

Efects of temperature on the development, fecundity, and life table parameters of *Riptortus pedestris* **(Hemiptera: Alydidae)**

Jeong Joon Ahn¹ · Kyung San Choi1 · Sangwook Koh1

Received: 16 March 2018 / Accepted: 28 September 2018 / Published online: 3 October 2018 © The Japanese Society of Applied Entomology and Zoology 2018

Abstract

Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) is an economically important insect pest of soybean. We investigated the developmental periods of each life stage as well as adult longevity and female fecundity. The study was conducted at eleven constant temperatures (12.0, 14.0, 15.9, 17.3, 19.3, 23.6, 28.3, 31.2, 34.2, 35.1, and 36.1 °C) for temperature-dependent development, and six constant temperatures (15.8, 19.7, 24.0, 27.8, 32.6, and 35.5 °C) for adult longevity and oviposition. *Riptortus pedestris* females showed successful egg-to-adult development from 17.9 to 36.1 °C, but failed to complete development under 15.9 °C. Using linear regression, lower developmental threshold (LDT) and thermal constant (K) for the total immature stage were estimated as 14.1 °C and 336.7°-day (DD), respectively. Higher and lower temperature threshold (TH and TL, respectively) were calculated using Lobry–Rosso–Flandrois (LRF) and Sharpe–Schoolfeld–Ikemoto (SSI) models; a wider TL-to-TH temperature range (31.4 °C) was observed for LRF than for SSI (18.6 °C). The adult emergence frequency over the full range of constant temperatures was simulated using nonlinear developmental rate functions and the Weibull function. The daily egg production was predicted with respect to temperature and adult age. Biological characteristics of *R. pedestris* from diferent local populations are discussed.

Keywords *Riptortus pedestris* · Life table analysis · Nonlinear function · Oviposition · Temperature

Introduction

Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) is one of the important pests in Asian countries including Korea, Japan, and India (Kono [1989](#page-10-0); Leal et al. [1995](#page-11-0); Lim [2013](#page-11-1); Son et al. [2000](#page-11-2); Visalakshi et al. [1976](#page-11-3); Wada et al. [2006](#page-11-4)). Both adults and nymphs of *R. pedestris* feed on leguminous plants such as Chinese milk vetch (*Astragalus sinicus* L.), cowpea [*Vigna unguiculata* (L.)], hairy vetch (*Vicia villosa* Roth), kidney bean (*Phaseolus vulgaris* L.), mung bean (*Vigna. radiata* L.), red clover (*Trifolium pretense* L.), sesame (*Sesamum indicum* L.), and soybean (*Glycine max* L.), as well as fruit trees such as apples (*Malus pumila* Miller) and sweet persimmon (*Diospyros kaki* L.f.) (Bae et al. [2009](#page-10-1); Chung et al. [1995](#page-10-2); Kimura et al. [2008](#page-10-3); Kono [1989;](#page-10-0) Mainali and Lim [2012;](#page-11-5) Seo et al. [2011;](#page-11-6) Son et al. [2000](#page-11-2)). They

directly damage the soybean pod and seed by piercing and sucking, in addition to transmitting microorganisms to soybean, resulting in serious economic losses (Jung et al. [2005,](#page-10-4) [2010](#page-10-5); Kimura et al. [2008;](#page-10-3) Kono [1989\)](#page-10-0). The damage caused by *R. pedestris* was severe from middle pod-elongation to earlier seed-thickening of soybean. Specially, when the pod stage of soybean was injured by *R. pedestris,* the empty pods and undeveloped seeds were increased. The economic loss of soybean yield depended on the life stage and density of *R. pedestris* and the timing of their feeding (Jung et al. [2005](#page-10-4); Kono [1989](#page-10-0); Suzuki et al. [1991\)](#page-11-7).

Life table analysis is an important tool for understanding and analyzing the biological process of insects, for studying population growth, and for establishing management programs. Life table studies describe the survival, reproduction, and rate of increase of a population (Birch [1948](#page-10-6); Goodman [1982;](#page-10-7) Maia et al. [2000;](#page-11-8) Sánchez-Ramos et al. [2017](#page-11-9)). Although Rahman and Lim [\(2017](#page-11-10)) created a fertility life table for *R. pedestris* on a limited food resource, they did not assess the efects of temperature on the life table parameters for *R. pedestris*. Temperature is one of the main abiotic factors afecting development, growth, reproduction,

 \boxtimes Jeong Joon Ahn j2ahn33@korea.kr

Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA, 281 Ayeonno, Jeju 63240, Republic of Korea

and survival of insects and mites (Park et al. [2017;](#page-11-11) Ramalho et al. [2015](#page-11-12); Sugawara et al. [2017](#page-11-13)). The previous studies have often overlooked the effect of the lower and higher temperature range on the development of *R. pedestris* (Bae et al. [2005;](#page-10-8) Kidokoro [1978;](#page-10-9) Kim et al. [2009](#page-10-10); Kono [1989;](#page-10-0) Lee et al. [1997](#page-11-14)). Although Kim et al. [\(2009\)](#page-10-10) developed temperature-dependent development and oviposition models for *R. pedestris,* they emphasized more on the goodness-of-ft and simplicity of models rather than the biological interpretation of models. The main objective of this study was to investigate the efects of temperature on the development and reproduction of *R. pedestris*, to construct temperaturedependent development and oviposition models for the species and to analyze a fertility life table for *R. pedestris*.

Materials and methods

Insect colony

Riptortus pedestris (about 200) were obtained from the National Institute of Agricultural Sciences (NIAS), Wanjugun, Republic of Korea, in 2016. Colonies of *R. pedestris* were maintained in acrylic cages (30 cm \times 30 cm \times 35 cm) with one door and two meshed screens in the lateral sides for ventilation at 25 ± 1 °C, $60 \pm 10\%$ relative humidity and 16:8 h light:dark photoperiod. Dry soybean seeds and water were supplied as food sources. Three pieces of gauze $(10 \text{ cm} \times 4.5 \text{ cm})$ were placed at the bottom of each cage as oviposition sites. *Riptortus pedestris,* which were captured seasonally in the feld of Jeju, were added about 100 adults (we did not identify the sex) in the cage for mass rearing three times (spring, summer, and fall seasons) per year, to avoid inbreeding depression.

