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Abstract
Recent climate warming is expected to have changed the phenology of organisms. The cricket Dianemobius nigrofasciatus 
(Matsumura) (Orthoptera: Trigonidiidae) has univoltine and bivoltine life cycles in northern and southern regions of Japan, 
respectively, because of latitudinal variation in the growing season length. Its adult body size increases with decreasing 
latitude, and decreases at a latitude where the number of annual generations increases. The present study aims to examine 
whether the range of the bivoltine life cycle has expanded northward due to climate warming. We compared a latitudinal 
saw-tooth body size cline between the 1960s and the 2010s. The body size showed a latitudinal saw-tooth cline in adults col-
lected in recent years, as it did in adults collected five decades ago. However, no significant difference was observed between 
these two clines, suggesting that the bivoltine life cycle has not expanded in the last five decades. These results contrast to 
those recently reported in a closely related species, Polionemobius mikado (Shiraki) (Orthoptera: Trigonidiidae), in which 
the turning points of the saw-tooth cline had shifted northward in the last four decades. The stable latitudinal distribution 
of life cycles in D. nigrofasciatus might result from the different photoperiodic regulation of growth rate involved in the 
different responses to climate warming.
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Introduction

Climate warming affects ecological characteristics of organ-
isms, including phenology and body size (Parmesan and 
Yohe 2003; Scheffers et al. 2016; Walther et al. 2002). In 
insects with short generation time, the number of annual 
generations (voltinism) is predicted to increase with increas-
ing length of the season available for growth (Forrest 2016; 
Yamamura and Kiritani 1998), and some field observations 
indicate that it has increased in several decades as expected 
(Altermatt 2010; Martín-Vertedor et al. 2010; Mitton and 
Ferrenberg 2012). Moreover, the growing season length 
declines with increasing latitude, and a species with a wide 
distribution often shows a latitudinal variation in voltinism 
(Tauber et al. 1986). In this case, mathematical models pre-
dict that climate warming will relax the constraint of the 
growing season length, and the typical life cycle at lower 
latitudes will expand into higher latitudes by the end of the 
21st century (Braune et al. 2008; Jönsson et al. 2009). How-
ever, it is also considered likely that increasing temperature 
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sometimes causes unexpected maladaptive consequences for 
insect populations (Grevstad and Coop 2015; Musolin 2007; 
Van Dyck et al. 2015). Thus, the phenological changes that 
have actually occurred in recent decades need to be inves-
tigated to precisely predict the future responses to climate 
warming.

In addition to voltinism, insect body size also shows 
several types of latitudinal clines, including both positive 
and negative correlations (Blanckenhorn and Demont 
2004; Mousseau 1997; Shelomi 2012). Generally, a higher 
rearing temperature results in a smaller adult body size 
in ectotherms (Atkinson 1994; Van Voorhies 1996). This 
“temperature–size rule” is thought to be involved in the 
positive relationship between body size and latitude in 
Drosophila spp. (David and Bocquet 1975; James et al. 
1997; Partridge and French 1996), and also in a decreas-
ing body size in relation to climate warming in several 
other species of insects (Blanckenhorn 2015; Bowden 
et  al. 2015; Tseng et  al. 2018), fishes (Baudron et  al. 
2014; Daufresne et al. 2009), amphibians (Caruso et al. 
2015; Reading 2007; Sheridan et al. 2018), and reptiles 
(López-Calderón et al. 2017). In a univoltine insect, how-
ever, the constraint of the growing season length is more 
important than the negative effect of higher temperature 
on body size, and therefore body size often decreases with 
increasing latitude (Masaki 1967; Nylin and Svärd 1991; 
Park 1949). Moreover, in a species that shows a latitudi-
nal change of its life cycle from bivoltine to univoltine, 
body size sometimes shows a “saw-tooth” latitudinal cline: 
Body size decreases with increasing latitude, and increases 
sharply at the latitude where the length of the growing 
season becomes insufficient for the bivoltine life cycle to 
be completed. Masaki (1972) first demonstrated this latitu-
dinal saw-tooth model in the band-legged ground cricket, 
Dianemobius nigrofasciatus (Matsumura) (Orthoptera: 
Trigonidiidae), formerly known as Pteronemobius fasci-
pes Walker (Masaki 1983). This species has univoltine and 
bivoltine life cycles in the northern and southern regions 
of Japan, respectively, and overwinters as diapause eggs. 
Masaki (1972) collected adults of D. nigrofasciatus over 
a wide range of latitudes from 1965 to 1970, and found 
that their body size showed a latitudinal saw-tooth cline 
related to the latitudinal variation in voltinism: The body 
size decreased north to approximately 37°N, then sharply 
increased to approximately 39°N and again decreased to 
approximately 44°N. In the middle segment of the cline 
where the body size increased with increasing latitude, 
univoltine and bivoltine life cycles were intermingled 
(Kidokoro and Masaki 1978; Masaki 1972, 1978a). Since 
then, saw-tooth relationships between body size and lati-
tude (or growing season length) have been reported in sev-
eral insect species (Johansson 2003; Masaki 1978b; Mous-
seau and Roff 1989; Nylin and Svärd, 1991). Applying 

