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Abstract
Varroa destructor Anderson and Trueman (Acari: Varroidae) are ectoparasitic mites found in the western honeybee Apis 
mellifera Linnaeus (Hymenoptera: Apidae). Varroa destructor is classified into two haplotypes, i.e., Korea (K) and Japan 
(J), based on mtDNA sequences. Among these, V. destructor K haplotype is possibly a more severe threat to A. mellifera 
colonies. Previous studies collected both V. destructor haplotypes from honeybee colonies in Japan. However, no detailed 
surveillance of infestation of Japanese apiaries by V. destructor or identification of their genetic structure has been conducted 
to date. We surveyed V. destructor at 15 different Japanese apiaries of A. mellifera. Varroa destructor was collected from 14 
Japanese apiaries, and all mites were classified as V. destructor K haplotype. Varroa destructor infestation of the Japanese 
honeybee A. cerana japonica Radoszkawsi (Hymenoptera: Apidae) was also analyzed. Varroa destructor K haplotype was 
predominant in A. cerana colonies. Despite the different host species, all collected V. destructor K haplotype samples were 
classified into a single haplogroup, i.e., K1-1/K1-2. These results indicate that A. mellifera and A. cerana were infested by 
the same V. destructor haplogroup. This is the first report detailing a survey on V. destructor prevalence and haplogroups 
among Japanese apiaries.
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Introduction

Varroa destructor Anderson and Trueman (Acari: Varroi-
dae) are known as ectoparasitic mites of the western honey-
bee Apis mellifera Linnaeus (Hymenoptera: Apidae). Varroa 
destructor proliferates in beehives, and it spends its phoretic 
phase on adult honeybees and reproductive phase on pupal 
honeybees (Dietemann et al. 2015; Evans and Cook 2018). 
Although V. destructor feeds on the hemolymph of imma-
ture and adult honeybees, a recent study demonstrated that 
V. destructor primarily feeds on the adipose tissue of hon-
eybees (Ramsey et al. 2019). Varroa destructor transmits 
several viruses that cause severe diseases in honeybees such 
as deformed wing virus (Dainat et al. 2012; Hedtke et al. 
2011; Martin 2001; Nazzi et al. 2012). Physical damage and 

disease transmission by V. destructor can cause fatalities not 
only of individual bees but also of entire honeybee colonies 
(Dainat et al. 2012; De Jong et al. 1982; Duay et al. 2002, 
2003; Garedew et al. 2004; Guzmán-Novoa et al. 2010; 
Nazzi et al. 2012; Ratti et al. 2015; Schneider and Drescher 
1987). Consequently, V. destructor infestation has become 
a major cause of colony loss, particularly winter colony loss 
(Branco et al. 1999; Shimanuki et al. 1994). As in other 
countries, V. destructor infestation caused varroosis in Japan 
(MAFF 2018) and may be responsible for winter colony loss. 
However, detailed surveillance of V. destructor infestation, 
such as its seasonal prevalence and infestation level in each 
colony, has not been conducted in Japan.

Varroa destructor was initially mistaken for V. jacobsoni 
Oudemans (Acari: Varroidae), which is the primary parasite 
of the eastern honeybee A. cerana Radoszkawsi (Hymenop-
tera: Apidae). Anderson and Truman (2000) clarified the 
morphological and genetic differences between V. destruc-
tor infesting A. mellifera and A. cerana colonies, and they 
termed the species that infests A. mellifera as V. destructor. 
Varroa destructor originally infested A. cerana colonies, but 
it has rarely caused severe damage to the host (Boot et al. 
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1997; Fries et al. 1996). It has since expanded its host range 
to A. mellifera colonies and has become a severe pest of the 
novel host. Japan is believed to be one of the locations where 
V. destructor has spread to A. mellifera colonies through the 
introduction of Western beekeeping (Sakai and Okada 1973; 
Yoshiyama and Kimura 2018). Another region is the far east 
of the former USSR (Crane 1978).