Experimental procedure for egg‑to‑adult development

New eggs (<24 h old) on the gauze were randomly selected from the insect-rearing system and placed in Petri dishes (10.0 cm diameter and 4.0 cm height, with a 4.0 cm-diameter air hole on the lid covered with 0.05 mm mesh, SPL, Pocheon, Korea) with cotton soaked with water for maintaining humidity. When the eggs hatched, the frst instar nymphs were randomly selected with a brush and placed individually in Petri dishes (5.0 cm diameter and 1.5 cm height with a 1.3 cm-diameter air hole on the lid covered with 0.05 mm mesh). Each dish was frst flled with cotton soaked with water and three dried soybean seeds. The dried soybean seeds were placed in a small plastic band, so that seeds do not roll over in the Petri dishes. Soybean seeds and water were supplied as a food source for the nymphs.

The developmental periods of *R. pedestris* stages from egg-to-adult emergence were studied at temperatures of 12.0, 14.0, 15.9, 17.3, 19.3, 23.6, 28.3, 31.2, 34.2, 35.1, and 36.1 °C. The temperature inside the cages was very similar to that of the chamber (WTH-305, Daihan Scientifc, Co. Ltd, Seoul, Korea). Sample sizes were greater than 200 eggs per treatment. Observations were made visually at 24 h intervals to distinguish between the nymph instars, which were identifed using the exuviae. The eggs were allowed to complete development until adults within the Petri dishes, and the developmental time for each life stage was recorded. Dried soybean seeds were replaced with new ones whenever needed.

Experimental procedure for adult longevity and fecundity

To obtain newly emerged female and male adults $(< 24$ h old), fifth instar nymphs were chosen from the mass rearing system and transferred into acrylic cages $(30 \text{ cm} \times 30 \text{ cm} \times 35 \text{ cm})$. The new female adults were paired with new males and placed in Petri dishes (10.0 cm diameter and 4.0 cm height, with a 4.0 cm-diameter air hole on the lid covered with 0.05 mm mesh). A given pair of *R. pedestris* adults was maintained in the same Petri dish. We replaced the female or male if they died within 1 week. The fecundity and longevity of *R. pedestris* individuals were studied at temperatures of 15.8, 19.7, 24.0, 27.8, 32.6, and 35.5 °C. We followed the same procedure as the developmental time experiment. Rolled pieces of gauze (10 cm \times 4.5 cm) were placed in the bottom of each Petri dish as oviposition substrate. The longevity and fecundity of *R. pedestris* were examined and recorded at 24 h intervals using visual observation. To assess the daily fecundity and hatchability, eggs laid by the female were removed from the containers daily, and it was observed whether they hatch or not.

Data analysis

Developmental time, longevity, and fecundity data for *R. pedestris* were analyzed using the PROC GLM in SAS (SAS Institute [2002](#page-11-15)). Statistical diferences in development periods, longevity, and fecundity across the tested temperatures were determined using the Tukey's studentized range test $(p<0.05)$. The data for hatchability were normalized by arcsine–square-root transformation and were then analyzed using Tukey's test. The parameters for the linear and nonlinear functions were estimated using least-square method in TableCurve 2D (Jandel Scientifc [1996](#page-10-11)) or R-statistics (version 3.2.2; R Core Team [2015](#page-11-16)).

Analysis of developmental data

The relationship between temperature and developmental rates (1/developmental periods) was analyzed using linear and nonlinear functions. The lower developmental threshold $(LDT, -\frac{b}{a})$ and thermal constant $(K, \frac{1}{a})$ were estimated by linear function $(y=aT+b)$: where $y =$ developmental rate and *T*=temperature tested) (Campbell et al. [1974](#page-10-12)).

Many researchers have suggested and evaluated nonlinear equations that explain the relationship between developmental rates and temperature (Kim et al. [2017;](#page-10-13) Kontodimas et al. [2004;](#page-10-14) Mirhosseini et al. [2017;](#page-11-17) Ratkowsky and Reddy [2017](#page-11-18); Roy et al. [2002;](#page-11-19) Shi et al. [2016](#page-11-20), [2017](#page-11-21)). We selected two nonlinear equations, the Lobry–Rosso–Flandrois (LRF) model and the Sharpe–Schoolfeld–Ikemoto (SSI) model, based on the evaluation by Ratkowsky and Reddy [\(2017\)](#page-11-18) and Shi et al. [\(2017](#page-11-21)):

represents the developmental rate at absolute temperature T ^{(°}K), $ΔHA$, $ΔHL$, and $ΔHH$ are enthalpy changes (Jmol⁻¹), *R* is the universal gas constant, ρ_{ϕ} is the developmental rate at T_{ϕ} , *TL* and *TH* are temperatures at which the rate-controlling enzyme has equal probability to be active or inactive by low- or high-temperature inactivation, respectively, and T_{ϕ} is the intrinsic optimum temperature. T_{ϕ} is the optimal temperature at which the species can optimize its ftness to the environment (Sharpe and DeMichele [1977\)](#page-11-25):

$$
P_2(T) = \frac{1}{1 + \exp\left[\frac{\Delta HL}{R}\left(\frac{1}{TL} - \frac{1}{T}\right)\right] + \exp\left[\frac{\Delta H H}{R}\left(\frac{1}{TH} - \frac{1}{T}\right)\right]}.
$$
\n(3)

Equation (3) (3) (3) is the probability that the rate-controlling enzyme is in the active state. The maximum probability of $P_2(T)$ is observed at T_{ϕ} .

The relationship between the cumulative proportion

$$
r(T) = \mu_{\rm opt} \frac{\left(T - T_{\rm max}\right)\left(T - T_{\rm min}\right)^2}{\left(T_{\rm opt} - T_{\rm min}\right)\left[\left(T_{\rm opt} - T_{\rm min}\right)\left(T - T_{\rm opt}\right) - \left(T_{\rm opt} - T_{\rm max}\right)\left(T_{\rm opt} + T_{\rm min} - 2T\right)\right]}.
$$
\n(1)

Equation [\(1](#page-2-0)) is the LRF model (Lobry et al. [1991;](#page-11-22) Ratkowsky and Reddy [2017](#page-11-18); Rosso et al[.1993](#page-11-23)). The LRF model has been generally considered in food microbiology and not previously well applied in population entomology before introducing by Ratkowsky and Reddy ([2017](#page-11-18)). The model was developed by Lobry and colleagues and which has the important features that all parameters of the model have biological meaning. In this model, *r*(*T*) is the developmental rate (1/developmental time) at diferent temperatures (°K), *T* is the absolute temperature (K), μ_{opt} is the development rate at the optimum temperature, T_{max} is the temperature above which no development occurs, T_{min} is the temperature below which development is no longer observed, and T_{opt} the optimal temperature for development:

$$
r(T) = \frac{\rho_{\phi} \frac{T}{T_{\phi}} \exp\left[\frac{\Delta HA}{R} \left(\frac{1}{T_{\phi}} - \frac{1}{T}\right)\right]}{1 + \exp\left[\frac{\Delta HL}{R} \left(\frac{1}{TL} - \frac{1}{T}\right)\right] + \exp\left[\frac{\Delta HH}{R} \left(\frac{1}{TH} - \frac{1}{T}\right)\right]}.
$$
\n(2)

