

Data Reduction
Data reduction has been shown to be necessary for 2D-MS
imaging [47], and it is even more desirable for 3D imaging,
especially when high resolution mass spectra are recorded
using FTICR, Orbitrap, or TOF analysis, since a significant-
ly larger amount of raw data is then collected. Use of the raw
spectra causes problem in data storage as well as in
subsequent data analysis, which is typically limited by the
memory size and data transfer speed of the computer. The
binning method is commonly used for reduction of raw data.
For each spectrum, the bin width is first selected based on
the mass resolution of the instrument, and one peak with a
nominal m/z value centered within every bin window is
assumed to represent the information with the peak intensity
being defined as either the maximum or the sum of the
signal intensity across the bin width.

Although the bin method is easy to implement and has
been widely used, a more precise peak detection and
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alignment method can further decrease data redundancy
without losing accurate mass information (see Supporting
Information for a comparison between these two methods).
This retains the advantage of using high MS resolution and
high MS accuracy for the imaging [48–50]. Peak detection
in this work is based on statistical analysis of the spectra
acquired for the entire tissue section. A histogram can be
generated as shown in Figure 1a, which is obtained with
3450 spectra (50×69 spots) for one of the 36 tissue sections
of the mouse brain tissue [41]. For the raw data without any
baseline correction, an assumption can be made that a large
number of peaks can be attributed to chemical or electronic
noise. This is correct for the DESI imaging data used for
demonstration. The noise level can be equated to the local
maxima in the histogram, and peaks with intensities of three
times of the noise level or higher can be identified as “real
peaks.” With this peak detection made on the raw spectra,
the “real peaks” were picked and retained while a large
number of background signals are dropped, which signifi-
cantly decreases the size of the data set. In some cases, it
might be preferred to have the peak intensity corrected with
the noise level. The reduction rate varies as a function of the
chosen threshold for peak identification; as shown in

Figure 1a inset, a 95% reduction can be achieved with a
threshold of S/N=3. Further reduction can be achieved by
using higher S/N for peak detection, with a confidence based
on prior knowledge of the samples to be imaged. Selection
of a noise level of lower signal and an S/N of 3 for peak
detection would help to save the low abundance but
significant peaks; however, the total amount of data involved
in the latter stage of analysis would also be significantly
increased.

Peak alignment can be performed after peak identification
to further decrease the data size while retaining the accurate
m/z values of the compounds detected in the tissue. Mass
shifts exist for some compounds in spectra acquired from
different spots on a tissue section, and they can be caused by
the conditions used for mass analysis and the composition of
the sample matrix [51–55]. Peak alignment allows the
assignment of the correct m/z value to a compound
uniformly for all the pixels on a tissue section or in a tissue
volume, based on the statistical analysis of the spectra and
the mass accuracy and resolution of the mass spectrometer.
This process plays an important role in subsequent data
analysis. As an example, peak alignment for phosphatidyli-
nisitols (PS) 18:0/22:6 was performed using the method
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Figure 1. (a) Peak intensity histogram based on statistical analysis of 3450 spectra recorded in 2D-MS imaging of a tissue
section of mouse brain. The inset shows the percentage of the original data retained as a function of the threshold set for “real
peaks.” (b) The peaks of PS 18:0/22:6 at m/z 834.6 from different spectra, showing mass shifts among different scans. (c)
Distribution of m/z value for the peaks of PS 18:0/22:6 from all the spectra. (d) Positions of peaks detected within a mass range
m/z 834 to 839 before (top) and after peak alignment (bottom)
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shown in Figure 1c. The distribution of the peak positions
obtained from all 3450 spectra acquired for a tissue section
covers a narrow mass range around m/z 834.6 and could be
fitted to a Gaussian distribution. The corresponding m/z
value at the maximum in the distribution was then assigned
to all the peaks counted to this distribution for all the spectra,
while retaining the original measured peak intensity. If
internal references can be used for mass calibration of each
spectrum, the statistical analysis shown in Figure 1c is not
necessary, but the peak positions still need to be identified as
shown in Figure 1b. Practically, identifying multiple
endogenous calibrators for in situ calibration can be difficult
for MS imaging while adding external calibrators can also be
cumbersome.

