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Abstract
The Mexican soybean weevil, Rhyssomatus nigerrimus Fahraeus (Coleoptera: Curculionidae), is a pest of soybeans. In this 
study we evaluate the volatiles of the soybean flower of the varieties FT-Cristalina-RCH and Flores as possible attractants 
for R. nigerrimus. Behavioral bioassays using an “Y” tube olfactometer and Electroantennography tests were performed to 
evaluate the responses of R. nigerrimus to the soybean flowers and their volatile extracts, in addition the volatiles were col-
lected by dynamic aeration and identified using gas chromatography coupled with mass spectrometry (GC–MS). Bioassays 
showed that females and males were attracted by the flowers and volatile extracts of flowers of both varieties. However, 
females exhibited stronger antennal response than males to the volatile extracts of flowers of both varieties and their syn-
thetic blends. The volatile extracts analysis showed the presence of 1-octen-3-one, 2-ethyl-1-hexanol, limonene, α-copaene, 
α-pinene, undecane, nonanal, octyl hexanoate, trans-α-bergamotene and calamanene. Quantitative differences in 1-octen-3-
one, 2-ethyl-1-hexanol, α-pinene and limonene between the varieties were observed. In bioassays, males and females were 
attracted by α-copaene, 1-octen-3-ol α-pinene, and both synthetic blends. Females exhibited stronger antennal response than 
males to the synthetic compounds α-pinene, α-copaene, 1-octen-3-ol, nonanal and limonene.
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Introduction

In Mexico, the main pest of soybean (Glycine max L.) 
is the Mexican soybean weevil Rhyssomatus nigerrimus 
Fahraeus (Coleoptera: Curculionidae) (López-Guillén 
et al. 2012b), which causes major damage during the veg-
etative and reproductive stages of soybeans. The female 
weevil deposits her eggs inside the pods and the lar-
vae feed on the beans (Terán-Vargas and López Guillén 
2014). It has been observed that R. nigerrimus also feeds 
on the flowers (López-Guillén et al. 2012a). The wee-
vils locate the soybean plant possibly due to the volatiles 
that the plant produces. Generally, plants emit volatile 

compounds into the environment (Bautista-Lozada et al. 
2012). These volatile compounds play an important role 
in the plant–insect interaction (Cantúa-Ayala et al. 2019; 
Hu et al. 2021; Karmakar et al. 2020; Zhang et al. 2016). 
Among these are the flowers volatiles. Floral volatiles have 
different functions in attraction, reproduction, dissuasion, 
and antagonism of herbivorous insects and pollinators 
(Hetherington-Rauth and Ramírez 2016; Schiestl 2015). 
Floral volatiles act as attractants, not only of pollinators, 
but also of herbivorous pests (Wang et al. 2018). In the 
case of curculionids, several species have been reported 
to interact with the flowers; for example, the apple blos-
som beetle Anthonomus pomorum (Linnaeus) (Coleoptera: 
Curculionidae) is attracted by apple flower buds (Collatz 
and Dorn 2013), whereas its allied A. rubi (Herbst) prefers 
strawberry plants with flowers over those without flow-
ers (Mozūraitis et al. 2020) and females of A. musculus 
(Say) prefer open flowers of cranberry (Vaccinium mac-
rocarpon L.) (Szendrei et al. 2009). Soybean plants are 
known to emit volatiles that attract herbivores; for exam-
ple, Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) 
is attracted by soybean volatiles (Song et al. 2022). It is 
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also known that, when R. nigerrimus damages a soybean 
plant, induced volatiles are produced (Espadas-Pinacho 
et al. 2021). However, the composition of the volatiles 
from soybean flowers, which could attract R. nigerrimus, 
has not been reported, so it would be helpful to know the 
behavior of R. nigerrimus and develop a robust base of 
attractants for the control of this pest. For this reason, in 
this study we evaluate the response of R. nigerrimus to 
the volatile flower extracts of both varieties FT-Cristalina-
RCH and Flores most frequently cultivated and the com-
pounds that constitute the aroma of the soybean flowers 
were tentatively identified. Moreover, we tested behavio-
ral and electrophysiological activities of individual com-
pounds as well as blends of the compounds from flowers 
of both varieties to adults of R. nigerrimus.