Equation ([2\)](#page-2-1) is the SSI model (Ikemoto [2005](#page-10-15); Schoolfeld et al. [1981;](#page-11-24) Sharpe and DeMichele [1977](#page-11-25)). The SSI model based on thermodynamics was proposed by Sharpe and DeMichele ([1977](#page-11-25)) and modifed by Schoolfeld et al. ([1981\)](#page-11-24) and Ikemoto ([2008](#page-10-16)). The model has been developed to describe temperature-dependent reaction rates of a theoretical rate-controlling enzyme that is in its active temperature ranges. Parameters of the SSI model were estimated using an R script, which improved the ftting method of parameter estimates, developed by Shi et al. ([2017\)](#page-11-21). In this model, *r*(*T*) of adult emergence and normalized developmental times (developmental time/mean developmental period) was estimated using the three-parameter Weibull function (Wagner et al. [1984;](#page-11-26) Weibull [1951](#page-11-27)). The parameters for the Weibull function were estimated using least-square method:

$$
F(t) = 1 - \exp(-\left(\frac{t - \gamma}{\eta}\right)^{\beta}),\tag{4}
$$

where $F(t)$ is the cumulative frequency at normalized time *t*, and γ , η , and β are the parameters of the Weibull function.

The emergence proportion of *R. pedestris* adults was simulated with respect to constant temperature $({}^{\circ}C)$ and time (day) by combining the two nonlinear functions and Weibull function:

$$
F(x,T) = 1 - \exp(-\left(\frac{xr(T) - \gamma}{\eta}\right)^{\beta}),\tag{5}
$$

where *F*(*x*, *T*) is the emergence frequency of *R. pedestris* adults at time *x* and constant temperature $T(^{\circ}C)$, *x* is time (day), $r(T)$ is the developmental rate from selected model, and γ , η , and β are parameters from the Weibull equation. The results of $F(x, T)$ were estimated by subtracting the simulation result at time x_t from the result at time x_{t+1} .

Oviposition model structure and life table parameters

The oviposition model of *R. pedestris* was constructed using temperature-dependent adult aging rate, the age-specific survival rate, age-specific cumulative oviposition rate, and temperature-dependent total fecundity. The relationship between the temperatures and adult aging rates (1/longevity) was described by the Lactin model (Eq. [6\)](#page-3-0) (Lactin et al. [1995\)](#page-11-28):

$$
r(T) = e^{\rho T} - e^{\left(\rho T_M - \frac{T_M - T}{\Delta T}\right)},\tag{6}
$$

where $r(T)$ represents the aging rate at temperature $T({}^{\circ}C)$, ρ is a constant that defines the rate of optimal temperature, T_M is the higher threshold, and ΔT is the temperature window for inducing physiological action of insect adult aging.

The age-specific survival rate of *R. pedestris* was fitted with a Weibull frequency distribution (Pinder et al. [1978\)](#page-11-29):

$$
S(t) = \frac{1}{\exp[\left(\frac{t}{a}\right)^b]},\tag{7}
$$

where *S*(*t*) is the proportion of living females at a normalized time *t*, *t* is the normalized time (age of each adult female/ average longevity of tested female), and *a* and *b* are parameters. Age-specifc cumulative oviposition rate was analyzed using the three-parameter Weibull function (Eq. [4\)](#page-2-3). The relationship between the mean total fecundity per female and temperatures was estimated by the equation proposed by Briere et al. ([1999\)](#page-10-17):

$$
f(T) = cT(T - TL)(TM - T)1/m,
$$
\n(8)

where $f(T)$ is the number of total eggs laid by one female at each temperature (\degree C), *T* and T_M are terms from the Lactin model. T_{L} is the lower developmental threshold, and c and *m* are empirical constants of the equation.

The number of eggs produced by a cohort of females was estimated between t*ⁱ* (i.e., normalized age at *i*th day) and t_{i+1} using the equation (Kim and Lee [2003](#page-10-18)):

$$
f(T) * F(t_{i+1} - t_i) * \left(\frac{S_{i+1} + S_i}{2}\right),
$$
\n(9)

where $f(T)$ and $S(t)$ are already defined above and $F(t)$ is the cumulative oviposition proportion of living females at a normalized time *t*.

The parameters of fertility life table for *R. pedestris*, including net reproductive rate (R_O) , mean generation time (*T*), doubling time (DT), finite rate of increase (*λ*), and intrinsic rate of natural increase (r_m) , were estimated using methods proposed by Maia et al. [\(2000](#page-11-8)). The statistical differences in life table parameters across the tested temperatures were determined using the two-tailed *t* test.

Results

Riptortus pedestris developed successfully from the egg to the adult stage in the range of 17.9–36.1 °C (Table [1](#page-4-0)). The eggs could not hatch at 12.0 and 14.0 °C, and nymphs could not develop into adult stage under 15.9 °C. The developmental periods of each life stage and total immature period were signifcantly infuenced by temperatures (i.e., combined: Egg $F_{8, 2204} = 24655.40, p < 0.0001$, first nymph stage $F_{8,1877} = 1688.40, p < 0.0001$, second nymph stage $F_{8, 1631} = 1962.74$, $p < 0.0001$, third nymph stage $F_{8, 1532} = 1877.59$, $p < 0.0001$, fourth nymph stage $F_{7, 1461} = 2705.14, p < 0.0001$, fifth nymph stage $F_{7, 1428} = 1960.42$, $p < 0.0001$, total nymph stage $F_{7,1336} = 16804.70, p < 0.0001$, and total immature stage $F_{8, 1336} = 26840.50, p < 0.0001$. The time required to complete development decreased when the temperature increased from 17.9 to 34.2 °C. The mean developmental time for egg-to-adult emergence ranged from 81.7 days at 17.9 °C to 16.9 days at 34.2 °C. The lower developmental threshold (LDT) and thermal constant (K) for each life stage of *R. pedestris* were obtained by the linear regression analysis. LDT values of egg, frst, second, third, fourth, and ffth nymph stages were 13.2, 13.5, 13.2, 14.4, 14.8, and 14.6 °C, respectively. K values of egg, frst, second, third, fourth, and ffth nymph stage were 104.7, 31.6, 51.2, 41.5, 45.0, and 70.6 DD, respectively. LDT and K of total immature period were 14.2 °C and 336.7 DD.

