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the female genital organs the extracellular symbiont cells 
were of a condensed form. Molecular phylogenetic analy-
sis showed that the symbiont of B. obscurus constitutes a 
distinct lineage in the Gammaproteobacteria. Molecular 
evolutionary analysis has identified significantly accelerated 
molecular evolution and a highly adenine–thymine-biased 
nucleotide composition of the symbiont genes, presum-
ably reflecting reductive evolution of the symbiont genome. 
These results suggest an intimate and stable host-symbiont 
association in B. obscurus, in which the symbiont may play 
some important, though hitherto unknown, biological roles 
in its herbivorous insect host.

Keywords  Bacterial symbiont · Gammaproteobacteria · 
Transmission organ · Molecular phylogenetic analysis

Introduction

Leaf beetles (Coleoptera: Chrysomelidae), with some 
50,000 described species, constitute one of the most species-
rich insect groups in the world. Both adults and larvae of 
chrysomelids exclusively feed on leaves and other parts of 
various plants, and consequently, many species are recog-
nized as notorious agricultural pests including the Colorado 
potato beetle Leptinotarsa decemlineata (Say) and the West-
ern corn rootworm Diabrotica virgifera LeConte (Gray et al. 
2009; Hare 1990; Hunt et al. 2007; Jolivet et al. 1988, 1994; 
Jolivet and Cox 1996).

Many insects are associated with symbiotic microorgan-
isms, which confer either beneficial or detrimental effects on 
their host’s biology such as nutrient provisioning (Douglas 
2009; Moran et al. 2008), food production (Currie 2001; 
Klepzig and Six 2004), food digestion (Brune 2014; Ohkuma 
2003), defense against natural enemies (Clay 2014; Oliver 
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stitute one of the most species-rich insect families, and live 
exclusively on leaves or other plant parts. Early histologi-
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et al. 2014), tolerance to environmental stresses (Montllor 
et al. 2001; Rodriguez et al. 2008), modifying the food plant 
range (Hosokawa et al. 2007; Tsuchida et al. 2004), detoxi-
fying noxious chemicals (Bosch and Welte 2016; Kikuchi 
et al. 2012), manipulating sex differentiation and reproduc-
tion (Hurst and Frost 2015; Werren et al. 2008), etc. Previous 

studies have identified a variety of facultative microbial 
associates of leaf beetles such as Wolbachia, Arsenopho-
nus and Cardinium, and other diverse assemblage of gut 
and external bacteria (Clark et al. 2001; Chung et al. 2013; 
Keller et al. 2004; Kelley and Dobler 2011; Kondo et al. 
2002, 2011; Krawczyk et al. 2015; Montagna et al. 2015; 
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Muratoglu et al. 2011; Roehrdanz et al. 2006; Roehrdanz 
and Levine 2007; Roehrdanz and Wichmann 2013; Takano 
et al. 2017; Werren et al. 1995), although their biological 
effects on their chrysomelid hosts have been poorly char-
acterized in general, except for some Wolbachia and other 
bacterial strains interfering with the reproduction of their 
host insects by causing cytoplasmic incompatibility (Kel-
ler et al. 2004; Kondo et al. 2002; Takano et al. 2017) and 
several gut bacteria of L. decemlineata suppressing plant 
defense responses induced by the insect’s infestation (Chung 
et al. 2013). Notably, early histological works in the 1930s 
described conspicuous gut-associated symbiotic organs and 
dense bacterial populations therein in several groups of the 
Chrysomelidae: reed beetles of the subfamily Donaciinae, 
tortoise beetles of the subfamily Cassidinae, and brown-and-
black beetles of the subfamily Eumolpinae (Stammer 1935, 
1936). However, the microbiological nature of these sym-
biotic bacteria has been poorly characterized for decades, 
except for those associated with reed beetles of the subfam-
ily Donaciinae (Kleinschmidt and Kölsch 2011; Kölsch et al. 
2009; Kölsch and Pedersen 2010).