It is possible to observe two or more local maxima, and
the mass accuracy and resolution of the mass spectrometer
then needs to be considered to determine if multiple peaks
should be assigned. In this study, mass windows of 0.1 and
0.01 Th are used for data acquired using the LTQ and
Orbitrap, respectively. Peaks within these m/z windows are
treated as representing a single compound. The effect of the
peak alignment can be seen from the comparison for the
peaks in the m/z range 834.0–839.0 shown in Figure 1d. A
comparison of the data reduction between the bin method
and the peak detection and peak alignment method is shown
in Table 1. The peak detection and peak alignment method
offers better data reduction with retention of accurate mass
information. Even with a 10× better resolution than that used
in the bin method, the peak detection and peak alignment
method can reduce the data size by a factor of 12 relative to
the bin method on the LTQ data set, and more than 17 fold
on the Orbitrap data set.

Section Alignment
Since the individual sections were imaged separately,
correlation of the x-y coordinates between different sections
is necessary before the 3D visualization or data analysis can
be properly performed. As shown in Figure 2a, in the raw
3D data set, the relative y positions for each section are
correct since the they were assigned according to the
position of the tissue section in the original tissue volume;
however, the origins of the (x, y) positions are misaligned
between the tissue sections since they were arbitrarily
assigned when individual tissues were imaged. Rotation of
some of the images is typically also required to get all the
tissue sections perfectly aligned (Figure 2b). To solve this
problem, statistical methods can be used to extract the

sample region and recognize some major morphologic
features from the image data. These can then be used by a
computer program to align the x-y coordinates of tissue
sections for 3D image data construction.

In our study, an unsupervised, self-organizing feature
map (SOFM) artificial neural network method was applied
to classify the imaged area into the sample and substrate
region, so that the shape and location of the sample region
can be used for the inter-section alignment. SOFM is
different from other artificial neural networks in the sense
that it uses a neighborhood function to preserve the
topologic or morphologic properties of a data space, which
is useful for producing low-dimension views through
classification of high-dimensional data [56, 57]. A signifi-
cant advantage for using SOFM is that no training process is
required to generate the low-dimensional views. This makes
SOFM very suitable for identifying the main morphologic
features universal in all tissue sections that can be used to
differentiate sample regions from non-sample regions. The
MATLAB Neural Network Training Tool was used to
implement the SOFM. Identification of the tissue sample
area is done with the SOFM using the spectra with their
original intensities, with instruction set for two features into
two categories (neuronal structure 1×2). As shown in
Figure 1c, the sample region is clearly separated from the
substrate background. More detailed morphologic features
can be extracted using SOFM with the spectral intensity first
normalized for the tissue region (Figure 2d, e, f). A potential
limitation for using SOFM routinely in 3D tissue imaging is
that it could be time consuming, depending on the number of
categories that need to be identified.

To align the 36 tissues sections for the 3D data
construction, SOFM is applied twice to provide images of
the regions of white and grey matter. A program written in
MATLAB allows for the overlay of two images from
adjacent tissue sections (Figure 2g, h) and their relative
movement and rotation. The program also calculates the
number of pixels with color mismatch between these two
images (Figure 2i), which is minimized when best alignment
is achieved (Figure 2j). The x-y coordinates are then
corrected and saved for the 3D data reconstruction.