The estimated parameters of two nonlinear functions are presented in Table [2](#page-5-0). The temperature-dependent development for total immature period was described by two functions, and the curve performance of two models was right-skewed bell-shape (Fig. [1](#page-6-0)a). The maximum developmental rate was observed at 37.1 and 36.8 °C from the LRF and SSI models, respectively. The three critical temperature thresholds of rate-controlling enzyme for *R. pedestris* total immature stage were estimated using the SSI model (Fig. [1](#page-6-0)b). The intrinsic optimum temperatures of the control enzyme for egg, frst, second, third, fourth, ffth, and total immature period were 24.1, 33.5, 32.5, 26.0, 33.3, 33.4, and 32.6 °C, respectively. The temperature window for the development of *R. pedestris* could be approximated from TL to TH. The temperature range for the nymph stages was 29.8–33.1 and 17.0–20.6 °C based on the LRF and SSI models, respectively.

The cumulative proportion of development completion for *R. pedestris* total immature stage was analyzed using a three-parameter Weibull distribution function (Fig. [1](#page-6-0)c) $(\gamma = 0.7071, \eta = 0.2893, \beta = 6.7314, F_{2,62} = 1393.73,$ $p < 0.0001$, $r^2 = 0.98$). Adult emergence proportion for *R. pedestris* over the full range of constant temperature was obtained using the two nonlinear models and the

Table 1 Developmental time (days) (mean ± SEM) and survivorship for each life stage of Riptortus pedestris at different temperatures **Table 1** Developmental time (days) (mean±SEM) and survivorship for each life stage of *Riptortus pedestris* at diferent temperatures

 \overline{a} Means followed by the same letter within a row are not signifcantly diferent (*p*<0.05, Tukey's studentized range test). 'Initial *N*' means the number of initial sample size at each temperature. '*n*' means the number of surviving individual at each life stage. In parentheses, survivorship of each temperature. '*N*' means nymph stage of *R. pedestris.* '*I*' means immature stage from egg to ffth instar nymph. '–' means *R. pedestris* could not develop next life stage. The statistical results of combined sexes are in the text are in the text stage. The elop next me means *R. pedestris* could not dev fitth instar nymph. `-

Male: Egg $F_{6,704} = 5527.09$, $p < 0.0001$, first nymph stage $F_{6,704} = 623.56$, $p < 0.0001$, second nymph stage $F_{6,704} = 862.59$, $p < 0.0001$, third nymph stage $F_{6,704} = 1071.80$, $p < 0.0001$, fourth nymph stage $F_{$ Female: Egg F_{7, 613} = 5163.76, p < 0.0001, first nymph stage $F_{7,613}$ = 578.89, p < 0.0001, second nymph stage $F_{7,613}$ = 974.67, p < 0.0001, third nymph stage $F_{7,613}$ = 933.35, p < 0.0001, fourth Female: Egg F_{7, 613} = 5163.76, p < 0.0001, first nymph stage F_{7, 613} = 578.89, p < 0.0001, second nymph stage F_{7, 613} = 574.67, p < 0.0001, final nymph stage F_{7, 613} = 933.35, p < 0.0001, fourth Male: Egg $F_{6,704}$ =5527.09, p<0.0001, first nymph stage $F_{6,704}$ =623.56, p <0.0001, second nymph stage $F_{6,704}$ =862.59, p <0.0001, third nymph stage $F_{6,704}$ =1071.80, p <0.0001, fourth nymph stage $F_{7,613} = 1438.65$, $p < 0.0001$, fifth nymph stage $F_{7,613} = 1125.41$, $p < 0.0001$, total nymph stage $F_{7,613} = 8227.99$, $p < 0.0001$, and total immature $F_{7,613} = 13287.80$, $p < 0.0001$ nymph stage $F_{7,6,15}$ = 1438.65, p < 0.0001, fifth nymph stage $F_{7,6,15}$ = 1125.41, p < 0.0001, total nymph stage $F_{7,6,15}$ = 8227.99, p < 0.0001, and total immature $F_{7,6,15}$ = 13287.80, p < 0.0001

Function	\boldsymbol{P}	Life stage							
		Egg	First	Second	Third	Fourth	Fifth	Total I	
LRF	$\mu_{\rm opt}$	0.1928	0.7303	0.3947	0.4684	0.4346	0.2791	0.0592	
	T_{max}	318.6361	309.2751	311.3804	311.3690	309.9779	309.6391	310.2412	
	$T_{\rm min}$	282.0142	276.1498	279.4238	281.2476	280.0817	279.1228	278.8385	
	T_{opt}	308.3072	308.7888	306.8911	307.2142	307.3987	307.5019	307.3859	
	r^2	0.99	0.96	0.99	0.98	0.99	0.99	0.99	
SSI	ρ_{ϕ}	0.1088	0.6449	0.3815	0.2739	0.4311	0.2794	0.0578	
	T_{ϕ}	297.2567	306.6539	305.6604	299.1790	306.5007	306.6023	305.8003	
	$\Delta H\!A$	16698.1	10927.32	6880.663	15974.6	8271.32	8602.327	8640.81	
	$\Delta H L$	-77172.03	-91198.08	-60646.74	-108900.6	-46589.42	-43779.48	-46143.72	
	$\Delta H H$	52702.96	728533.5	263016.4	102252.3	327512.5	377951.4	239232.4	
	TL	288.2614	290.0920	291.7942	289.4847	292.6543	292.2029	291.6853	
	TH	310.1009	309.4029	310.1090	310.1261	309.7083	309.4469	309.9894	
	χ^2	0.00058	0.00943	0.00076	0.00027	0.00052	0.00034	0.000002	
	r ²	0.99	0.98	0.99	0.99	0.99	0.99	0.99	

Table 2 Parameter estimates of two nonlinear developmental rate models for *Riptortus pedestris*

'*P*' means parameters of nonlinear functions. 'Total *I*' means immature stage from egg to fifth instar nymph. LRF model: Egg F_3 , 5=505.67, *p*<0.0001, first nymph stage $F_{3,5}$ = 35.48, *p*<0.0008, second nymph stage $F_{3,5}$ = 144.78, *p*<0.0001, third nymph stage $F_{3,5}$ = 619.28, *p* <0.0001, fourth nymph stage $F_{3,4} = 376.47$, *p* <0.0001, fifth nymph stage $F_{3,5} = 694.48$, *p* <0.0001, and total immature $F_{3,4} = 1077.84$, *p*<0.0001

development completion process. The results of the simulation were assessed by two nonlinear models (Fig. [2](#page-6-1)).