the latitudinal saw-tooth model in the context of climate 
warming, the latitudinal expansion of the bivoltine life 
cycle would be predicted to be accompanied by a latitudi-
nal shift in the turning points of the saw-tooth cline. Even 
if a saw-tooth body size cline had not shifted latitudinally, 
one could examine whether the body size was affected 
directly by increasing temperature due to climate warming. 
Recently, it was shown that the lower and upper turning 
points of the saw-tooth body size cline had shifted north-
ward by 1–2° (100–200 km in distance) from the 1970s to 
the 2010s in relation to an increase in the growing season 
length in the lawn ground cricket, Polionemobius mikado 
(Shiraki) (Matsuda et  al. 2018). Thus, comparing the 
past and more recent saw-tooth clines is recognized as a 
method that saves time and effort to evaluate the temporal 
change in insect voltinism and body size over a wide range 
of latitudes. Although D. nigrofasciatus and P. mikado 
have similar life cycles, they have different photoperiodic 
regulation of the nymphal development time underly-
ing their different phenology (see Fig. 5a; Masaki 1972, 
1979). There are substantial latitudinal variations in the 
nymphal development time and its photoperiodic variabil-
ity, affecting the latitudinal patterns in voltinism in the 
two species. Notably, the nymphal development time of 
D. nigrofasciatus originating from bivoltine populations 
becomes longer under intermediate daylengths; whereas, 
the nymphal development time of D. nigrofasciatus orig-
inating from univoltine ones and of P. mikado become 
longer under long days. Therefore, adults of the overwin-
tering generation of D. nigrofasciatus emerge earlier than 
those of P. mikado due to long days in summer delaying 
the nymphal development of P. mikado (Masaki 1979). In 
autumn, however, adults of the two species emerge in the 
same period of the year due to intermediate daylengths 
delaying the nymphal development of D. nigrofasciatus 
(Masaki 1972). In this respect, D. nigrofasciatus is a suit-
able subject for examining whether insects show a com-
mon life-history response to climate warming. The report 
by Masaki (1972) provides not only the past data on body 
size of D. nigrofasciatus necessary for comparison with 
the more recent ones, but also useful information on other 
life-history traits involved in voltinism.

The present study aims to examine the temporal change 
in the latitudinal variation of voltinism of D. nigrofascia-
tus. First, we examined whether the body size of adult D. 
nigrofasciatus collected in the 2010s showed a latitudinal 
saw-tooth cline, as did the body size of adults in the 1960s 
(Masaki 1972). Second, we examined whether the latitu-
dinal distribution of univoltine and bivoltine life cycles 
had changed during the last five decades by comparing the 
latitudinal body size cline between the 1960s and 2010s. 
Third, we compared the sum of effective temperatures 
for development of D. nigrofasciatus between the 1960s 
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and 2010s as an index of the growing season length, and 
showed that climate warming could potentially affect the 
latitudinal variation in the voltinism of D. nigrofasciatus.

Materials and methods

Insects

Adults of D. nigrofasciatus were collected from 62 sites 
in Japan from August to October in 2015–2018 (see Fig. 1 
and Online Resource: Table S1). A total of 6566 adults 
were collected, and the mean number per site was 48 and 
40 for females and males, respectively. The sampling 
sites extended from the southernmost site in Ibusuki City 
(31.2°N, 130.6°E) to the northernmost site in Saroma 
Town (44.1°N, 143.8°E). In general, the sampling dates 
were earlier at higher latitudes, because of a latitudinal 
difference in the period of adult emergence. Altitudes 
of these sites were lower than 363 m above sea level to 
exclude variations in body size due to altitude. Adults were 
preserved in 70% ethanol for measurement of the body 
size.

