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Abstract The development rate of insects at hourly

fluctuating temperatures is not infrequently different from

that at constant temperatures even when the averages of

these temperatures are the same. This temperature-depen-

dent development phenomenon has been known as the

Kaufmann effect. However, its theoretical analysis has not

yet been successfully carried out owing to the insufficiency

of mathematical insight especially into quantitative

expressions. In insect development, the interrelationships

among the three environmental temperatures, namely,

the constant and alternating temperatures controlled in the

laboratory and the hourly fluctuating temperatures in the

natural environment, have not been clarified. Here, we

completely succeeded in analyzing this phenomenon and in

elucidating the interrelationships by introducing the com-

ponents of the nonlinear SSI development model, the

second derivative, the cosine-wave model of hourly fluc-

tuating temperatures and their variance, and Taylor series.

As a result, it has been possible to predict the development

rate at fluctuating temperatures in the natural environment

using prospective daily maximum, minimum and average

temperatures and the development rate at constant tem-

peratures without conducting experiments at alternating

temperatures.

Keywords Nonlinear development model � Fluctuating

temperature � Second derivative � Variance � Cosine-wave

model

Introduction

Insects sometimes develop at different rates per day at

hourly fluctuating temperatures compared with the case at

constant temperatures even when the averages of these

temperatures are the same. The difference between devel-

opment rates predicted using nonlinear models at constant

and fluctuating temperatures with the same mean temper-

ature has been called the Kaufmann effect when it is spe-

cific to temperature-dependent development (Ludwig and

Cable 1933; Behrens et al. 1983; Worner 1992; Ruel and

Ayres 1999; Ragland and Kingsolver 2008) or the rate

summing effect (Worner 1992).

Differences in development time between constant and

fluctuating temperatures agree well with predictions based

on the non-linear relationship between development rate

and temperature. The development rate-temperature curve

predicts that when the curve is a concave function or shows

deceleration (at high temperatures), the development time

will be shorter (higher average rate) at constant tempera-

tures than at fluctuating temperatures with approximately

the same mean. The curve predicts that when the curve is a

convex function or shows acceleration (at low tempera-

tures), the reverse will be true. This property of the

nonlinear development rate function described by the above-

mentioned authors has been confirmed not only logically

but also experimentally for a given species at alternating

temperatures by many authors (e.g., Messenger and Flitters

1958, 1959; Miyashita 1971; Tanigoshi et al. 1976; Foley

1981; Hagstrum and Milliken 1991; Bryant et al. 1999; Liu
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et al. 2002; Fantinou et al. 2003; Ragland and Kingsolver

2008; Wu et al. 2009).

These achievements, in which basic information on the

development rate in relation to temperature was obtained

from both the laboratory and natural environment, are

valuable. However, it might be necessary to further

improve the theoretical frame work of the objectives. The

first reason is that some of the characteristics of the non-

linear model curve are insufficiently analyzed. Thus, the

borders of the convex and concave parts of the model

curves are not known exactly. The second is the need to

make fine distinctions concerning the the effects of alter-

nating temperatures between, for example, 2 �C higher and

2 �C lower than the mean for 12 h in the laboratory from

the effects of fluctuating temperatures at the same daily

mean temperature of 4 �C in nature.

Here, we will attempt to analyze the development rate at

constant, alternating and fluctuating temperatures, and

suggest the relationships of these temperatures mathemat-

ically. On the basis of this analysis, we will be able to not

only describe the Kaufmann effect, but also more accu-

rately predict insect development in fields using laboratory

data.

Nonlinear development model

The theoretical Sharpe-Schoolfield-Ikemoto (SSI) model

based on thermodynamic enzyme activity is a representa-

tive model used to express a relationship between tem-

perature and the development rate of poikilotherms. It is

actually a direct extension of the Eyring equation (Sharpe

and DeMichele 1977; Schoolfield et al. 1981), which is a

unique theoretical model among many nonlinear mathe-

matical models for describing temperature-dependent

development rates.