The leaf beetle Bromius obscurus (Coleoptera: 
Chrysomelidae), known as the Western grape rootworm, 
infests the grapevine Vitis vinifera L. (Peacock 1992) and 
also lives on wild plants such as the fireweed Chamerion 
angustifolium (L.). It is widely distributed across the world, 
including North America, Europe, Russia, China, Korea, the 
Kuril Islands and Japan (Gruev 2004; Jolivet and Verma 
2008; Xing-peng and Cheng-de 2007). Adult beetles feed 

on leaf tissue of grapevines by cutting distinctive slits of 
about 1-mm width, while larvae develop in soil and feed on 
small rootlets (Peacock 1992). In Japan, B. obscurus lives 
on the fireweed, the fuki Petasites japonicus (Siebold et. 
Zucc.) Maxim., the wild grape Ampelopsis glandulosa var. 
brevipedunculata (Wall.), and the aspen Populus tremula 
var. sieboldii (Miq.) (Ozono 2014). An early histological 
study described rosette- or granule-shaped symbiotic bacte-
ria densely populating gut- or oviduct-associated symbiotic 
organs of B. obscurus (Stammer 1936). Recently, a bacterial 
16S ribosomal RNA (rRNA) sequence was reported from a 
German specimen of B. obscurus (Kölsch and Synefiaridou 
2012). In this study, in an attempt to integrate the old his-
tological description into the recent molecular information, 
we characterized the symbiotic bacteria of B. obscurus col-
lected in Japan using molecular phylogenetic, evolutionary 
and histological techniques.

Materials and methods

Sampling and DNA extraction

Adult insects of B. obscurus were collected from the fire-
weed Chamerion angustifolium (L.) at Manza-Kogen, 
Gumma, Japan, in July 2016 (Fig. 1a). We also attempted 
to collect larvae of B. obscurus from the rhizosphere of C. 
angustifolium, but in vain. The insects were preserved in an 
ultracold freezer at −80 °C until use. Gut symbiotic organs 
(Fig. 1b–d) and paired genital accessory organs (Fig. 1e) 
were dissected in 70% ethanol using fine tweezers. The iso-
lated tissues were individually subjected to DNA extraction 
using QIAamp DNA Mini Kit or QIAamp DNA Micro Kit 
(Qiagen).

DNA sequencing

Bacterial genes were amplified by polymerase chain reac-
tion (PCR) using ExTaq DNA polymerase (Takara Bio) 
with the primers 16SA1 (5′-AGA GTT TGA TCM TGG 
CTC AG-3′) (Fukatsu and Nikoh 1998) and 1507R (5′′-
TAC CTT GTT ACG ACT TCA CCC CAG-3′) (Sandström 
et al. 2001) for the 16S rRNA gene, and gyrBsymF (5′-TTA 
TCA TGA CWG TAT TAC ATG CWG G-3′) (Hosokawa 
et al. 2010) and gyrBsymR (5′-TCC AGC WGA ATC WCC 
TTC WAC-3′) (Hosokawa et al. 2010) for the gyrB gene. 
After checking successful amplification by electrophoresis 
on 1% agarose gels, each PCR product was purified using 
exonuclease I (New England Biolabs) and shrimp alkaline 
phosphatase (Takara Bio) at 37 °C for 15 min followed by 
80 °C for 15 min. The purified PCR products were directly 
subjected to a sequencing reaction using BigDye Terminator 
version 3.1 Cycle Sequencing Kit (Applied Biosystems) and 

Fig. 1a–o   Symbiotic system of Bromius obscurus. a Adult insect. b 
Dissected alimentary tract of an adult female. Symbiotic organ con-
sisting of finger-like lobes at the foregut (FG). Midgut (MG) junction 
is indicated by an arrow. c Enlarged image of the symbiotic organ. 
Arrows indicate the finger-like lobes. d Dissected FG-MG junction, to 
which each finger-like lobe is connected via a thin duct (arrowheads). 
e Enlarged image of the hindgut (HG)-ovary (OV) region, where 
female-specific genital accessory organs (arrowheads) are seen. f–l, 
n, o Symbiont localization visualized by whole-mount fluorescence 
in  situ hybridization using the symbiont-specific probe Bro717. f 
Symbiont localization in the dissected alimentary tract of an adult 
female. Symbiont signals (red) are seen in the gut-associated symbi-
otic organs (arrow) and the female-specific genital accessory organs 
(arrowheads). g Symbiont localization in a dissected lobe of the gut-
associated symbiotic organ. h–j Negative controls. h No-probe con-
trol. i Competition control. j RNase control. k Symbiont cells in the 
gut-associated symbiotic organ of an adult female. Note the peculiar 
rosette-like bacterial morphology within the host cytoplasm. l Sym-
biont cells in the gut-associated symbiotic organ of a different adult 
female. Note the peculiar aggregated granule-like bacterial morphol-
ogy within the host cytoplasm. m Symbiont localization visualized by 
whole-mount fluorescence in situ hybridization using the general bac-
terial probe EUB338. n Symbiont localization in the female-specific 
genital accessory organ. o Symbiont cells in the inner cavity of the 
genital accessory organ of an adult female. Note that the extracellular 
symbiont cells are small and condensed in shape. g–o Symbiont 16S 
ribosomal RNA (rRNA) is visualized in red and DNA is stained in 
blue 