Measurement of body size

The width of the head, including the compound eyes, was 
measured as an index of the body size, using a stereomicro-
scope (S8 APO; Leica Microsystems, Wetzlar, Germany) 
and ScopeImage 9.0 imaging software (Nanjing Jiangnan 
Novel Optics Co., Ltd., Nanjing, China), because this width 
is closely correlated with other dimensions of sclerotized 
parts of the body (Masaki 1972). The coefficient of variation 
(C.V.) of the head width was also calculated because it was 
expected to become larger at latitudes at which the univolt-
ine and bivoltine life cycles were intermingled.

Data of the head width of adults collected in autumn in 
1965–1970 were derived from Masaki (1972). He collected 
a total of approximately 2000 female and 1400 male adults 
from 40 sites between 30 and 44°N in Japan (Fig. 1). Alti-
tudes of these sampling sites were lower than 150 m above 
sea level. The mean head width for every degree of latitude 
was calculated for both sexes.

Estimation of the sum of effective temperatures

To quantify the temporal change in the growing season 
length of D. nigrofasciatus, the sum of effective tempera-
tures for development from spring to autumn was compared 
between means in 1965–1970 and 2015–2018 at seven sites, 
Miyakonojo (31.7°N, 131.1°E), Fukuoka (33.6°N, 130.4°E), 
Osaka (34.6°N, 135.5°E), Utsunomiya (36.6°N, 139.9°E), 
Sendai (38.3°N, 140.9°E), Morioka (39.7°N, 141.1°E) and 
Sapporo (43.0°N, 141.4°E). These sites were chosen from 
the sampling sites of D. nigrofasciatus in 2015–2018. The 
end of the growing season was defined as the first day after 
which the daily mean temperature fell below the lower 
development threshold for more than two successive days. 
Assuming that the lower threshold of development was 
10 °C (Masaki 1972), the sum of effective temperatures 
above 10 °C at each site was calculated. Records of daily 
mean temperature were retrieved from a database on the 
website of the Japan Meteorological Agency (2019).

Statistical analyses

Analyses were carried out using R 3.5.2 (R Core Team 
2018). Samples collected in 2015–2018 were pooled after 
it was determined whether the head width differs signifi-
cantly among these four sampling years. This was tested 
using adult D. nigrofasciatus collected at four sites, namely 
Miyakonojo (31.7°N, 131.1°E), Osaka (34.6°N, 135.5°E), 
Kyoto (35.0°N, 135.8°E), and Fujisawa (35.4°N, 139.5°E), 
at which adults were collected during the 4 years (Fig. 1). 
A three-way analysis of variance was applied to test the 
effect of sex, the sampling site and the sampling year on 
the head width of adults collected from the four sites. A 

Fig. 1   Sampling localities of adult Dianemobius nigrofasciatus. Open 
and closed circles show localities in which adults were collected in a 
single year of 2015–2018 and in all of the 4 years, respectively. Trian-
gles show localities in which adults were collected in 1965–1970 by 
Masaki (1972)
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generalized additive model was applied to fit a spline curve 
to the relationship between the head width and the latitude 
of the sampling site, and test the effect of sex, latitude, year 
(2015–2018) and period (1965–1970 and 2015–2018) on 
the head width, using R package mgcv. For convenience, the 
latitudes of the sampling sites in 1965–1970 were shown as 
the center of every degree; i.e., 30.5, 31.5, 32.5,…, 43.5°N, 
as in Masaki (1972).

Results

Body size in 2015–2018

A three-way analysis of variance showed that sex, the sam-
pling site and the sampling year had significant effects on 
the head width of adult D. nigrofasciatus collected from 
the four sites with a wide range of latitudes in 2015–2018 
(Fig. 2, Table 1). Therefore, the sampling year was used as 
an explanatory variable for further analyses. There was a 
latitudinal variation in the head width of adults collected 
in 2015–2018 in both sexes (Fig. 3). The fitted spline curve 
showed a latitudinal saw-tooth relationship between the 
head width and the latitude of the sampling site: the head 
width was approximately constant at latitudes from 31°N to 
37°N, it increased as latitude increased to 40°N, and then it 
decreased when latitude further increased to 44°N. Within 
each site, the head width was larger in both females than in 
males. The coefficient of variation (C.V.) of the head width 
increased as latitude increased to around 36°N or 37°N, and 
then decreased to 44°N, in females and males, respectively 

(see Online Resource: Fig. S1). However, adult D. nigrofas-
ciatus collected at Matsuyama City (33.8°N, 132.8°N) on 
September 3, 2017 showed an exceptionally large C.V. of 
the head width compared to that at the other sites, possibly 
because the sampling date was earlier than those at the other 
sites at the same range of latitudes (from late September to 
early October). Therefore, the samples obtained in Matsuy-
ama City were excluded from further analyses.