This alignment method provides a process with a
quantitative measure, the number of misaligned pixels,
which can be implemented to achieve automated alignment.
It has been applied for aligning two tissue sections with
different sample areas, such as those at z=2.22 mm and z=
3.04 mm shown in Figure 1a. The symmetry in distribution
of the mismatched pixels can be used to assist the alignment

Table 1. Data Reduction for Bin and Peak Detection and Peak Alignment (PD&PA) Methods, for LTQ and Orbitrap

Instrument m/z Range Pixels per tissue section Raw data size Strategy m/z Window Ion maps Data size

LTQ m/z 150–1100 50*69 153 MB Bin 1Th 950 12.5 MB
PD&PA 0.1Th 80 0.98 MB

Orbitrap m/z 780–920 36*123 265 MB Bin 0.1Th 1400 23.6 MB
PD&PA 0.01Th 84 1.33 MB
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Figure 2. (a) Image alignments of the tissue sections, (a) before and (b) after the correction of the (x, y) coordinates. Image of a
tissue section with SOFM classification into (c) 2, (d) 3, (e) 4, and (f) 5 categories (features). (g, h) Images of two adjacent tissue
sections (I and II), with SOFM classification into 3 features, with x and y shifts between them. Overlapping of images for section
I and II (i) without alignment and (j) after moving section II 7 pixels up and 3 pixels to the left. For (a) to (f), each color represents
a category, for (g) to (j), gray and white each represents a category and red represents the pixels with color mismatched
between section I and II
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process. When images with three or more categories
identified are used in alignment, empirically it is found that
number of mismatched pixels is also minimized when the
sections of different sample areas are best aligned. In some
cases, the observed sample area is enlarged due to stretching
of the tissue section during sectioning, instead of the actual
change in the original shape of the tissue volume. Additional
instructions need to be included to reshape the sample area;
however, the rule of achieving minimum number of
misaligned pixels can still be used as a measure during that
process.

Data Interpolation
The data stored in the reconstructed 3D data set can be used
to generate images for discrete surfaces corresponding to the
actual tissue sections used for data acquisition, such as those
shown in Figure 2b. In order to generate 3D images with
continuous chemical distributions along the z axis, data
interpolation can be first executed to insert data for the
appropriate image component between the real layers of
data. Based on the assumption that the distributions of
biological molecules are continuous, the inserted data can be

generated using a variety of interpolation methods, such as
nearest, linear, and cubic-spline-interpolation methods. The
data insertion for PS 18:0/22:6 (m/z 834.6) and sulfatides
(ST) 24:1 (m/z 888.8) are shown in Figure 3 as an example.

For a pixel with x=x0, y=y0 on the data layer z to be
inserted between layer z1 and z2, the peak intensities P can be
calculated using the linear interpolation method, equation 1:

P ¼ P1 þ P2 � P1ð Þ z� z1
z2 � z1

ð1Þ

where P1 and P2 are the MS peak intensities at (x0, y0) on
layer z1 and z2, respectively. In the case of the mouse brain
sample [41], there are 3450 pixels in every data layer and 19
lipid peaks with distinctive m/z values were identified as
being informative, so 65,550 interpolations were performed
to generate one additional data layer for insertion. Images of
two inserted layers are shown in Figure 3c and d for the
distributions of PS 18:0/22:6 (m/z 834.6) and ST 24:1 (m/z
888.8) on the inserted layers. To perform 3D imaging and
3D data analysis for the mouse brain experiment in which 36
sections were actually imaged with DESI, 364 additional
layers were interpolated that result in a total of 400 data
layers (each 26.6 μm apart) in the 3D data set reconstructed.

Figure 3. The intensities of (a) PS 18:0/22:6 and (b) ST 24:1 in spectra acquired for a series tissue sections and the trend lines
for data insertion. The 2D images for distributions of (c) PS 18:0/22:6 and (d) ST 24:1 on two actual tissue sections and two
inserted layers between them
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The interpolation for the virtual layers helps to generate
images with better smoothness. The biologically meaningful
interpolation has to be validated with comparison between
images with all real layers and with a mixture of real and

virtual layers. This could also be sample-specific and
analyte-specific. In this study, we demonstrate how to
enable the interpolation capability and use three classic
methods as examples. No significance was observed among