Riptortus pedestris adults survived at all the tested temperatures. The longevity of *R. pedestris* females decreased with increasing temperature (Table [3\)](#page-7-0). The longevity of *R. pedestris* males was longer than that of females at diferent temperatures (sex $F_{1, 304} = 42.88, p < 0.0001$, temperature $F_{5,304}$ = 32.45, $p < 0.0001$, and interaction effect of sex and temperature $F_{1, 304} = 8.93, p < 0.0001$). The fecundity (total egg production/female) increased with increasing temperature until 24.0 °C. Fecundity and hatchability were signifcantly afected by the temperature (total egg per female: *F*4, 125 = 10.91, *p* < 0.0001; hatchability: *F*4, 125 = 32.83, *p* < 0.0001). *Riptortus pedestris* female did not oviposit at 15.8 °C.

The relationship between adult aging rate and temperature was analyzed using the Lactin model (Fig. [3a](#page-7-1) and Table [4](#page-8-0)). Three important components of the oviposition model of *R. pedestris* are shown in Fig. [3](#page-7-1) and Table [4.](#page-8-0) Each component was described well by the selected models. The estimated maximum number of eggs produced per female was 186.0 eggs at 25.2 °C. The estimated egg production per day in relation to adult age and temperature is presented in Fig. [4](#page-8-1). Age-specifc female survival and daily fecundity are presented in Fig. [5](#page-9-0). The survival curve presents a sharp decline after 28 days at 19.7 °C, after 49 days at 24.0 °C, after 13 days at 27.8 °C, and after 10 days at 32.6 and 35.5 °C. The daily fecundity declined gradually after peaking.

The estimated values of life table parameters for *R. pedestris* are presented in Table [5](#page-9-1). The net reproductive rate was similar at 24.0 and 27.8 °C. The mean generation time decreased with increasing temperature up to 32.6 °C. The finite rate of increase $(\lambda = 1.12)$ and intrinsic rate of increase $(r_m=0.11)$ were the highest at 32.6 °C.

Discussion

We investigated a wide range of temperatures for *R. pedestris* development and reproduction, determined the developmental times and fecundity, estimated important parameters for understanding biological processes using linear and nonlinear functions, and calculated the life table parameters of *R. pedestris.* Temperature affects the developmental time of *R. pedestris* as in other insect pests, such as *Acrosternum hilare* (Say), *Aphis glycines* (Matsumura), *Halyomorpha halys* (Stål), and *Megacopta cribraria* (Fabricius) in soybean felds (Baek et al. [2017](#page-10-19); Hirano et al. [1996;](#page-10-20) Nielsen et al. [2008;](#page-11-30) Shi et al. [2014](#page-11-31); Simmons and Yeargan [1988](#page-11-32)). The developmental periods of *R. pedestris* for each life stage decreased as the temperature increased up to 34.2 °C (Table [1\)](#page-4-0). These results disagree with those reported by Kim et al. [\(2009](#page-10-10)) for *R. pedestris*, who found that the developmental times for each life stage except the second instar nymph stage decreased continuously from 19.7 to 36.7 °C. *Riptortus pedestris* nymphs could not develop into adult stage under 15.9 °C in this study. This result was similar to

Fig. 1 **a** Linear and two nonlinear functions fitted to the data of developmental rates (day−1) for total immature (egg-to-adult emergence) period of *Riptortus pedestris*. **b** $P_2(T)$ is the probability that rate-controlling enzyme is in the active stage. The closed three squares from left to right represent the development rates at T_L, T_d and T_H . T_L and T_H which are temperatures at which the control enzyme has equal probability to be active or inactive by low- or hightemperature inactivation, and T_{ϕ} is the intrinsic optimum temperature. **c** Cumulative proportions of development completion for total immature period of *R. pedestris*

Fig. 2 Simulated temperature-dependent adult emergence of *Riptortus pedestris* using two nonlinear functions: **a** LRF model and **b** SSI model

those reported by Kidokoro (1978) (1978) (1978) $(17 °C)$ and Lee et al. ([1997](#page-11-14)) (15 °C). The developmental periods for each life stage from this study were shorter than those reported by Kidokoro [\(1978\)](#page-10-9), Lee et al. ([1997\)](#page-11-14), Bae et al. [\(2005\)](#page-10-8), and Kim et al. ([2009\)](#page-10-10). It is inferred that the difference among developmental times is attributable to the food source or variety consumed, source of the insect population, and environmental conditions before the experiment.

In contrast to our study, Bae et al. [\(2005](#page-10-8)) reported lower LDTs for different nymph stages $(8.7–12.7 \degree C)$ and total immature stage (10.0 °C) than our results (13.2–14.8 °C, 14.2 °C, respectively). However, Kim et al. [\(2009\)](#page-10-10) reported higher values (14.5–15.8 $^{\circ}$ C) than the results of this study. The thermal constant of the total immature period in our study (336.7 DD) was lower than those reported by Kidokoro ([1978](#page-10-9)) (385.0 DD) and Lee et al. ([1997](#page-11-14)) (429.2 DD), and higher than those reported by Kono ([1989](#page-10-0)) (326.8 DD) and Kim et al. [\(2009](#page-10-10)) (312.5 DD). These diferences may be

Temperature	N	Pre-oviposition	Oviposition	Longevity		Fecundity	Hatchability
$(^{\circ}C)$				Female	Male		$(\%)$
15.8	28			$110.4 \pm 15.61a$	$122.2 \pm 15.19b$	$\overline{}$	
19.7	27	$10.8 + 0.32a$	$52.4 + 7.65a$	$76.6 + 9.86a$	$206.9 + 22.11a$	$84.4 + 9.30c$	$62.3 \pm 12.21b$
24.0	29	$7.5 + 0.18b$	$64.7 \pm 6.32a$	$77.8 + 6.56a$	$122.9 \pm 11.15b$	$196.6 \pm 17.30a$	79.2 ± 14.97 ab
27.8	27	$5.2 + 0.45c$	$23.7 \pm 3.40b$	$34.7 + 3.99b$	95.6 ± 8.37 b	$154.3 \pm 25.79ab$	$84.0 \pm 16.48a$
32.6	24	$4.7 + 0.61c$	$26.1 \pm 2.36b$	$32.5 \pm 3.44b$	$34.6 \pm 4.47c$	104.7 ± 13.79 bc	$20.6 \pm 4.31c$
35.5	23	$5.6 + 0.72c$	$13.0 + 1.36b$	$20.6 + 1.25b$	$31.2 + 2.96c$	$56.1 + 8.55c$	$32.8 \pm 7.00c$

Table 3 Preoviposition period, oviposition days, longevity (female and male) fecundity (eggs/female), and hatchability (%) (mean±SE) of *Riptortus pedestris* at diferent temperatures