Comparison of body size between 1965–1970 
and 2015–2018

There was little or no difference in the saw-tooth body 
size cline between adult D. nigrofasciatus collected in 

Fig. 2   Comparisons of adult head widths of Dianemobius nigrofasciatus within four collection sites, Miyakonojo (31.7°N), Osaka (34.6°N), 
Kyoto (35.0°N) and Fujisawa (35.4°N), among sampling years of 2015–2018 (females, n = 25–130; males, n = 23–77, mean ± SD)

Table 1   A three-way analysis of variance to test the effect of varia-
bles on the head width of adult Dianemobius nigrofasciatus in 2015–
2018

Adults were collected from four sites at different latitudes in all the 
4 years
df degrees of freedom, MS mean square

Variable df MS F value P value

Sex (A) 1 6.35 1320.7 < 0.001
Site (B) 3 0.209 43.521 < 0.001
Year (C) 3 0.0827 17.190 < 0.001
A × B 3 0.0191 3.9711 0.00783
A × C 3 0.0038 0.7956 0.496
B × C 9 0.0572 11.898 < 0.001
A × B × C 9 0.0265 0.6122 0.788
Residuals 1615 7.7686 0.0048
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1965–1970 and 2015–2018 (Fig. 3). Over this time span 
(about five decades), the upper and lower turning points 
of the cline had shifted northward by less than 1° in both 
sexes. A generalized additive model showed that sex and 
the latitude of the sampling site had significant effects on 
the head width, whereas neither the sampling year, period 
nor the interactions of any of these variables had a signifi-
cant effect (Table 2).

Comparison of the sum of effective temperatures

The growing season length of D. nigrofasciatus was found 
to increase with climate warming and decrease with increas-
ing latitude. The sum of effective temperature was greater in 
2015–2018 than in 1965–1970 by approximately 200–400 
degree-days at each site. The sum of effective temperatures 
gradually decreased from 35°N to 43°N, although this 
trend became unclear at latitudes lower than 35°N both in 
1965–1970 and 2015–2018 (Fig. 4).

Fig. 3   Mean head width of adult Dianemobius nigrofasciatus in 
relation to latitude. Adults were collected in autumn in 1965–1970 
[based on the data of Masaki (1972), n = 20–600] and in 2015–2018 
(females, n = 20–98; males, n = 13–91). The spline curves are fit-

ted to the relationship between the head width and the latitude of the 
site. Note that the mean head width was plotted for every degree of 
latitude in 1965–1970, whereas the mean head width was plotted for 
every site in 2015–2018

Table 2   A generalized additive model to test the effect of variables on the head width of adult Dianemobius nigrofasciatus 

The insects were collected from different latitudes in two periods, namely, 1965–1970 and 2015–2018
df degrees of freedom

Variable Estimate SE t value P value

Parametric coefficient
 Intercept 1.769483 0.0044 400.892 < 0.001
 Sex (male) − 0.129294 0.0062 − 20.818 < 0.001
 Period (1965–1970) − 0.004175 0.0104 − 0.400 0.690
 Sex × period 0.003382 0.0144 0.235 0.814

Variable Effective df F value P value

Smooth terms
 Latitude 7.754 23.64 < 0.001
 Year 3.671 × 10−7 0.00 0.513
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Discussion

We found that adult D. nigrofasciatus collected in 
2015–2018 exhibited a latitudinal saw-tooth cline in their 
head width, as did those collected in 1965–1970 (Fig. 3). 
The sampling dates were thought to be appropriate, because 
the C.V. of the head width was largest around the middle 
segment of the saw-tooth cline, suggesting that small bivol-
tine and large univoltine individuals coexisted there (Fig. 
S1). These clines indicate that the univoltine and bivol-
tine life cycles have prevailed at approximately 40–44°N 
and 31–37°N, respectively, and have been intermingled at 
approximately 37–40°N under the recent climate condi-
tions. However, the lower and upper turning points of the 
saw-tooth cline of the head width were approximately 37°N 
and 40°N in recent years, respectively, and were different 
by less than 1° from five decades ago (Fig. 3), although the 
length of the growing season substantially increased during 
this time span due to climate warming (Fig. 4). Moreover, 
neither the sampling period nor its interaction with the lati-
tude of the sampling site had a significant effect on the head 
width (Table 2), supporting the conclusion that the head 
width was not different between recent years and five dec-
ades ago within the same latitudinal range. We concluded, 
therefore, that the latitudinal distribution of the bivoltine 
life cycle remained unchanged over the last five decades in 
D. nigrofasciatus. The latitudinal variation in the sum of 
effective temperature five decades ago suggested that in D. 