Ikemoto (2005, 2008) found a problem with the Sharpe-

Schoolfield (SS) model and substantially improved it by

not merely replacing the partial parameters in the SS

model, but also by introducing the concept of intrinsic

optimum temperature TA for the first time. The modified SS

model is referred to as the SSI model. Shi et al. (2011)

developed a program for estimating the parameters in the

SSI model, and Ikemoto et al. (2012) furnished a faster

program for estimating the parameters (OptimSSI-P) in this

model. The latter program has a corresponding program

(mABCSSI-P) for calculating the confidence interval of the

estimated TA by modifying the approximate bootstrap

confidence (ABC) intervals (DiCiccio and Efron 1992,

1996). These programs can be freely downloaded from the

supporting information in the web site of the society.

The SSI model equation is expressed as follows:

rðTÞ ¼
qU

T
TU

exp DHA

R
1

TU
� 1

T

� �h i

1þ exp DHL

R
1

TL
� 1

T

� �h i
þ exp DHH

R
1

TH
� 1

T

� �h i ;

ð1Þ

where r(T) is the development rate (dependent variable) at

the absolute temperature T (K independent variable). All

the other parameters are constants: TL is the low

temperature at which an enzyme is 1/2 active and 1/2

inactive, and TH is the high temperature at which an

enzyme is 1/2 active and 1/2 inactive (K). TU is the intrinsic

optimum temperature (K). DHA is the enthalpy of

activation of the reaction that is catalyzed by the enzyme

(cal mol-1); DHL and DHH represent the enthalpy changes

associated with low- and high-temperature inactivations of

the enzyme (cal mol-1), respectively. R is the universal gas

constant (1.987 cal deg-1 mol-1), and qU is the

approximate development rate at TU. In this definition,

TU must have relationships with the other constants as

follows (Ikemoto 2005):

TU ¼
DHL � DHH

R ln � DHL

DHH

� �
þ DHL

TL

� �
� DHH

TH

� � : ð2Þ

Under the conditions given in Eqs. 1 and 2, the reversed

denominator of Eq. 1 denotes the probability of an enzyme

being in the active state at temperatures optimal for the

developmental processes such as cell division and

multiplication:

P2ðTÞ ¼
1

1þ exp DHL

R
1

TL
� 1

T

� �h i
þ exp DHH

R
1

TH
� 1

T

� �h i :

ð3Þ

Namely, the reversed denominator shows the maximum at

TU. Thus, TU is the most valuable thermal parameter for all

the development processes in insects and other ectotherms.

Here, we put

fqðTÞ ¼ qU
T

TU
; ð4Þ

fAðTÞ ¼ exp
DHA

R

1

TU
� 1

T

� �� �
; ð5Þ

fLðTÞ ¼ exp
DHL

R

1

TL

� 1

T

� �� �
; ð6Þ

fHðTÞ ¼ exp
DHH

R

1

TH

� 1

T

� �� �
: ð7Þ

Then, we obtain the first and second derivatives of r(T)

as follow:
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r0ðTÞ ¼ q
TU
� fAðTÞ