Materials and methods

Biological materials

Adults of R. nigerrimus in active state and soybean flowers 
(varieties FT-Cristalina-RCH and Flores) in stage R2 (com-
plete flowering) were collected in a soybean field located 
in the first section of the ejido Tinajas (N 14° 22′, W 092° 
20′), Tapachula, Chiapas, Mexico. The flowers were placed 
in 250 mL Erlenmeyer flasks and kept at 5 °C until use. 
The weevils were sexed following the technique described 
by López-Guillén et al. (2016). Males and females were 
placed in separate 1 L plastic recipients. The insects were 
fed with pieces (0.5 mm × 0.5 mm) of sweet potato (Ipomea 
batatas L.) daily and kept in the insectarium of ECOSUR 
(El Colegio de la Frontera Sur), Mexico at a temperature of 
25 ± 2 °C, 75 ± 5% relative humidity, and 12:12 h light:dark 
photoperiod.

Volatile collection

We collected the volatiles emitted by the flowers using the 
dynamic aeration technique. We placed 5 g in fresh weight 
of flowers in a 250 mL glass recipient. A current of air (pre-
viously purified through a filter with Tenax®) was made to 
pass over the flowers at a flow of 0.8 L/min. The volatiles 
were captured in a small glass column with Super Q (50–80 
mesh; Water Associates, Milford, MA, USA). The collec-
tion process lasted 24 h. The volatiles were then extracted 
with 400 μL of dichloromethane, placed in 2 mL vials and 
stored at − 20 °C until analysis. The volatiles collection was 
performed at a temperature of 27 ± 2 °C, 75 ± 5% relative 
humidity, and photoperiod of 12:12 h light:dark. Ten replica-
tions were done for each variety of soybean.

Behavioral bioassays

The insects used in the bioassays were fasted for 24 h. 
We assessed the attraction response of R. nigerrimus to 
volatiles emitted by soybean flowers (var. FT-Cristalina-
RCH and Flores) using a Y-shaped olfactometer placed 
horizontally on the table (main arm 15 cm long, lateral 
arms at 45° with 10 cm long and 2.3 cm internal diameter). 
Air, previously humidified and purified with an activated 
carbon filter, passed at a flow rate of 0.5 L/min through 
each arm of the olfactometer. In one of the olfactometer 
arms was placed 1 g of flowers, and the other remained 
empty as a control. We placed a group of 5 insects at the 
entrance of the main arm of the olfactometer and allowed 
them a maximum time of 5 min to select between the treat-
ment and the control. We considered that the insect had 
made an election when it had entered 2 cm into one of 
the lateral arms. We changed the position of the Y-tube 
after five replications, interchanging the place of the glass 
adaptor (8 cm long, 1.3 cm internal diameter) every five 
replications to avoid response bias. For both males and 
females, 60 replications were performed for each soybean 
variety. The bioassays were carried out between 8:00 and 
19:00 h. Before beginning and after each evaluation, the 
olfactometer and the adaptors were washed with water and 
neutral soap and placed in an oven at 120 °C for 60 min. 
The bioassays were conducted at a temperature 35 ± 2 °C, 
75 ± 5% relative humidity and used artificial white light 
(1676 lx). For the bioassays with extracts, 20 µL of the 
extract or solvent was placed on a 5 cm × 5 cm piece of 
filter paper (Whatman No. 2, Maidstone, England) and 
left for 20 s to evaporate the solvent. We then placed a 
piece of filter paper with the extract in one of the arms of 
the olfactometer and a piece of filter paper with 20 µL of 
dichloromethane (control) in the opposite arm. We com-
pared the response of the two sexes of weevils to the vola-
tile extracts of the two soybean varieties simultaneously 
in the olfactometer. This was replicated 30 times for each 
volatile extract and each sex.

Chemical analysis

The volatile extracts were analyzed in a gas chromatograph 
coupled with a mass spectrometer (Shimadzu GC-2010 
Plus, Tokyo, Japan) equipped with a 5% phenyl-methyl-
silicone column (DB5-MS) 30 m × 0.25 mm internal diam-
eter and 0.25 µm film thickness. The oven temperature pro-
gram consisted of an initial temperature 50 °C (for 2 min) 
with increments of 15 °C/min up to a final temperature of 
280 °C (for 10 min). The analyzed aliquot was 1 µL per 
extract of soybean extract obtained by dynamic aeration. 
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Volatile compounds were tentatively identified retention 
indexes, comparing the spectral data of each compound 
with the NIST database and then confirmed with the use of 
reference synthetics when possible. We used the percent-
age of the peak areas to know their relative proportions 
and the quantification of selected compounds was carried 
out using the external standard method, which consisted of 
preparing a set of solutions of each compound at different 
concentrations (100 ng/µL, 75 ng/µL, 50 ng/µL, 25 ng/
µL and 1 ng/µL), then a calibration curve was constructed 
with the areas obtained for each compound and related to 
the concentrations.