◂
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analyzed by a 3130xl Genetic Analyzer (Applied Biosys-
tems). The internal primer 16SA2 (5′-GTG CCA GCA GCC 
GCG GTA ATA C-3′) (Fukatsu and Nikoh 1998) was also 
used for sequencing of bacterial 16S rRNA gene.

Molecular phylogenetic and evolutionary analysis

Multiple alignments of the nucleotide sequences were gener-
ated using the program Clustal W (Thompson et al. 1994). 
The alignments were then inspected and corrected manually, 
and ambiguously aligned sites were removed. Phylogenetic 
analyses were conducted by the Bayesian and maximum-
likelihood (ML) methods. The best-fit substitution model 
for each of the aligned sequences was selected using the 
program KAKUSAN version 4 (Tanabe 2011) on the basis 
of the Bayesian information criterion for the Bayesian analy-
sis and Akaike’s information criterion for the ML analysis. 
Bayesian phylogenies were constructed using the program 
MrBayes version 3.2.6 (Ronquist et al. 2012) with substitu-
tion models selected by BIC4 (16S rRNA, GTR + G; gyrB, 
proportional model among codons, GTR + G for the first 
codon, HKY85 + G for the second codon, and GTR + G for 
the third codon). Two simultaneous, independent runs of the 
Metropolis-coupled Markov chain Monte Carlo (MCMC) 
method were performed for one million generations with 
trees sampled every 100th generation. Convergence of 
the MCMC procedure was assessed from effective sample 
size scores (all >100) using MrBayes and Tracer version 
1.6 (Rambaut et al. 2014). The first 25% of the trees were 
discarded as burn-in, and the remaining trees were used to 
calculate the 50% majority rule consensus and to determine 
posterior probabilities for individual branches. ML phylog-
enies were inferred using the software Treefinder version 
March 2011 (Jobb 2011) based on models selected by AICc4 
(16S rRNA, GTR + G; gyrB: separate model among codons, 
GTR + G for the first codon, GTR + G for the second codon, 
and GTR + G + I for the third codon). Bootstrap probabili-
ties were determined by 100 replications. Relative rate tests 
were performed by the program RRTree (Robinson-Rechavi 
and Huchon 2000).

Histological procedures

Whole-mount fluorescence in situ hybridization targeting 
bacterial 16S rRNA was performed essentially as described 
previously (Koga et al. 2009). Dissected symbiotic organs were 
fixed in Carnoy’s solution (60% ethanol, 30% chloroform, 10% 
acetic acid) for 15 min and washed three times in 70% ethanol 
at room temperature. The dissected tissues were then washed 
three times in phosphate-buffered saline–Triton X (PBS–TX; 
0.8% NaCl, 0.02% KCl, 0.115% Na2HPO4, 0.02% KH2PO4, 
0.3% Triton X-100) and washed twice in a hybridization buffer 
[20 mM TRIS–HCl (pH 8.0), 0.9 M NaCl, 0.01% SDS, 30% 

formamide]. For specifically targeting 16S rRNA of the sym-
biont of B. obscurus, the oligonucleotide probe Bro717 (5′-
GTC GCT TTC GCC TCT GGT AT-3′) was labeled with the 
fluorochrome Alexa555 at the 5′-terminus. For universal detec-
tion of bacterial 16S rRNA, the probe EUB338 (5′-GCT GCC 
TCC CGT AGG AGT-3′) (Amann et al. 1990) whose 5′-ter-
minus is labeled with Alexa555 was also used. The tissues 
were incubated in the hybridization buffer containing 50 nM of 
the probe and 4.5 µM of 4′,6-diamidino-2-phenylindole (Inv-
itrogen) overnight at room temperature, washed thoroughly in 
PBS–TX, mounted in Slowfade antifade solution (Molecular 
Probes), and observed under an epifluorescence microscope 
(Axiophot; Carl Zeiss) and a laser scanning confocal micro-
scope (LSCM Pascal5; Carl Zeiss). In situ hybridization con-
trols included (1) no probe control (Fig. 1h), (2) competition 
control in which unlabeled Bro717 was added to hybridization 
buffer in excess to suppress the hybridization signals (Fig. 1i), 
(3) RNase digestion control in which the tissue samples were 
treated with RNase A prior to hybridization (Fig. 1j), and (4) 
a positive control with the general bacterial probe EUB338 
(Fig. 1m).