RT
� P2ðTÞ

� HA þ RT � HLfLðTÞ þ HHfHðTÞf g P2ðTÞ½ �
ð8Þ

r00ðTÞ ¼ q
TU
� fAðTÞ

R2T3
P2ðTÞ � HA � RT � QðTÞP2ðTÞf g½

� HA þ RT � QðTÞP2ðTÞf g
þ R2T2 � P2ðTÞ H2

LfLðTÞ þ H2
HfHðTÞ � Q2ðTÞP2ðTÞ

� 	
�;
ð9Þ

where

QðTÞ ¼ HLfLðTÞ þ HHfHðTÞ: ð10Þ

A numerical example is shown in Fig. 1a using the

empirical data set of the Drosophila melanogaster at constant

temperatures reported by Ludwig and Cable (1933). The SSI

model line fitted so well for all of the data points that it was

possible to analyze exactly as follows. The first derivative line

shown in Fig. 1c, which is illustrated by Eq. 8, indicates the

slope on a given point of the SSI model curve. An intersection

point (T1) of the horizontal axis shows the temperature at

which the development rate attains its maximum. The second

derivative line shown in Fig. 1d, which is illustrated by Eq. 9,

has two intersection points (T2, T3) of the horizontal axis,

which suggests the presence of inflection points within the

temperature range from 0 to 50 �C. Between both points the

left one at lower temperature T2 is more important because it

is within the practical temperature range for insect

development. Thus, the SSI model curve is convex at

temperatures lower than this point, suggesting the

accelerated increase in development rate. At temperatures

higher than this point, the curve is concave, suggesting the

accelerated decrease in development rate. This property must

always be realized in the SSI model for insect development.

Hourly alternating temperatures and development

The adjusted development rate per day ra(TAa) at two

temperatures (T1, T2) for their respective continuous hours

(h1, h2) in a day (normally h1 ? h2 = 24 h) can be

expressed using the SSI model for constant temperatures.

The equation is

raðTAaÞ ¼
rcðT1Þ � h1 þ rcðT2Þ � h2

h1 þ h2

; ð11Þ

where TAa is the daily average (mean) hourly alternating

temperature:

TAa ¼
T1 � h1 þ T2 � h2

h1 þ h2

: ð12Þ

Ludwig and Cable (1933) also examined the

development rate using two daily alternating

temperatures. One of their experimental designs was as

follows. For experiments at 20 and 30 �C, the pupae of the

common fruit fly (Drosophila melanogaster Meigen,

Diptera: Drosophilidae) were exposed for the first 24 h to

20 �C and the second 24 h to 30 �C. Three curves

estimated using Eqs. 11 and 12 for the three types of

alternating temperature are shown in Fig. 2. The figure

shows that the development rate at peak temperatures is

Fig. 1 Development rate at constant temperatures expressed by

Eq. (1) of the SSI model and some characteristics of the model curve

and line. a The filled and open circles are the observed values that

were used to estimate the model parameters. The filled circles were

also used for the linear fitting to the reduced major axis, whereas the

open circles were excluded from the linear fitting. The curve indicates

the development rates estimated using OptimSSI-P (with the optional

selection ‘optTL = 0’), whereas the line denotes the development

rates obtained by the linear fitting. The three open squares denote the

estimated rates at TL, TA and TH. The presented data are from female

pupae of Drosophila melanogaster reported by Ludwig and Cable

(1933). b SSI model Eq. (1). c The first derivative expressed by

Eq. (7). d The second derivative expressed by Eq. (8)
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lower than the SSI model curves estimated at constant

temperatures (Fig. 1a). It should be noted that three curves

intersect with the SSI model curve estimated at constant

temperatures at the two intersection points for the

horizontal axis shown in Fig. 1d. Each observed data

point fits well to each estimated curve.

In Fig. 3, results of two other examples of estimation at

alternating temperatures are shown. One example is the

case of the egg, larval and pupal stages of the diamondback

moth (Plutella xylostella Linnaeus, Lepidoptera: Plutelli-

dae; Liu et al. 2002). The other example is that of the

female pupal stage of the cotton bollworm (Helicoverpa

armigera Hübner, Lepidoptera: Noctuidae; Wu et al.

2009). These results also indicate the clear relationship

between the rc(T) (constant) curve and the ra(TAa) (alter-

nating) curve, and the exact conformity between the cross

points of the two curves and the rc
00(T) = 0 points. More-

over, the data points obtained for alternating temperatures

in the laboratories indeed fit to the ra(TAa) lines.

Natural fluctuating temperatures and development

In the examination of the relationship between alternating

temperatures and development, two temperatures are usu-

ally selected to simplify results. However, it is possible to

select many temperatures for each hour. Equations 11 and

12 are generalized as follows:

rfðTAfÞ ¼
Ph

i¼1 rcðTiÞ
h

; ð13Þ

where TAf is the daily average hourly fluctuating

temperature; Ti is the temperature at each ith hour.