Electroantennography (EAG)

We evaluated the antennal response of R. nigerrimus 
males and females to the volatile extracts from both soy-
bean flower varieties, synthetic blends and individual syn-
thetic compounds through EAG tests. Each weevil was 
exposed to cold until anesthetized for 1 min to facilitate 
manipulation. We cut off the insect’s head and inserted 
the reference electrode at the base, using a glass capillary 
filled with Ringer solution (NaCl 0.35 g, CaCl2 0.21 g, 
KCl 0.35 g, and NaHCO3 0.2 g dissolved in 1 L water). 
The distal tip of the antenna was inserted into the tip of 
the glass capillary placed in the recording electrode. We 
used a standard aliquot (1 μL) of the extract, blend, or 
compound (solution prepared with dichloromethane HPLC 
grade at a concentration of 1 µg/µL) on a piece of filter 
paper (0.5 × 1.0 cm, Whatman No.1, Whatman Interna-
tional, Maidstone, United Kingdom) and exposed it to 
air for 20 s on a glass Petri dish to allow the solvent to 
evaporate. A glass Pasteur pipette or sample cartridge was 
then introduced. A new cartridge was prepared for each 
antenna replicate. As a control, we used a piece of filter 
paper loaded with 1 µL dichloromethane at the beginning, 
middle and end of each assay. To present the stimulus, we 
inserted the tip of the pipette into an orifice located in the 
upper middle part of a glass tube (10 mm diameter) and 
passed a flow of air (0.5 L/min) through by activating a 
pedal connected to a stimulus controller (Syntech CS-05, 
Hilversum, The Netherlands). The duration of the stimu-
lus was 1 s. A current of purified humid air (0.7 L/min) 
was constantly directed toward the antenna through a glass 
tube to eliminate the odors in the system. The signals gen-
erated by the antenna were amplified using a controller of 
intelligent data acquisition (Syntech IDAC-02, Hilversum, 
The Netherlands) connected to a computer and visualized 
in a monitor using the software Syntech EAG v.2.7. The 
response to the different compounds was measured con-
secutively in the same antenna in a random manner. We 

evaluated 30 males R. nigerrimus antennae and 30 females 
R. nigerrimus antennae.

Bioassays with synthetic compounds

Response of adult R. nigerrimus to synthetic compounds

The compounds α-pinene, 1-octen-3-one, 1-octen-3-ol, 
2-ethyl-1-hexanol, limonene, undecane, nonanal, and 
α-copaene were assessed individually at a concentration of 
1 µg/µL and blends of the eight compounds from both varie-
ties of flowers were prepared in accord with the concentra-
tions of the aeration extracts (Fig. 4): FT-Cristalina-RCH 
(6.5, 8.5, 23.0, 49.0, 7.0, 7.0, 14.0, 82.0 ng, respectively) and 
Flores (4.5, 22.5, 25.0, 25.0, 4.5, 8.0, 11.0, 80.0 ng, respec-
tively). The bioassays were conducted following the method-
ology described previously in a Y-shaped olfactometer using 
1 µL of the synthetic blend to be evaluated and placing as a 
control a piece of filter paper with 1 µL of dichloromethane, 
leaving it to evaporate for 20 s before commencing each rep-
lication. The two blends were assessed separately with each 
sex, and also the two synthetic blends were also assessed 
simultaneously in the Y-shaped olfactometer. We performed 
30 replications with R. nigerrimus males and females.

Statistical analysis

We analyzed the percentage of the peak areas of the com-
pounds from flowers of each soybean variety and the quan-
tities of each compound with the Kruskal–Wallis test. We 
analyzed all the data of the behavioral bioassays using the 
G test, previously transformed to square root to achieve nor-
mality of the data. The insects that did not respond in the 
bioassays were not included in the analysis. We conducted 
an analysis of variance (ANOVA) of multiple factors, con-
sidering the electrophysiological response to synthetic com-
pounds individually and by R. nigerrimus sex, followed by 
the Tukey test (α = 0.05) to compare treatment means. The 
statistical analyses were conducted with R software, ver-
sion 4.3.1, and the Rcmdr package version 2.8.0 (Fox and 
Bouchet-Valat 2022).