Genetic analysis demonstrated that these mites have dif-
ferent mtDNA sequences (Solignac et al. 2005), thereby 
being termed as J (Japan) or K (Korea or Russia in earlier 
studies) haplotypes according to the collection region. J and 
K haplotypes vary in terms of mtDNA cytochrome oxidase I 
(cox I) (Anderson and Truman 2000; Solignac et al. 2005). 
These differences have been investigated using randomly 
amplified polymorphic DNA or restriction fragment length 
polymorphism (RFLP)/polymerase chain reaction (PCR) 
of mtDNA (Anderson and Fuchs 1998; Kraus and Hunt 
1995). Varroa destructor K haplotype is suspected to have 
a higher virulence and reproductive ability than its J haplo-
type (Delfinado-Baker 1988; Garrido et al. 2003; Strapazzon 
et al. 2009).

Varroa destructor J and K haplotypes were further clas-
sified into several haplogroups according to variations in 
cox I and III, ATP synthase 6 (atp 6), and cytochrome b (cyt 
b) sequences in mtDNA (Navajas et al. 2010) discovered 
following whole V. destructor mtDNA sequencing (Evans 
and Lopez 2002; Navajas et al. 2002). Varroa destructor 
J haplotype includes six haplogroups (J1-1–J1-6), whereas 
its K haplotype includes four haplogroups (K1-1–K1-4). 
Although Navajas et al. (2010) distinguished between K1-1 
and K1-2, no differences were observed in terms of the reg-
istered sequences of cox I, cox III, atp 6, and cyt b between 
them. Therefore, they are described as K1-1/K1-2 in this 
study. Phylogenetic analysis of mtDNA sequences between 
these haplogroups showed that V. destructor K and J hap-
lotypes formed distinct clades, supporting the fact that V. 
destructor K or J haplotype independently expanded their 
host range from A. cerana to A. mellifera (Navajas et al. 
2010).

Varroa destructor is now globally dispersed, and its K 
haplotype represents the primary haplogroups worldwide. 
Studies conducted in the early twenty-first century reported 
that V. destructor K haplotype was widely detected in Asia, 
Europe, South and North America, and Oceania (New Zea-
land). Varroa destructor K haplotype infestations are still 
reported in several countries including Iran, Serbia, Benin, 
and Turkey (Farjamfar et al. 2018; Gajic et al. 2013, 2016; 
Kelomey et  al. 2017; Warrit et  al. 2015). Although V. 
destructor J haplotype has been found in a limited number 
of countries including Japan, Thailand, several countries in 
North and South America, and Spain (Anderson and True-
man 2000; de Guzman et al. 1997, 1999; Guerra et al. 2010; 
Maggi et al. 2012; Muñoz et al. 2008; Navajas et al. 2010; 

Solignac et al. 2005; Warrit et al. 2006), they have rarely 
been reported recently. However, the existence of V. destruc-
tor K haplotype has been reported in Brazil, which was first 
invaded by V. destructor J haplotype (Garrido et al. 2003; 
Strapazzon et al. 2009). In addition to V. destructor K and 
J haplotypes, regional V. destructor haplotypes have also 
been observed (Gajic et al. 2013, 2016; Navajas et al. 2010; 
Zhou et al. 2004), although their spread to other countries 
has not been reported.

In Japan, both these haplotypes have been collected from 
A. mellifera and A. cerana colonies (Navajas et al. 2010; 
Solignac et al. 2005). These reports determined that these 
haplotypes have genetic differences and are regionally dis-
tributed on a global scale. Navajas et al. (2010) analyzed 
three V. destructor samples collected from two A. mellifera 
and three A. cerana colonies in Japan during 1994–2000. 
The report showed that V. destructor samples collected from 
A. mellifera colonies were J or K haplotype (J1-6 in Tokyo 
and K1-1 in Tokyo), whereas those collected from A. cerana 
colonies were J haplotypes (J1-2 in Tokyo, J1-3 in Machida, 
and J1-4 in Shikoku) (Fig. 1a). Solignac et al. (2005) ana-
lyzed 1–19 V. destructor samples collected from two A. cer-
ana and five A. mellifera colonies in Japan. Several colonies 
had single haplotypes: three A. mellifera colonies had V. 
destructor K haplotype (Yatsushiro, Yokohama, and Tokyo) 
and a single A. cerana colony had V. destructor J haplotype 
(Yatsushiro). The three remaining colonies had coexisting V. 
destructor K and J haplotypes in the same honeybee popula-
tion (A. cerana colony in Machida and A. mellifera colonies 
in Machida and Noda). There were more K haplogroups than 
J haplogroups in these three colonies (Solignac et al. 2005). 
In addition, Techer et al. (2019) collected K1-1/K1-2 hap-
logroups from A. mellifera colonies in Okinawa Prefecture. 
Although the distribution of K haplogroups is irregular, no 
surveillance of the actual genetic structure of V. destruc-
tor in Japan has been conducted. To understand the signifi-
cance of V. destructor infestation of A. mellifera colonies in 
Japan, apiaries across Japan were surveyed for V. destructor 
and the haplogroups of the collected V. destructor samples 
were determined. To the best of our knowledge, this is the 
first survey on the detailed genetic structure of V. destructor 
populations among Japanese apiaries.