Means followed by the same letter within a column are not significantly different $(p<0.05$, Tukey's studentized range test). '*N*' means the number of sample size at each temperature for statistical process. '–' means *R. pedestris* female did not oviposit. Pre-oviposition period: $F_{4, 123} = 30.02$, $p < 0.0001$, oviposition days: $F_{4, 123} = 19.20$, $p < 0.0001$, female longevity: $F_{5, 152} = 15.14$, $p < 0.0001$, male longevity: *F*5, 152=23.16, *p*<0.0001, fecundity: *F*4, 125=10.91, *p*<0.0001, and hatchability: *F*4, 125=32.83, *p*<0.0001

Fig. 3 Important components of oviposition model on *Riptortus pedestris*. **a** adult aging rate curve (1/mean longevity), **b** temperature-dependent total fecundity curve, **c** age-specifc cumulative survival rate curve, and **d** age-specifc cumulative oviposition rate curve

related to the diferences in experimental conditions such as the nutrient of food resources, the origin of populations, and measurement of temperature.

The developmental rate of *R. pedestris* was well ftted by two nonlinear models, which were then used to calculate the developmental thresholds. In our study, the least-squares estimators are 0.96–0.99 and the estimated parameters presented the minimum variance. The models explained well the pooled development rates throughout the biokinetic temperature ranges tested. In contrast to the LRF model, SSI

Table 4 Parameter estimates for oviposition models of *Riptortus pedestris*

Models	Parameters	Estimated values	SE	R^2	
Adult aging rate model	ρ	0.1562	0.0758	0.91	
	T_M	45.7120	16.5921		
	ΔT	6.3974	3.1024		
Age-specific survival rate model	a	1.0756	0.0130	0.96	
	b	1.7256	0.0532		
Age-specific cumulative oviposition rate model	γ	0.0587	0.0213	0.94	
	η	0.5389	0.0252		
	β	1.3959	0.0753		
Temperature-dependent fecundity model	\mathcal{C}	0.000003	0.00006	0.96	
	$T_{\rm L}$	18.2364	1.1041		
	$T_{\rm M}$	47.3789	1.8248		
	\boldsymbol{m}	0.2469	0.2678		

Adult aging rate model: $F_{2,3} = 15.29$, $p < 0.0267$, age-specific survival rate model: $F_{1,146} = 3207.66$, p <0.0001, age-specific cumulative oviposition rate model: $F_{2,484}$ =3844.36, p <0.0001, temperaturedependent fecundity model: $F_{3, 2} = 17.15, p < 0.0556$

Fig. 4 Simulated oviposition density curves of *Riptortus pedestris* related to temperatures (°C) and cohort age

model has clear biophysical meanings and gives thermodynamic information among model parameters. The intrinsic optimum temperature values in our study (32.6 °C) and that by Kidokoro (32.1 °C) using the SSI model were similar, and difered from those of Kim et al. [\(2009\)](#page-10-10) (27.3 °C) and Bae et al. (2005) (2005) (2005) (26.9 °C). The temperature ranges for insect development were estimated from TL to TH using the SSI model (van der Have [2002;](#page-11-33) Dixon et al. [2009](#page-10-21)). The ranges were 18.3, 18.6, 19.9, and 20.9 for the present study, Kidokoro ([1978](#page-10-9)), Bae et al. ([2005\)](#page-10-8), and Kim et al. ([2009](#page-10-10)), respectively. The activation states of the rate-controlling enzyme from our study and Kidokoro ([1978\)](#page-10-9) were similar compared with other results. It can be inferred that the thermal tolerance for immature development of *R. pedestris* from our study and Kidokoro is similar compared with the other results.

This study presents substantial evidence that temperature has a significant effect on the longevity and fecundity of *R*. *pedestris* adults and that the provided models constitute a crucial step towards establishment of population dynamic model. The longest pre-oviposition, oviposition periods, and total longevity for *R. pedestris* were at 19.7 °C and no signifcant diferences were found in the range from 27.8 to 35.5 °C. The female longevity values in our study were shorter than those of male longevity. The diference in longevity between females and males has also been reported in *Corythucha cydoniae* (Fitch) (Neal and Douglass [1990](#page-11-34)) and *Monosteira unicostata* (Mulsant & Rey) (Sánchez-Ramos et al. [2017](#page-11-9)). It could be attributed to the oviposition behaviors of females, who invest substantial resources and energy to produce eggs and search for oviposition sites (Gibbs et al. [2010](#page-10-22); Jervis et al. [2008\)](#page-10-23).

The reproductive capacity of *R. pedestris* increased up to 24.0 °C and gradually decreased at higher temperatures. High fecundity was observed at 24.0 and 27.8 °C, with 196.6 and 154.3 eggs/female produced, respectively. Therefore, the optimum temperature for reproduction is likely between 24.0 and 27.8 °C. Kim et al. ([2009](#page-10-10)) found relatively higher values of fecundity from 22.0 to 31.0 °C (353.2–369.2 eggs/ female), whereas Bae et al. ([2005](#page-10-8)) reported lower values from 20.0 to 32.0 °C (21.1–67.0 eggs/female). The number of eggs produced in our study was lower than that reported by Kim et al. ([2009](#page-10-10)), and higher than that presented by Bae et al. ([2005\)](#page-10-8). In our study, the egg production was the lowest at the highest temperature (35.5 °C). Bae et al. (2005) (2005) and Kim et al. [\(2009](#page-10-10)) found a low reproductive capacity for *R. pedestris* when the females were reared at 20.0 and 34.0 °C, respectively. The estimated temperature for maximum

Fig. 5 The survival proportion and daily fecundity (mean eggs/female/day) of *Riptortus pedestris* at diferent constant temperatures. **a** 19.7 °C, **b** 24.0 °C, **c** 27.8 °C, **d** 32.6 °C, and **e** 35.5 °C

Means followed by the same letter in a column are not signifcantly diferent using Student's *t* test for pairwise group comparison at $p < 0.05$

reproductive capacity from our study and Kim et al. ([2009\)](#page-10-10) was similar at around 25 °C, but the estimated number of eggs reported by Kim et al. [\(2009](#page-10-10)) (453.8) was higher in comparison with our study (186.0). Nitrogen quality and the quantity of soybeans consumed may be responsible for the observed variation in fecundity across studies (Barnes et al. [2008](#page-10-24)).

We found that the intrinsic rate of increase (r_m) was threefold higher when the temperature was increased from 19.7 to 32.6 °C. At 35.5 °C, the r_m value was negative. It means that the population growth of *R. pedestris* would decrease when they are exposed to this temperature. The results (0.22 and 0.23) of Rahman and Lim ([2017](#page-11-10)) were higher than those from our study. The highest net reproductive rates (R_0) were observed at 24.0 and 27.8 °C in this study. The mean generation time (*T*) decreased with increasing temperature up to 32.6 °C.