Results

Behavioral bioassays with flowers and extracts

In the bioassays, adult of R. nigerrimus males were more 
attracted by flowers of both varieties FT-Cristalina-RCH 
(G = 209.92, df = 1, p < 0.001) and Flores (G = 2014.50, 
df = 1, p < 0.001), compared to the control. Likewise, R. 
nigerrimus females preferred the flowers of the variety Flo-
res (G = 152.59, df = 1, p < 0.001) and FT-Cristalina-RCH 
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(G = 153.70, df = 1, p < 0.001) over the control. However, 
when the flowers were tested simultaneously there was no 
significant difference with males (G = 1.11, df = 1, p = 0.29), 
but there was a significant difference with females (G = 4.24, 
df = 1, p < 0.05) (Fig. 1a, b).

R. nigerrimus males preferred the volatile extracts from 
the varieties FT-Cristalina-RCH (G = 5.77, df = 1, p < 0.01) 
and Flores (G = 15.55, df = 1, p < 0.001) over the control. 
Females showed the same response pattern, preferring 
the volatile extracts from both varieties (G = 11.77, df = 1, 
p < 0.001 in FT-Cristalina-RCH; G = 13.70, df = 1, p < 0.001 
in Flores) over the controls. Between males and females, 
there were no significant differences when we tested the two 
volatile extracts simultaneously (G = 1.00, df = 1, p = 0.31 in 
males and G = 1.22, df = 1, p = 0.26 in females) (Fig. 2a, b).

Identification of volatile compounds

The analysis using gas chromatography coupled with mass 
spectrometry (GC–MS) showed that the composition of 
the volatiles emitted by the flowers of the two varieties 
includes at least 11 compounds: α-copaene, 1-octen-3-ol, 

2-ethyl-1-hexanol, α-pinene, limonene, undecane, nona-
nal, 1-octen-3-one, octyl hexanoate, trans-α-bergamotene 
and calamanene (Table 1). The compounds 1-octen-3-one 
(H = 6.81, df = 1, p < 0.01), 2-ethyl-1-hexanol (H = 3.93, 
df = 1, p < 0.05), α-pinene (H = 3.93 df = 1, p < 0.05), 
1-octen-3-one (H = 5.77 df = 1, p < 0.01), 2-ethyl-1-hex-
anol (H = 6.81 df = 1 p < 0.001) and limonene (H = 5.77 
df = 1, p < 0.01) vary quantitatively between the two varie-
ties of soybean flowers (Figs. 3, 4).

Electroantennography (EAG)

The antennal response of R. nigerrimus females was more 
intense than that of males to each of the evaluated treat-
ments (F = 17.88, df = 12, p < 0.001). The following treat-
ments stand out: volatile extract from both soybean flower 
varieties, synthetic blends, and the compounds α-pinene, 
1-octen-3-ol, limonene, nonanal and α-copaene. In gen-
eral, we observed stronger antennal response from females 
than from males (F = 128.27, df = 1, p < 0.001) (Fig. 5).

Fig. 1   Mean response (± SE) 
of R. nigerrimus a males and b 
females to soybean flowers (G. 
max L.) variety FT-Cristalina-
RCH, Flores, and both flower 
varieties in bioassays conducted 
in a Y-tube olfactometer. The 
asterisk (*p < 0.05; **p < 0.01; 
***p < 0.001) indicates sig-
nificant differences between 
evaluated treatments (G test). C 
control, NR non-responding, NS 
non-significant
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Bioassays with synthetic compounds

Males were more attracted by α-copaene (G = 10.60, df = 1, 
p < 0.001), 1-octen-3-ol (G = 7.98, df = 1, p < 0.01), and 
α-pinene (G = 10.68, df = 1, p < 0.001) than by the con-
trols (Fig. 6a), while females were attracted by the com-
pounds α-pinene (G = 35.97, df = 1, p < 0.001), 1-octen-
3-ol (G = 4.52, df = 1, p < 0.05) and α-copaene (G = 31.07, 
df = 1, p < 0.001) (Fig. 6b).