Materials and methods

Collection of V. destructor from honeybee colonies

Varroa destructor females were collected from July to 
October 2018 from 15 different commercial apiaries 
located in Hokkaido, Fukushima, and Osaka Prefectures 
in Japan (Table 1, Fig. 1b). Phoretic V. destructor samples 
were collected using a modified sugar roll test (Ogihara 



191Applied Entomology and Zoology (2020) 55:189–197	

1 3

et al. submitted). In brief, 1 cup (200 ml, approximately 
500 honeybees) of adult honeybees was collected from 
individual beehives. Honeybees were put into a plastic jar 
(240 mm long, 65 mm I.D.) containing 100 g of pow-
dered sugar (Uehara, Tokyo, Japan) and shaken for 1 min. 
Dislodged V. destructor and powdered sugar were sifted 

through a rough mesh (3 mm) attached to a hole punched 
on the jar lid. Varroa destructor samples were collected 
using a fine screen and counted. Then 9–12 beehives were 
surveyed at each apiary. For genetic analysis, V. destructor 
samples were collected from capped cells in a honeycomb 

a b

Yatsushiro
Am*2: K
Ac*2: J

Shikoku
Ac*1: J1-4

Ibaraki (1)
Ac: K1-1/1-2

Aichi (1)
Ac: K1-1/1-2

Nagano (1)
Ac: K1-1/1-2

Tokyo

Machida

Am*1: J1-6, or K1-1
Am*2: K
Ac*1 : J1-2
Ac*1 : J1-3
Ac*1 : K > J
Am*2: K > J

Yokohama
Am*2: K

Noda
Am*2: K > J

Hokkaido (9)
Am: K1-1/1-2

Fukushima (4)
Am: K1-1/1-2

Osaka (1)
Am: K1-1/1-2

Shimane (1)
Ac: J1-3

Fig. 1   Distribution of Varroa destructor haplotypes and haplogroups 
in Japan. a Summary of V. destructor haplotypes and haplogroups 
reported by Navajas et al. (2010) and Solignac et al. (2005). *1: data 
from the study by Navajas et  al. (2010). *2: data from the study by 
Solignac et  al. (2005). b Varroa destructor haplogroups determined 

in the current study. The numbers in parentheses represent the num-
bers of apiaries infested with V. destructor. Black areas indicate the 
surveillance locations for Apis mellifera (Am) colonies, and gray 
areas indicate surveillance locations for A. cerana (Ac) colonies

Table 1   Sites and dates 
of Varroa destructor mite 
collection from Apis mellifera 

Apiary Site of collection Principal location Date of sample collection Migratory/stationary

Hokkaido 1 Hokkaido Hokkaido Jul 18, 2018 Stationary
Hokkaido 2 Hokkaido Hokkaido Jul 18, 2018 Migratory
Hokkaido 3 Hokkaido Hokkaido Jul 19, 2018 Migratory
Hokkaido 4 Hokkaido Aichi Jul 17, 2018 Migratory
Hokkaido 5 Hokkaido Wakayama Jul 18, 2018 Migratory
Hokkaido 6 Hokkaido Wakayama Jul 17, 2018 Migratory
Hokkaido 7 Hokkaido Hokkaido Aug 8, 2018 Migratory
Hokkaido 8 Hokkaido Wakayama Aug 8, 2018 Migratory
Hokkaido 9 Hokkaido Mie Aug 8, 2018 Migratory
Hokkaido 10 Hokkaido Kagoshima Aug 6, 2018 Migratory
Fukushima 1 Fukushima Fukushima Sept 12, 2018 Migratory
Fukushima 2 Fukushima Fukushima Sept 12, 2018 Migratory
Fukushima 3 Fukushima Fukushima Sept 12, 2018 Migratory
Fukushima 4 Fukushima Fukushima Sept 12, 2018 Migratory
Osaka 1 Osaka Osaka Oct 24, 2018 Migratory
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frame when small numbers of V. destructor samples were 
obtained using the sugar roll test.