nigrofasciatus, approximately 1000 and 2000 degree-days 
are necessary for univoltine and bivoltine life cycles to be 
completed, respectively (Fig. 4), as described by Masaki 
(1972). The two life cycles also appeared to coexist at 
around 38°N in recent years, as they did five decades ago, 
even though the sum of effective temperature has reached 
2000 degree-days there in the recent years. These results 
showed that a latitudinal variation in insect voltinism is not 
necessarily affected by an increase in the growing season 
length due to climate warming.

It is also noteworthy that a direct effect of climate warm-
ing on the head width of D. nigrofasciatus was not observed 
by comparison between the widths in recent years and five 
decades ago (Fig. 3, Table 2). This finding contrasts with 
proposed decreases in body size as a universal response to 
climate warming in organisms (Gardner et al. 2011; Sheri-
dan and Bickford 2011). Some multispecies studies showed 
an increase, a decrease, or stability in body size in relation 
to climate warming in beetles and salamanders (Baar et al. 
2018; Caruso et al. 2015; Tseng et al. 2018). These results 
indicate that some species-specific factors determine the 
direction and magnitude of its body size response to climate 
warming. In D. nigrofasciatus, it is possible that the nega-
tive effect of increasing temperature on the body size might 
be compensated by the positive effect of the longer growing 
season due to climate warming (Buckley et al. 2015), result-
ing the apparent stability in body size. Even if the number of 
annual generations does not increase, this species might take 
advantage of longer growing seasons by increasing its repro-
ductive period. Summarizing these results, we can conclude 
that the latitudinal variation in voltinism of D. nigrofasciatus 
is robust to climate warming.

In contrast, the closely related cricket P. mikado showed a 
latitudinal saw-tooth body size cline, of which the lower and 
upper turning points had shifted northward by 1°–2° from the 
1970s to the 2010s (Matsuda et al. 2018). Moreover, the C.V. 
of its head width was largest around the middle segment of 
the saw-tooth cline in the 2010s, showing that univoltine and 
bivoltine life cycles were intermingled there. Taking these 
findings all together, it was concluded that the proportion of 
bivoltine individuals had increased at the middle latitude in 
P. mikado over the last four decades (Matsuda et al. 2018). It is 
a novel discovery that the change of the voltinism pattern over 
several decades was quite different between these two spe-
cies, even though they have similar life cycles and geographic 
distributions, and are in the same tribe, Pteronemobiini. The 
latitude and altitude of the sampling sites, number of the sites 
and the samples per site were not quite different between the 
two studies. Photoperiodic regulation of nymphal develop-
ment time is involved in the variable voltinism of some insects, 
including these two crickets (Lindestad et al. 2019; Masaki 
1972, 1979). The different phenological response to climate 
warming might be explained by the different photoperiodic 

Fig. 4   Comparison of the sum of effective temperatures from spring 
to autumn for development of Dianemobius nigrofasciatus between 
1965–1970 and 2015–2018 at seven sites along the latitudinal gradi-
ent (mean ± SD). The lower threshold for development was assumed 
to be 10 °C
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regulation of nymphal growth rate described above (Fig. 5a). 
If hatching of the overwintering generation becomes earlier 
due to climate warming in both of these species, nymphs of 
the overwintering generation will spend longer periods under 
intermediate daylengths, under which the nymphal growth rate 
is high in P. mikado and low in D. nigrofasciatus. As a result, 
summer adult emergence of P. mikado will become earlier, 
favoring the bivoltine life cycle in regions where it coexists 
with the univoltine one; whereas that of D. nigrofasciatus will 
remain unchanged (Fig. 5b). This can explain the results in D. 
nigrofasciatus and P. mikado, although it assumes that the pho-
toperiodic regulation of growth rate has not changed in recent 
years. Further studies focusing on the life-history variations 
should help to reveal the factor(s) determining the response of 
voltinism to climate warming.
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