In conclusion, our results provide valuable information about the biological traits of *R. pedestris* at various temperatures compared to the previous study—development time of male and female nymphs, longevity of female and male, and life table analysis, in addition to the estimated parameters of temperature-dependent development and oviposition models. We present the simulated temperature-dependent adult emergence frequency and oviposition density curves of *R. pedestris*. They could serve as a basis to improve management programs directed at controlling *R. pedestris* in crop plant systems.

Acknowledgements We thank for Kwon Soo Kang and Gun Hee Kwon for their enthusiastic help. We are grateful to anonymous reviewers for valuable criticisms and suggestions on the manuscript. This research was supported by the research program of National Institute of Horticultural and Herbal Science (PJ012060), and Rural Development Administration.

References

- Bae S-D, Kim H-J, Park CG, Lee G-H, Park S-T (2005) The development and oviposition of bean bug, *Riptortus clavatus* Thunberg (Hemiptera: Alydidae) at temperature conditions. Korean J Appl Entomol 44:325–330 **(in Korean with English summary)**
- Bae SD, Kim HJ, Yoon YN, Park ST, Choi BR, Jung JK (2009) Efect of a mungbean cultivar, jangannogdu on nymphal development, adult longevity and oviposition of soybean stink bugs. Korean J Appl Entomol 48:311–318 **(in Korean with English summary)**
- Baek S, Hwang A, Kim H, Lee H, Lee J-H (2017) Temperature-dependent development and oviposition models of *Halyomorpha halys* (Hemiptera: Pentatomidae). J Asia-Pacifc Entomol 20:367–375
- Barnes AI, Wigby S, Boone JM, Partridge L, Chapman T (2008) Feeding, fecundity and lifespan in female *Drosophila melanogaster*. Proc R Soc B 275:1675–1683
- Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Animal Ecol 17:15–26
- Briere JF, Pracros P, LeRoux AY, Pierre JS (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28:22–29
- Campbell A, Frazer BD, Gilbert N, Gutierrez AP, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:431–438
- Chung BK, Kang SW, Kwon JH (1995) Damages, occurrence and control of hemipterous insects in non astringent persimmon orchards. J Agric Sci 37:376–382 **(in Korean with English summary)**
- Dixon AFG, Honĕk A, Kell P, Kotela MAA, Šizling AL, Jarošik V (2009) Relationship between the minimum and maximum temperature thresholds for development in insects. Funct Ecol 23:257–264
- Gibbs M, van Dyck H, Karlsson B (2010) Reproductive plasticity, ovarian dynamics and maternal effects in response to temperature and fight in *Pararge aegeria*. J Insect Physiol 56:1275–1283
- Goodman D (1982) Optimal life histories, optimal notations and the value of reproductive value. Am Nat 119:803–823
- Hirano K, Honda K, Miyai S (1996) Effects of temperature on development, longevity and reproduction of the soybean aphid, *Aphis glycines* (Homoptera: Aphididae). Appl Entomol Zool 31:178–180
- Ikemoto T (2005) Intrinsic optimum temperature for development of insects and mites. Environ Entomol 34:1377–1387
- Ikemoto T (2008) Tropical malaria does not mean hot environments. J Med Entomol 45:963–969
- Jandel Scientifc (1996) TableCurve 2D. Automated curve ftting and equation discovery. Version 4.0 Jandel Scientifc San Rafael CA USA
- Jervis MA, Ellers J, Harvey JA (2008) Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Ann Rev Entomol 53:361–385
- Jung JK, Youn J-T, Im DJ, Park JH, Kim UH (2005) Soybean seed injury by the bean bug, *Riptortus clavatus* (Thunberg) (Hemiptera: Alydidae) at reproductive stage of soybean (Glycine max Linnaeus). Korean J Appl Entomol 44:299–306 **(in Korean with English summary)**
- Jung JK, Seo BY, Youn J-T, Park JH, Cho JR (2010) Injury of full seed stage soybeans by the bean bug, *Riptortus pedestris*. Korean J Appl Entomol 49:357–362 **(in Korean with English summary)**
- Kidokoro T (1978) Rearing by dry seed and development of *Riptortus clavatus* Thunberg (Heteroptera: Coreidae). Ann Rep Soc PI Prot North Japan 29:5–10 **(in Japanese with English summary)**
- Kim D-S, Lee J-H (2003) Oviposition model of *Carposina sasakii* (Lepidoptera: Carposinidae). Ecol Model 162:145–153
- Kim H, Baek S, Kim S, Lee S-Y, Lee J-H (2009) Temperaturedependent development and oviposition model of *Riptortus clavatus* (Thunberg) (Hemiptera: Alydidae). Appl Entomol Zool 44:515–523
- Kim D-S, Ahn JJ, Lee J-H (2017) A review for non-linear models describing temperature-dependent development of insect populations: characteristics and developmental process of models. Korean J Appl Entomol 56:1–18 **(in Korean with English summary)**
- Kimura S, Tokumaru S, Kikuchi A (2008) Carrying and transmission of *Eremothecium coryli* (Peglion) Kurtzman as a causal pathogen of yeast-spot disease in soybean by *Riptortus clavatus* (Thunberg), *Nezara antennata* (Scott), *Piezodorus hybneri* (Gmelin) and *Dolycoris baccarum* (Linnaeus). Jpn J Appl Entomol 52:13–18 **(in Japanese with English summary)**
- Kono S (1989) Analysis of soybean seed injuries caused by three species of stink bugs. Jpn J Appl Entomol Zool 33:128–133 **(In Japanese with English summary)**
- Kontodimas DC, Eliopoulos PA, Stathas GJ, Economou LP (2004) Comparative temperature-dependent development of *Nephus includens* (Kirsch) and *Nephus bisignatus* (Boheman) (Coleoptera: Coccinellidae) preying on *Planococcus citri* (Risso) (Homoptera: Pseudococcidae): evaluating of a linear and various nonlinear models using specifc criteria. Environ Entomol 33:1–11
- Lactin DJ, Holliday NJ, Johnson DL, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Environ Entomol 24:68–75
- Leal WS, Higuchi H, Mizutani N, Nakamori H, Kadosawa T, Ono M (1995) Multifunctional communication in *Riptortus clavatus* (Heteroptera: Alydidae): conspecifc nymphs and egg parasitoid *Ooencyrtus nezarae* use the same adult attractant pheromone as chemical cue. J Chem Ecol 21:973–985