Varroa destructor-infested A. cerana colonies were 
kindly gifted by Dr. Taro Maeda (Institute of Agrobiological 
Sciences, National Agriculture and Food Research Organi-
zation). A. cerana beehives are located at Tsukuba and 
Kashima (Ibaraki Prefecture), Inuyama (Aichi Prefecture), 
Matsumuto (Nagano Prefecture), and Matsue (Shimane Pre-
fecture; Fig. 1b). Only a single V. destructor was obtained 
from each location. The Japanese map shown in Fig. 1 was 
constructed using Excel for Office 365 MSO (Microsoft, 
Redmond, WA, USA).

Analysis of V. destructor haplotypes 
and haplogroups by RFLP/PCR and sequencing

Genomic DNA was extracted from individual V. destructor 
using the Easy DNA Extraction Kit version 2 (Kaneka Cor-
poration, Tokyo, Japan). Varroa destructor haplotypes were 
determined using RFLP/PCR, which was a slightly modified 
form of the method reported by Solignac et al. (2005). The 
obtained genomic DNA was amplified with GoTaq Green 
Master Mix (Promega, Fitchburg, USA) using COIF-long 
and COIR primers (Table 2). PCR conditions were as fol-
lows: denaturing at 95 °C for 2 min, 35 cycles of denaturing 
at 95 °C for 30 s, annealing at 50 °C for 30 s, and exten-
sion at 72 °C for 30 s. PCR products were digested with the 
restriction enzyme Sac I (Takara Bio Inc., Shiga, Japan) at 
37 °C. Digestion was confirmed using electrophoresis.

To determine the V. destructor haplogroups in Japan, 
cox I, cox III, atp 6, and cyt b mtDNA sequences were 
determined using the primers described by Navajas et al. 
(2010). PCR was performed using KOD FX Neo (TOYOBO, 
Osaka, Japan). PCR conditions were as follows: denaturing 
at 94 °C for 2 min, 35 cycles of denaturing at 98 °C for 10 s, 
annealing at 50 °C for 30 s, and extension at 68 °C for 45 s. 
Obtained PCR products were purified using the QIAquick 
PCR Purification Kit, QIAGEN II Gel Extraction Kit (QIA-
GEN, Hilden, Germany), or Ethachinmate (Nippon gene, 

Tokyo, Japan). Then direct sequencing was performed using 
the Big Dye Terminator v3.1 Cycle Sequencing Kit (Thermo 
Fisher Scientific, Waltham, USA) on an ABI 3500xl Genetic 
Analyzer (Applied Biosystems, Waltham, USA).

Statistical analysis

Spearman’s rank correlation analysis was performed using 
R software (version 3.5.1; R Developmental Core Team 
2013). Correlation analysis between the average number 
of dislodged V. destructor among the infested colonies at 
each apiary and the ratio of infested honeybee colonies at 
each apiary were analyzed using Spearman’s rank correla-
tion method.

Results

Surveillance of V. destructor infestation at Japanese 
apiaries

Varroa destructor samples were collected from A. mellifera 
colonies located at 15 different commercial apiaries using 
modified phoretic mite detection. In Japan, many beekeepers 
migrate to Hokkaido Prefecture in summer for honey collec-
tion and colony rearing. Therefore, surveillance was primar-
ily conducted in Hokkaido Prefecture (10 apiaries). Four 
apiaries in Fukushima Prefecture and one apiary in Osaka 
Prefecture were also surveyed. These apiaries were not 
shifted to Hokkaido Prefecture (Table 1). Varroa destructor 
samples were collected from 14 apiaries (Fig. 2), except for 
the Hokkaido 7 apiary. The number of V. destructor dis-
lodged by each sugar roll test was greater in the later season 
(Fig. 2). Similar to the number of dislodged V. destructor, 
the ratio of V. destructor-infested honeybee colonies at 
each apiary was higher in autumn than in summer (Fig. 2). 
The average number of dislodged V. destructor among the 
infested honeybee colonies correlated with the ratio of 
V. destructor-infested honeybee colonies at the apiaries 