For clearly visualizing the cellular construction of the 
symbiotic organs, dissected tissues were fixed in 4% para-
formaldehyde in PBS (0.8% NaCl, 0.02% KCl, 0.115% 
Na2HPO4, 0.02% KH2PO4), washed twice in PBS, stained 
with Alexa Fluor 488 phalloidin (Molecular Probes) for 
visualizing cytoplasmic actin filaments, and counterstained 
with 4′,6-diamino-2-phenylindole for visualizing nuclear 
DNA.

Results and discussion

Bacterial 16S rRNA and gyrB gene sequences from gut 
symbiotic organs of B. obscurus

For all six males and three females we examined, the same 
16S rRNA gene sequences, 1412 bp in size with a highly 
adenine–thymine (AT)-biased nucleotide composition at 
56.4% (sequence accession number LC273302), were con-
sistently obtained from the dissected finger-shaped organs 
radially surrounding the foregut-midgut junction (Fig. 1b–d, 
arrows), which were previously described as the main loca-
tions of the bacterial symbiont in B. obscurus (Stammer 
1936). In a previous study (Kölsch and Synefiaridou 2012), 
a bacterial 16S rRNA gene sequence, 1090 bp in size with 
AT-biased nucleotide composition at 55.4% (accession num-
ber JQ805030), was reported from a specimen of B. obscu-
rus collected in Germany. All 1070 nucleotide sites of the 
1070-bp overlapping region between the sequences were 
identical. Furthermore, for all six males and three females 
we examined, the same gyrB gene sequences, 897 bp in size 
with extremely AT-biased nucleotide composition at 79.9% 
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(sequence accession number LC273303), were consistently 
obtained from the dissected gut symbiotic organs. No other 
bacterial gene sequences were detected from the dissected 
organs, indicating that the specific bacterial species domi-
nates the symbiotic organs although the possibility of coex-
isting minor bacterial associates cannot be ruled out. These 
results indicate that:

1.	 A specific bacterial symbiont is associated with the gut 
symbiotic organ of B. obscurus.

2.	 The same symbiont is fixed within the Japanese popula-
tion and conserved across the Japanese and European 
populations, suggesting an intimate and stable host-
symbiont association in B. obscurus.

3.	 Judging from the extremely AT-biased nucleotide com-
positions of the symbiont genes, the symbiont genome 
might have experienced reductive genome evolution 
typical of long-lasting obligate endosymbiotic bacteria 
(Wernegreen 2002; Moran et al. 2008).

Localization of the bacterial symbiont in B. obscurus

Alimentary tract samples of two males and two females of 
B. obscurus were dissected, fixed and subjected to whole-
mount fluorescence in situ hybridization using a specific 
probe targeting 16S rRNA of the bacterial symbiont. In all 
the samples, strong hybridization signals were detected in 
the gut symbiotic organs surrounding the foregut-midgut 
junction (Fig. 1f, arrow), confirming the principal symbi-
ont location in vivo. In addition, specifically in the female 
samples, a pair of slender structures associated with the 
reproductive system exhibited remarkable, though less 
intense, hybridization signals (Fig. 1f, arrowheads). The 
delicate club-shaped organs were connected to the com-
mon oviduct and regarded as types of female-specific 

genital accessory organs (Fig. 1e), confirming the early 
histological observation of bacterial colonization in the 
female-specific organs of B. obscurus (Stammer 1936). 
PCR amplification and sequencing of bacterial 16S rRNA 
and gyrB genes from the accessory organs identified 1412- 
and 897-bp sequences, respectively, which were identical 
to those from the gut symbiotic organs. Close cytological 
inspection revealed that the symbiont cells are present in 
the cytoplasm of the gut symbiotic organs endocellularly 
(Fig. 1g, k, l), whereas the symbiont cells are localized 
in the inner cavity of the female genital accessory organs 
extracellularly (Fig. 1n, o). Each lobe of the symbiotic 
organ has a narrow inner cavity and is connected to the 
foregut-midgut junction through a thin duct (Fig. 2a–c). 
These observations suggest that:

1.	 The gut symbiotic organs are the main symbiont loca-
tion, where the substantial bacterial population plays 
some endocellular, though hitherto unknown, biological 
roles.