Male and female weevils significantly preferred the 
eight compounds blends of the varieties FT-Cristalina-
RCH (G = 17.76, df = 1, p < 0.001 in males and G = 13.47, 
df = 1, p < 0.001 in females) and Flores (G = 17.81, df = 1, 
p < 0.001 in males and G = 10.96, df = 1, p < 0.001 in 
females) over the controls in all the bioassays. However, 
we found no significant differences when we evaluated 

Fig. 2   Mean response (± SE) 
of R. nigerrimus a males and 
b females to volatile extracts 
from var. FT-Cristalina-RCH 
and Flores soybean flowers 
(G. max L.) and from both 
varieties in bioassays conducted 
in a Y-tube olfactometer. The 
asterisks (*p < 0.05; **p < 0.01; 
***p < 0.001) indicate sig-
nificant differences between the 
evaluated treatments (G test). C 
control, NR non-responding, NS 
non-significant

Table 1   Volatile compounds identified in soybean flowers of the vari-
eties FT-Cristalina-RCH and Flores (Percentage of peak area ± SE)

RI retention index, *confirmed with synthetics

No Compounds RI FT-Cristalina-RCH Flores

1 α-Pinene* 938 2.56 ± 0.24 1.95 ± 0.40
2 1-Octen-3-one* 979 5.84 ± 2.31 16.62 ± 3.61
3 1-Octen-3-ol* 982 24.41 ± 5.81 25.02 ± 6.21
4 2-Ethyl-1-hexanol* 1031 18.03 ± 1.32 9.80 ± 1.11
5 Limonene* 1037 2.35 ± 0.26 1.51 ± 0.19
6 Undecane* 1100 2.31 ± 0.56 2.54 ± 0.70
7 Nonanal* 1108 5.95 ± 2.97 4.30 ± 1.26
8 Octyl hexanoate 1192 1.50 ± 0.37 2.12 ± 0.22
9 α-Copaene* 1394 27.19 ± 2.21 28.00 ± 4.94
10 trans-α-Bergamotene 1427 1.09 ± 0.14 1.43 ± 0.32
11 Calamanene 1542 8.72 ± 0.48 6.65 ± 1.24
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both synthetic blends (G = 2.00, df = 1, p = 0.15 in males 
and G = 0.11, df = 1, p = 0.73 in females) (Fig. 7a, b).

Discussion

In this study we found that the Mexican soybean weevil 
R. nigerrimus is attracted to volatiles emitted by the flow-
ers of the soybean plant and their aeration extracts. These 
results are congruent with the knowledge that many phy-
tophagous species and pollinators are attracted by volatiles 
emitted by flowers (Baldelomar et al. 2018; Bouwmeester 
et al. 2019; Dudareva et al. 2013; Hetherington-Rauth and 
Ramírez 2016; Junker et al. 2010; Marín-Loaiza and Cés-
pedes 2007). Like R. nigerrimus, other weevils such as A. 
pomorum (L.). (Coleoptera: Curculionidae) and its allied 
species prefer their host plants in flowering stage (Collatz 
and Dorn 2013; Mozūraitis et al. 2020). Other insects, such 
as the small green plant bug Apolygus lucorum (Meyer-Dür) 
(Hemiptera: Miridae), prefer host plants also in the flowering 
stage (Pan et al. 2015).

The two varieties of flowers evaluated in this study emit 
the same mixture of volatiles. However, they vary quan-
titatively. Floral aromas vary not only among species but 
also within a single plant species, as described by Campbell 
et al. (2019) and Delle-Vedove et al. (2017). However, there 
are few studies that center on intraspecific variation of flo-
ral aromas in a given geographic site, rather, they focus on 
comparing populations at different spatial scales and type of 
pollination (Aceves-Chong et al. 2018; Dötterl et al. 2005; 
Farré-Armengol et al. 2015; Wang et al. 2019). Our study 
permits us to appreciate how the volatile profiles of the flow-
ers of the two soybean varieties differed: the compounds 
1-octen-3-one and 2-ethyl-1-hexanol differed significantly 
in proportions, while α-pinene, 1-octen-3-one, limonene 
and 2-ethyl-1-hexanol differed in quantities. Nevertheless, 
the two mixtures of volatiles attract R. nigerrimus. How-
ever, we do not exclude the possibility that R. nigerrimus 
uses other factor to find its host as the flower color, size 
and shape, since when both physical flowers were evaluated 
simultaneously in bioassays, females preferring the “Flores” 
variety and when evaluating both volatile extracts did not 