Table 2   Primers used in this 
study

Experiment Sequence (5′ → 3′) References

RFLP/PCR
 CoIF TAC​AAA​GAG​GGA​AGA​AGC​AGCC​ Solignac et al. (2005)
 CoIR GCC​CCT​ATT​CTT​AAT​ACA​TAG​TGA​AAATG​ Solignac et al. (2005)

mtDNA sequencing
 CoxIF-long CTT​GTA​ATC​ATA​AGG​ATA​TTG​GAA​C Navajas et al. (2010)
 CoIR GCC​CCT​ATT​CTT​AAT​ACA​TAG​TGA​AAATG​ Navajas et al. (2010)
 atp6-cox3F GAC​ATA​TAT​CAG​TAA​CAA​TGAG​ Navajas et al. (2010)
 atp6-cox3R GAC​TCC​AAG​TAA​TAG​TAA​AACC​ Navajas et al. (2010)
 cytbF GCA​GCT​TTA​GTG​GAT​TTA​CCTAC​ Navajas et al. (2010)
 cytbR CTA​CAG​GAC​ACG​ATC​CCA​AG Navajas et al. (2010)
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(ρ = 0.90, p < 0.01; Fig. 3), suggesting that V. destructor 
populations increase in summer and autumn.

Several reports have indicated that the threshold for the 
number of V. destructor for winter colony loss is 4–8 pho-
retic V. destructor per 100 honeybees in autumn (Currie and 
Gatien 2006; Gatien and Currie 2003; Strange and Sheppard 
2001). Therefore, we set a strict benchmark of 20 dislodged 
V. destructor per single sugar roll test for predicting winter 
colony loss. In July and August, < 20 V. destructor individu-
als were dislodged in a single sugar roll test, except for the 
Hokkaido 10 apiary. In contrast, cases with > 20 V. destruc-
tor per sugar roll test increased at the apiaries surveyed 

during September and October. In a severe case, 162 V. 
destructor individuals were detected in a single sugar roll 
test at the Fukushima 2 apiary. These colonies had a high 
probability of winter colony loss.

Genetic analysis of V. destructor haplotypes 
and haplogroups in Japan

Varroa destructor haplotypes were investigated using RFLP/
PCR for mtDNA cox I (Solignac et al. 2005). All V. destruc-
tor samples collected in this study were of V. destructor K 
haplotype (Table 3). K1-1/K1-2, K1-3, and K1-4 showed 
variation in terms of cox I mtDNA sequence (Navajas et al. 
2010). Therefore, the V. destructor haplogroups collected 
were investigated using mtDNA sequencing. All V. destruc-
tor samples collected in this study had mtDNA sequences 
identical to those of K1-1/K1-2 (Table 3). Partial sequences 
of atp 6 to cox III, and cyt b were also determined to dis-
tinguish other regional V. destructor haplogroups (Navajas 
et al. 2010). However, no variations were observed for these 
mtDNA sequences. These data demonstrate that V. destruc-
tor infesting A. mellifera at Japanese apiaries were of V. 
destructor K1-1/K1-2 and were identical among all apiaries 
(Fig. 1b).

Varroa destructor infesting A. cerana was also obtained, 
and the haplotypes were analyzed using the same method 
as used for A. mellifera colonies. Varroa destructor sam-
ples collected from A. cerana colonies in Tsukuba, Kashima, 
Inuyama, and Matsue were V. destructor K1-1/K1-2 
(Table 3, Fig. 1b). No sequence variations within atp 6 to 
cox III or cyt b were found in these mites. This indicates 

Fig. 2   Varroa destructor sur-
veillance at Japanese apiaries. 
The number of V. destructor 
dislodged in single sugar roll 
test in each colony is repre-
sented by open circles. nd not 
detected
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that A. mellifera and A. cerana colonies were infested with 
the same V. destructor K1-1/K1-2 haplogroup. Only one V. 
destructor collected from Matsue (Shimane Prefecture) was 
V. destructor J haplotype. The mtDNA sequences of cox I, 
atp 6 to cox III, and cyt b indicated that the haplogroup of 
V. destructor collected from Matsue was J1-3 with no differ-
ences compared to the original J1-3 (Table 3). Although we 
used a small number of samples, these results indicate that 
K1-1/K1-2 is the dominant V. destructor haplogroup causing 
damage to A. cerana in Japan (Fig. 1b).