2.	 The female genital accessory organs are, considering the 
anatomical configuration and the extracellular symbiont 
accumulation, likely to function as a symbiont transmis-
sion mechanism, which delivers a symbiont-containing 
secretion onto eggs upon oviposition, as observed in 
other symbiotic leaf beetles of the Donaciinae and Cas-
sidinae (Stammer 1935, 1936).

3.	 The same bacterial symbiont experiences both endocel-
lular and extracellular conditions during the infection 
cycle in B. obscurus.

Morphological variation of the symbiont cells

In an early histological study, Stammer (1936) describes 
drastic morphological changes in the symbiont cells during 
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Fig. 2a–c   Histological configuration of the finger-like lobe of the 
gut-associated symbiotic organ. a Dissected finger-like lobe con-
nected to the foregut-midgut junction via a duct (arrow). b Enlarged 
image of the lobe-duct junction. c Cross section of the lobe-duct junc-

tion, in which a narrow inner cavity is seen at the center. In the con-
focal optical section images, green signals indicate cytoplasmic actin 
filaments, blue signals nuclear DNA



594	 Appl Entomol Zool (2017) 52:589–598

1 3

the development of B. obscurus: in the gut symbiotic organs 
of the larvae, each symbiont cell is well developed and petal- 
or rosette-like, whereas in the gut symbiotic organs of adults, 
each symbiont cell is less developed and granule-like. In this 
study, we could not inspect larval samples, unfortunately, 
but we recognized conspicuous pleomorphism of the sym-
biont cells across tissues and samples of adult insects. In the 
gut symbiotic organs, the endocellular symbiont cells were 
small and rosette-like (Fig. 1k) or aggregated granule-like 
(Fig. 1l), whereas in the female genital accessory organs, the 
extracellular symbiont cells were of a more condensed form 
(Fig. 1o). These observations suggest a pleomorphic nature 
of the bacterial symbiont depending on the symbiotic con-
ditions. The rosette-like amorphous shape of the symbiont 
cells is of particular interest in that:

1.	 Such amorphous bacterial cells have been observed 
in diverse endosymbiotic bacteria of insects (Buchner 
1965 for review; Buchner 1954; Fink 1952; Koch 1931 
for specific examples).

2.	 Similar amorphous bacterial cells have been often 
observed in endoparasitic/pathogenic bacteria with 
reduced genomes like Mycoplasma spp. (Allan et al. 
2009).

3.	 Such amorphous bacterial morphology, the so-called 
L-form, has been reported to occur when genes involved 
in cell wall synthesis and/or cell division are disrupted 
in bacteria (Leaver et al. 2009; Mercier et al. 2016).

4.	 Therefore, the rosette-like amorphous shape of the sym-
biont cells may be relevant to the presumed symbiont 
genome erosion.

Evolution of the bacterial symbiont of B. obscurus

Molecular phylogenetic analysis based on the 16S rRNA 
gene sequences placed the bacterial symbionts of B. 
obscurus representing the Japanese and German popula-
tions as a distinct lineage in the Gammaproteobacteria 
(Fig. 3). The branch length of the symbiont lineage was 
remarkably elongated, suggesting an accelerated rate of 
molecular evolution. The relative rate test based on the 
16S rRNA gene sequences confirmed significantly accel-
erated molecular evolution in the symbiont lineage: sig-
nificantly and drastically faster than that of the free-living 
Escherichia coli, and even significantly faster than that of 
the genome-reduced aphid endosymbiont Buchnera aphid-
icola (Table 1). On the phylogenetic tree, the symbiont 
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Fig. 3   Phylogenetic relationship of the symbiont of B. obscurus 
with representative Gammaproteobacteria based on 16S rRNA gene 
sequences. A Bayesian phylogeny inferred from 1441 aligned nucleo-
tide sites is shown. Posterior probability values of the Bayesian analy-
sis and bootstrap probability values of the maximum-likelihood anal-

ysis are depicted above and below each node (minus sign bootstrap 
values less than 50%), respectively. Sequence accession numbers are 
in brackets, followed by adenine–thymine content percentages. GS 
Gut symbiont, BS bacteriocyte symbiont, SS secondary symbiont