- Lee S-G, Yoo J-K, Hwang C-Y, Choi B-R, Lee J-O (1997) Efect of temperature on the development of the bean bug, *Riptortus clavatus* Thunberg (Hemiptera: Alydidae). Rural Dev Adamin J Crop Prot 39:25–27 **(in Korean with English summary)**
- Lim UT (2013) Occurrence and control methods of *Riptortus pedestris* (Hemiptera: Alydidae): Korean perspective. Korean J Appl Entomol 52:437–448 **(in Korean with English summary)**
- Lobry JR, Rosso L, Flandrois JP (1991) A FORTRAN subroutine for the determination of parameter confdence limits in non-linear models. Binary 3:86–93
- Maia AN, Luiz AJB, Campanhola C (2000) Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J Econ Entomol 93:511–518
- Mainali BP, Lim UT (2012) Annual pattern of occurrence of *Riptortus pedestris* (Hemiptera: Alydidae) and its egg parasitoids *Ooencyrtus nezarae* Ishii and *Gryon japonicum* (Ashmead) in Andong, Korea. Crop Prot 36:37–42
- Mirhosseini MA, Fathipour Y, Reddy GVP (2017) Arthropod development's response to temperature: a review and new software for modeling. Ann Entomol Soc Am 110:507–520
- Neal JW Jr, Douglass LW (1990) Seasonal dynamics and the efect of temperature in *Corythucha cydoniae* (Heteroptera: Tingidae). Environ Entomol 19:1299–1304
- Nielsen AL, Hamilton GC, Matadha D (2008) Developmental rate estimation and life table analysis for *Halyomorpha halys* (Hemiptera: Pentatomidae). Environ Entomol 37:348–355
- Park C-G, Choi B-R, Cho JR, Kim J-H, Ahn JJ (2017) Thermal efects on the development, fecundity and life table parameters of *Rhopalosiphum padi* (Linnaeus) (Hemiptera: Aphididae) on barley. J Asia-Pacifc Entomol 20:767–775
- Pinder JE III, Wiener JG, Smith MH (1978) The Weibull distribution: a new method of summarizing survivorship data. Ecology 59:175–179
- R Core Team (2015) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. <http://www.r-project.org>
- Rahman MM, Lim UT (2017) Evaluation of mature soybean pods as a food source for two pod-sucking bugs, *Riptortus pedestris* (Hemiptera: Alydidae) and *Halyomorpha halys* (Hemiptera: Pentatomidae). PLoS One 12:e1076187
- Ramalho FS, Malaquias JB, Lira ACS, Oliveira FQ, Zanuncio JC, Femandes FS (2015) Temperature-dependent fecundity and life table of the fennel aphid *Hyadaphis foeniculi* (Passerini) (Hemiptera: Aphididae). PLoS One 10:e0122490
- Ratkowsky DA, Reddy GVP (2017) Empirical model with excellent statistical properties for describing temperature-dependent developmental rates of insects and mites. Ann Entomol Soc Am 110:302–309
- Rosso L, Lobry JR, Flandrois JP (1993) An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. J Theor Biol 162:447–463
- Roy M, Brodeur J, Cloutier C (2002) Relationship between temperature and developmental rate of *Stethorus punctillum* (Coleoptera: Coccinellidae) and its prey *Tetranychus mcdanieli* (Acarina: Tetranychidae). Environ Entomol 31:177–187
- Sánchez-Ramos I, Pascual S, Fernández CE, González-Núnez M (2017) Reproduction, longevity and life table parameters of *Monosteira unicostata* (Hemiptera: Tingidae) at constant temperatures. Span J Agric Res 15:e1012
- SAS Institute (2002) SAS User's Guide: Statistics Version 9.4 ed. SAS Institute Cary NC USA
- Schoolfeld RM, Sharpe PJH, Magnuson CE (1981) Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J Theor Biol 88:719–731
- Seo MJ, Kwon HR, Yoon KS, Kang MA, Park MW, Jo SH, Shin HS, Kim SH, Kang EJ, Yu YM, Youn YN (2011) Seasonal occurrence, development and preference of *Riptortus pedestri*s on hairy vetch. Korean J Appl Entomol 50:47–53 **(in Korean with English summary)**
- Sharpe PJH, DeMichele DW (1977) Reaction kinetics of poikilotherm development. J Theor Biol 64:649–670
- Shi S-S, Cui J, Zang L-S (2014) Development, survival and reproduction of *Megacopta cribraria* (Heteroptera: Plataspidae) at diferent constant temperatures. J Econ Entomol 107:2061–2066
- Shi P-J, Reddy GVP, Chen L, Ge F (2016) Comparison of thermal performance equations in describing temperature-dependent developmental rates of insects: (1) empirical models. Ann Entomol Soc Am 109:211–215
- Shi P-J, Reddy GVP, Chen L, Ge F (2017) Comparison of thermal performance equations in describing temperature-dependent developmental rates of insects: (II) two thermodynamic models. Ann Entomol Soc Am 110:113–120
- Simmons AM, Yeargan KV (1988) Development and survivorship of the green stink bug, *Acrosternum hilare* (Hemiptera: Pentatomidae) on soybean. Environ Entomol 17:527–532
- Son CK, Park SG, Hwang YH, Choi BS (2000) Field occurrence of stink bug and its damage in soybean. Korean J Crop Sci 45:405– 410 **(in Korean with English summary)**
- Sugawara R, Ullah MS, Ho C-C, Gokce A, Chi H, Gotoh T (2017) Temperature-dependent demography of two closely related predatory mites *Neoseiulus womersleyi* and *N. longispinosus* (Acari: Phytoseiidae). J Econ Entomol 110:1533–1546
- Suzuki N, Hokyo N, Kiritani K (1991) Analysis of injury timing and compensatory reaction of soybean to feeding of the southern green stink bug and the bean bug. Appl Ent Zool 26:279–287
- van der Have TM (2002) A proximate model for thermal tolerance in ectotherms. Oikos 98:141–155
- Visalakshi A, Jacob A, Nair MRGK (1976) Biology of *Riptortus pedestris* F. (Coreidae: Hemiptera), a pest of cowpea. Entomon 1:139–142
- Wada T, Ento N, Takahashi M (2006) Reducing seed damage by soybean bugs by small-seeded soybean and delaying the sowing time. Crop Prot 25:726–731
- Wagner TL, Wu HI, Sharpe PJH, Schoolfeld RM, Coulson BN (1984) Modeling insect development rates: a literature review and application of a biophysical model. Ann Entomol Soc Am 77:208–225
- Weibull W (1951) A statistical distribution functions with wide applicability. J Appl Mech 18:293–297