Discussion

In this study, we conducted a survey on V. destructor infesta-
tion at 15 different Japanese apiaries. Although V. destruc-
tor has previously been collected from A. mellifera and A. 
cerana colonies (Navajas et al. 2010; Solignac et al. 2005; 
Techer et al. 2019), a field survey on V. destructor among 
Japanese apiaries has not been conducted previously. We 
could collect V. destructor from almost all investigated api-
aries. The number of detected V. destructor in the colonies 
and the ratio of infested colonies at the apiaries were corre-
lated and greater in autumn surveillance than that in summer 
(Fig. 3), indicating that V. destructor prevalence increased 

in autumn. The number of V. destructor increased in sum-
mer to autumn in Japan, which has also been reported in 
other countries (Currie and Gatien 2006; Gatien and Currie 
2003; Martin 2001). Some honeybee colonies had severe 
V. destructor infestations with more than 20 V. destructor 
detected using the sugar roll test. These colonies had V. 
destructor infestation that exceeded the benchmark for V. 
destructor number in terms of winter colony loss (Currie and 
Gatien 2006; Gatien and Currie 2003; Strange and Sheppard 
2001); therefore, they had the potential to undergo winter 
colony loss by V. destructor infestation.

Varroa destructor infestation is compounded at an apiary 
in several manners such as drifting and robbing (Boecking 
and Genersch 2008). Varroa destructor infestation has been 
shown to disrupt the orientation of foragers and increase 
the frequency of drifters (Kralj and Fuchs 2006; Kralj et al. 
2007), with highly infested colonies beginning to accept 
drifters (Forfert et al. 2015). Varroa destructor can serve 
as a vector for several viruses causing severe diseases such 
as deformed wing virus and acute paralysis virus (Boecking 
and Genersch 2008). Colonies with severe mite infestations 
appear to be the source of V. destructor and related disease 
at apiaries. Early treatment before an increase in V. destruc-
tor population in honeybee colonies is necessary to prevent 
the high probability of winter colony loss (van Dooremalen 

Table 3   Varroa destructor 
haplogroups in Japan

* No phoretic V. destructor was detected by sugar roll tests

Species Apiary No. of inves-
tigated V. 
destructor

Haplotype

No. of K K No. of J J

Apis mellifera Hokkaido 1 10 10 K1-1/K1-2 – –
Hokkaido 2 10 10 K1-1/K1-2 – –
Hokkaido 3 10 10 K1-1/K1-2 – –
Hokkaido 4 10 10 K1-1/K1-2 – –
Hokkaido 5 10 10 K1-1/K1-2 – –
Hokkaido 6 10 10 K1-1/K1-2 – –
Hokkaido 7 No V. destruc-

tor was 
detected*

Hokkaido 8 10 10 K1-1/K1-2 – –
Hokkaido 9 10 10 K1-1/K1-2 – –
Hokkaido 10 10 10 K1-1/K1-2 – –
Fukushima 1 10 10 K1-1/K1-2 – –
Fukushima 2 10 10 K1-1/K1-2 – –
Fukushima 3 10 10 K1-1/K1-2 – –
Fukushima 4 10 10 K1-1/K1-2 – –
Osaka 1 9 9 K1-1/K1-2 – –

A. cerana Tsukuba 1 1 K1-1/K1-2 – –
Kashima 1 1 K1-1/K1-2 – –
Matsumoto 1 1 K1-1/K1-2 – –
Inuyama 1 1 K1-1/K1-2 – –
Matsue 1 – – 1 J1-3
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et al. 2012). In Japan, V. destructor population is controlled 
with the acaricides τ-fluvalinate and amitraz. However, these 
acaricides cannot be used during honey production. It is 
common for beekeepers in Japan to continue honey produc-
tion during September, which may allow an increase in V. 
destructor population that exceeds the threshold for winter 
colony loss. Monitoring V. destructor population and early 
acaricide-based treatment before an increase in its popula-
tion may prevent severe V. destructor infestation.