Figure 4. Visualization using 3D-MS data. (a) 2D images of selected compounds present in multiple layers, (b) Iso-surface
views, (c) center slice views, and (d) subvolume views of PS 18:0/22:6 (top), ST24:1(middle), and both (bottom)

Figure 5. Two-region classification of mouse brain tissue using k-mean clustering method with 3D data constructed with the
DESI imaging data from 36 sections. Side view of (a) region 1, (b) region 2, and (c) the overlap of them, with averaged mass
spectra for region (d) 1 and (e) 2
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them for the imaging using the 19 lipid peaks. For various
biological studies, the interpolation method can be easily
switched based on the user’s knowledge about the sample
and the distribution of the biomarkers.

3D Visualization and Data Analysis
With a complete 3D data set properly constructed, 3D
visualization can be implemented easily using the 3-D
Visualization Module in the MATLAB or other open source
package such as Visualization ToolKit [58]. Both 2D
(Figure 4a) and 3D images can be generated in the form of
an iso-surface (Figure 4b), slice surface (Figure 4c), or sub-
volume (Figure 4d). The distribution of a compound is
presented using the variation of color intensity, and the
distributions of different compounds can be overlaid.

With the original MS spectral information retained in the
3D data set, statistical analysis can be readily applied to
compounds distributed throughout the 3D volume, and the
results can also be presented visually. As a demonstration,
the k-mean clustering method is applied to 19 lipids in the
mouse brain. The method of k-mean clustering is a partition
method that can classify n observations (x1, x2, …, xn), into k
sets, (k≤n) S={S1, S2, …, Sk}, where xn is the mass
spectrum from the nth point sampled in the 3D imaging and
Sk is the kth morphologic feature or region. The basic
principle of k-mean clustering is to minimize the within-
cluster sum of squares, equation 2:

arg min
Xk

i¼1

X

xj2Si
xj � �i

�� ��2 ð2Þ

where μi is the mean of points in Si. The k-mean clustering
was applied using a MATLAB program to the 3D data
constructed from the mouse brain experiment to two main
regions (Figure 5a, b, c), which correspond to the gray and
white matter. The averaged spectra within these two regions
(Figure 5d, e) show a dominant peak at m/z 834.6 (assigned
to PS 18:0/22:6) in region 1 and an ion at m/z 888.8
(assigned to ST 24:1 in region 2. The visualization tool in
MATLAB can also be used to generate an overlapping view
of the two compounds, as shown in Figure 5c. With the 3D
data space appropriately constructed, other statistical analy-
sis methods can be applied for tissue samples for finding
biomarkers through the correlation between the chemical
distributions and the morphologic features.

Conclusion
In this work, we explored a procedure and developed tools
for data processing in 3D mass spectrometry imaging. The
reconstruction of the 3D data set containing the mass
spectral information, viz. the accurate masses and abundan-
ces, for all the compounds of interest is the critical step. The
identification of the peaks and the alignment of the masses

are performed based on the statistical analysis of the 2D
imaging data acquired over an entire tissue section, which is
important for reducing the data size while retaining the
accurate mass information. Appropriate solutions were also
identified for other technical challenges, including aligning
the section data, producing continuous images, and generat-
ing arbitrary 3D views. These capabilities and the results of
utilizing the various procedures and software tools were
demonstrated with the 3D-MS imaging data acquired for a
mouse brain using DESI-MS imaging. Though only data by
DESI imaging are used in the demonstrations, the capabil-
ities of the software and methods are not limited by mass
range or resolution. They can be applied to data acquired by
MALDI and other imaging methods, with proper m/z
windows selected for the peak alignment based on the
specified resolution and mass accuracy of the mass spec-
trometer used to record the data. In future development, the
strategies for the proper interpolation of data and insertion of
the virtual layers need to be explored and validated. The
capability allowing direct comparison of 3D images acquired
by a variety of technologies, such as mass spectrometry,
MRI (magnetic resonance imaging), and spectroscopic
imaging methods, would provide comprehensive morpho-
logic and molecular information for the biological study.
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