595Appl Entomol Zool (2017) 52:589–598	

1 3

sequence from B. obscurus did not cluster with previously 
reported symbiont sequences from other chrysomelid leaf 
beetles such as Sagra femorata (Sagrinae), Macroplea 
mutica, Macroplea appendiculata, and Donacia semicu-
prea (Donaciinae) (Fig. 3). Molecular phylogenetic and 
evolutionary analyses based on the gyrB gene sequences 
exhibited similar evolutionary patterns (Fig. 4; Table 1). 

These results suggest independent evolutionary origins of 
these symbiotic bacteria in the Chrysomelidae.  

Conclusion and perspective

Here we unequivocally characterized the specific bacterial 
symbiont of the leaf beetle B. obscurus using molecular 

Table 1   Relative rate tests of 16S ribosomal RNA (rRNA) and gyrB gene sequences of the gut symbiont of the leaf beetle Bromius obscurus in 
comparison with allied Gammaproteobacteria 

a  Estimated distance between lineage 1 and the last common ancestor of lineages 1 and 2
b  Estimated distance between lineage 2 and the last common ancestor of lineages 1 and 2
c  p-values were estimated by the program RRTree (Robinson-Rechavi and Huchon 2000). The analyses were performed using 1370 aligned 
nucleotide sites for 16S rRNA gene sequences, and 596 aligned nucleotide sites at first and second codon positions for gyrB gene sequences

Lineage 1 Lineage 2 Outgroup K1a K2b K1-K2 K1/K2 p-valuec

16S rRNA gene
 GS, Bromius obscurus 

[LC273302]
Escherichia coli [J01695] Vibrio cholerae [X74694] 0.148 0.044 0.104 3.4 1.0 × 10−7

 GS, Bromius obscurus 
[LC273302]

Buchnera aphidicola [M27039] V. cholerae [X74694] 0.111 0.060 0.051 1.9 1.6 × 10−4
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Fig. 4   Phylogenetic relationship of the symbiont of B. obscurus with representative Gammaproteobacteria based on gyrB gene sequences. 
Bayesian phylogeny inferred from 906 aligned nucleotide sites is shown, as in Fig. 3
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phylogenetic, evolutionary and histological approaches, 
thereby integrating the old histological description (Stam-
mer 1936) and recent molecular information (Kölsch and 
Synefiaridou 2012) into a coherent picture. However, a 
number of biological aspects of the chrysomelid-bacterium 
symbiosis deserve further study. More detailed in vivo 
localization and infection dynamics of the symbiont in the 
life cycle of B. obscurus, in particular the vertical transmis-
sion process to the offspring and colonization process of the 
symbiotic organs, should be clarified using modern histo-
logical techniques. Considering the accelerated molecular 
evolution and the AT-biased nucleotide compositions of 
the symbiont genes, sequencing of the symbiont genome 
will provide clues to understanding the detailed process of 
reductive genome evolution and also presumable biologi-
cal functions that the reduced genome is specialized for. 
A symbiont survey of other leaf beetles of the subfamily 
Eumolpinae, to which B. obscurus belongs, should lead to 
further symbiont discoveries and shed light on the host-
symbiont coevolution in this insect group. The establish-
ment of a rearing system for B. obscurus, the generation of 
aposymbiotic insects using antibiotic curing, and a fitness 
evaluation and physiological analysis of the insects are piv-
otal for understanding hitherto unknown symbiont functions 
in the leaf-eating insect group Chrysomelidae. Consider-
ing that many chrysomelids are notorious agricultural pests 
(Jolivet and Cox 1996; Jolivet et al. 1988) and some symbi-
onts are involved in such pest-related traits as plant adapta-
tion (Tsuchida et al. 2004), crop exploitation (Hosokawa 
et al. 2007) and pesticide resistance (Kikuchi et al. 2012), 
understanding symbiont roles in the Chrysomelidae would 
contribute to the control and management of these pest 
insects (Chung et al. 2013).
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