The V. destructor haplotypes collected in this study were 
analyzed. Varroa destructor K haplotype was dominant in 
Japanese honeybee colonies. Varroa destructor K1-1 and 
J1-6 have previously been collected from A. mellifera colo-
nies in Japan (Navajas et al. 2010). However, we demon-
strated that V. destructor K1-1/K1-2 could be detected in A. 
mellifera colonies across all sampling locations. Although 
several reports have shown regional variations in mtDNA 
sequences (Gajic et al. 2013; Navajas et al. 2010; Zhou 
et al. 2004), no regional variations were found in the cur-
rent study. In addition, Techer et al. (2019) reported that V. 
destructor in Okinawa Prefecture was V. destructor K1-1/
K1-2, indicating this haplogroup is dominant in A. mellif-
era colonies in Japan. In contrast, V. destructor J haplotype 
appears to be decreasing at Japanese apiaries. Replacement 
of J haplotype with K haplotype has been reported in Brazil, 
concurrent with an increase in the fertilization rate of V. 
destructor observed in A. mellifera colonies (Garrido et al. 
2003; Strapazzon et al. 2009). This suggests that V. destruc-
tor K haplotype has more severe impacts on A. mellifera col-
onies. The current results indicate that V. destructor K1-1/
K1-2 has a higher infectivity than V. destructor J haplotype 
and can cause a loss of V. destructor diversity.

In Japan, A. mellifera colonies travel across various loca-
tions. Some A. mellifera colonies travel for the promotion of 
pollination for crop production such as strawberry horticul-
ture, whereas some travel for migratory beekeeping practices 
(Yoshiyama and Kimura 2018). Hokkaido Prefecture is the 
major area for migratory beekeeping in Japan. Seventeen 
percent of all western honeybee colonies in Japan migrate to 
Hokkaido Prefecture from summer to autumn for honey pro-
duction and for colony rearing (Livestock Farming Promo-
tion Division, Bureau for Promotion of Agricultural Produc-
tion of Hokkaido Pref 2018). Indeed, beekeepers represented 
in the current study migrated to Hokkaido Prefecture from 
all areas of Japan (Table 1). Varroa destructor K1-1/K1-2 
might disseminate to other areas where the colonies once 
migrated. Moreover, V. destructor collected from apiaries 
located in Fukushima and Osaka Prefectures, which did not 
migrate to Hokkaido Prefecture, were also shown to be V. 
destructor K1-1/K1-2. Varroa destructor K1-1/K1-2 might 
rapidly spread throughout Japan. Information concerning V. 
destructor haplogroups present at other locations is lack-
ing. Therefore, nationwide studies must be conducted to 

determine the most prevalent V. destructor haplotypes to 
prevent further damage to A. mellifera colonies. Further-
more, global surveillance of V. destructor is required to 
identify the most highly infective V. destructor haplogroups.

In addition to A. mellifera, the current study investi-
gated the dominant V. destructor haplogroups infesting A. 
cerana colonies in Japan. Although A. cerana is infested 
by V. destructor, they are resistant to V. destructor infesta-
tions (Boot et al. 1997; Fries et al. 1996). Surveillance of V. 
destructor in A. cerana colonies via sugar roll tests is not 
advisable because A. cerana colonies are quick to abscond 
when they experience any type of stress. Therefore, fewer 
numbers of V. destructor infesting A. cerana were investi-
gated in this study. The dominant V. destructor haplogroup 
collected from A. cerana was V. destructor K1-1/K1-2. A 
single V. destructor collected at Matsue was determined to 
be V. destructor J1-3 (Fig. 1b). Navajas et al. (2010) col-
lected V. destructor J1-2, 1–3, and 1–4 from A. cerana colo-
nies in Tokyo, Machida, and Shikoku, respectively (Fig. 1a). 
Although the sample size was small, the genetic analysis of 
V. destructor in the current study indicated V. destructor 
K1-1/K1-2 infestation of A. cerana colonies (Fig. 1b). Loss 
of genetic variation may occur even in A. cerana colonies. 
The current results suggest that the spread of V. destructor 
K1-1/K1-2 to A. cerana colonies has already occurred prob-
ably due to the interactions between A. cerana and A. mellif-
era. Further analysis of the genetic structure of V. destructor 
using microsatellite DNA (Beaurepaire et al. 2015; Dynes 
et al. 2016; Roberts et al. 2015; Solignac et al. 2003, 2005) 
is necessary to understand the process of single haplogroup 
spread in Japan to prevent severe V. destructor infestations.
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