Fig. 3   Percentage of peak areas (± SE) of the volatile compounds emitted by flowers of soybean varieties FT-Cristalina-RCH and Flores. Com-
parisons at p < 0.05 were significant (Kruskal–Wallis test). NS non-significant
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Fig. 4   Quantities (± SE) of the compounds emitted by flowers of the soybean varieties FT-Cristalina-RCH and Flores. Comparisons at p < 0.05 
were significant (Kruskal–Wallis test). NS non-significant

Fig. 5   Electroantennographic (± SE) response of R. nigerrimus males 
and females to volatile extracts, synthetic blends and individual com-
pounds from soybean flowers. Capital letters indicate differences 

between treatments in females. Lowercase letters indicate differences 
between treatments in males (p < 0.05; ANOVA and Tukey test). 
DCM dichloromethane
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show preferences. This study must be complemented with 
additional experiments to corroborate this aspect.

The compounds 1-octen-3-ol, α-copaene and 2-ethyl-
1-hexanol were identified as those present in higher pro-
portion in the FT-Cristalina-RCH variety (24.40, 27.19 and 
18.03%, respectively), while in the variety Flores the major 
compounds were 1-octen-3-ol, α-copaene and 1-octen-3-
one (25.02, 28.00, 16.62%, respectively). These compounds 
were also reported by Espadas-Pinacho et al. (2021) in vola-
tiles from soybean plants and pods, but at a lower propor-
tion. Likewise, Boue et al. (2003) reported the presence of 
1-octen-3-ol, 2-ethyl-1-hexanol and nonanal in soybean 
pods, while Cortés (2016) reported 1-octen-3-ol as one of 
the volatiles consistently released by soybean pods, leaves 
and seedlings. Nevertheless, one limitation of this work 
is that flowers compounds were collected using detached 
flowers and not with attached flowers, because the soybean 

flowers size and number in a plant make difficult to collect 
their volatiles using dynamic aeration in field condition.

Rhyssomatus nigerrimus responds electrophysiologically 
to flower volatiles. In this study, we found that R. nigerri-
mus females exhibit stronger antennal response than males 
to the different treatments. Likewise, Ceballos et al. (2015) 
and Adhikari et al. (2002) reported that female Bruchus 
pisorum L. and Callosobruchus maculatus (Fabricius) had 
a stronger electrophysiological response to the extracts from 
pea (Pisum sativum L.) and cowpea seeds (Vigna unguicu-
lata L.), respectively. It is likely that this response obeys the 
female insect’s need to find an appropriate host plant and 
to obtain the proteins necessary for oogenesis (Paukku and 
Kotiaho 2008).

Generally, α-copaene and α-pinene are dominant terpe-
noids in the mixtures of floral volatiles. They are common 
compounds emitted by plants and have preponderant roles 

Fig. 6   Mean response (± SE) 
of R. nigerrimus to individual 
synthetic compounds, a males 
and b females. The aster-
isks (*p < 0.05; **p < 0.01; 
***p < 0.001) indicate sig-
nificant differences between 
evaluated treatments (G test). C 
control, NR non-responding, NS 
non-significant
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in flower-insect and plant–insect interactions (Ramya et al. 
2020). However, in our case, the only compound found in 
larger quantity was α-copaene, while α-pinene had interest-
ing results during the bioassays with individual synthetic 
compounds; we observed that male and female R. nigerrimus 
were attracted to both compounds. Regarding 1-octen-3-ol, 
there is evidence that it is an attractant for several insect 
species and is of paramount importance in plant–insect and 
plant-plant interactions (Chen et al 2019; Ramoni et al. 
2001). This was confirmed during the bioassays in which 
both sexes of R. nigerrimus were attracted. Espadas-Pinacho 
et al. (2021) found volatiles induced by the damage caused 
by R. nigerrimus when it feeds on the soybean plant, this 
could be similar with respect to the weevil-soybean flower 
interaction, where the flowers probably emit induced vola-
tiles when the weevil feeds of them, however this hypothesis 
needs to be tested.

In conclusion, we have demonstrated, through bioas-
says, that the volatiles emitted by flowers of two soybean 
varieties attract R. nigerrimus. We have also demonstrated 
that R. nigerrimus uses the sense of smell by means of 
its antennae to detect these volatiles. A blend of eight 
compounds attracted R. nigerrimus under laboratory con-
ditions. These results provide the basis for obtaining an 
attractant that can be used in the field for management of 
R. nigerrimus.
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