Accordingly, TAf is

TAf ¼
Ph

i¼1 Ti

h
: ð14Þ

Using the environmental temperature at each hour and

these equations, the daily development rates of field insects

could be traced exactly by accumulating them. In such a

case, the h values in those equations are 24 units.

Prediction of development rate at natural fluctuating

temperatures

Mathematical bases

The past events related to the natural development rate

could be described using the SSI model, the development

rate data obtained at constant temperatures and the climate

records for the area. The past records in the same season

could also help realize the same purpose. However, the

temperature records worldwide are usually limited to only

monthly mean, maximum and minimum temperatures.

Here, we will present a mathematical solution to this

limitation.

At a constant temperature, the value of a dependent

variable (development rate) is fixed at a value of an inde-

pendent variable (temperature). In contrast, the indepen-

dent variable can be expressed by the Taylor series until the

second order at which temperature normally fluctuates

around an average:

rfðTAfÞ � rcðTAfÞ

þ r0cðTAfÞ �E ½Tf �TAf �
1 !

þ r00c ðTAfÞ �E ½ðTf �TAfÞ2�
2 !

¼ rcðTAfÞþ
1

2
r00c ðTAfÞ V ½Tf � ð15Þ

Fig. 2 Development rate at three types of alternating temperatures.

The three estimated curves are drawn by applying Eq. (11) and

intersecting with the SSI model line estimated at constant tempera-

tures (Fig. 1a) at two intersection points for the horizontal axis shown

in Fig. 1d. Each observed data point (D, X, O) almost fitted well on

each estimated line. The presented data are from female pupae of

Drosophila melanogaster reported by Ludwig and Cable (1933)
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where V[Tf] is the variance of hourly fluctuating tempera-

tures Tf around the average temperature TAf. Although the

discrepancy between the curve of the constant temperature

model rc(Tc) and that of the fluctuating temperature model

rf(TAf) was known as a theorem of ‘‘Jensen’s inequality,’’

the applications of Eq. 15 may cover many fields such as

engineering and economics, focusing on the fact that the

smaller the variance, the higher the accuracy. In entomol-

ogy a similar approximate expression of the relationship

between spatial distributions and population growth has

been suggested by Yamamura (1989). The detailed proof of

the equation is given in the ‘‘Appendix.’’

Fig. 3 Two examples of the development rate at alternating

temperatures. The left panels show data at the egg, larval and pupal

stages of the diamondback moth (Plutella xylostella Linnaeus,

Lepidoptera: Plutellidae) (Liu et al. 2002). The right panels show

the data at the female pupal stage of the cotton bollworm

(Helicoverpa armigera Hübner, Lepidoptera: Noctuidae) (Wu et al.

2009). These results also indicate the clear relationship between the

rc(T) (constant) and ra(TAa) curves and the exact conformity between

the cross points of the two lines and rc
0 0(T) = 0 points. Moreover, the

data points obtained at the alternating temperatures in the laboratories

indeed fit to the ra(TAa) lines
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Thus, the SSI model predicts that when the curve

shows a downward concave trend, the development rate

will be higher at constant temperatures than at fluctuat-

ing temperatures at the same average temperature. When

the curve shows a downward convex trend, the reverse

will be true. The borders on the SSI model line between

the downward convex curve and the downward concave

curve are clearly shown as the intersection points

between the rc
00(T) curve line and the horizontal axis

(Figs. 1, 2, 3). Accordingly, a quantitative proof for the

Kaufman effect is mathematically completed. However,

how is the variance in Eq. 15 estimated from simple

climate records? Practically, this is an important

remaining problem.

Variance determination

Variances in the cosine-wave simple model

To approximate the hourly temperature fluctuations, we

suggest a simple cosine-wave model as follows:

gðhÞ ¼
l� k cos p h

hd

� �
; for h� hd

lþ k cos p h�hd

24�hd

� �
; for h [ hd

8<
: ð16Þ

where h is the hour in a certain day, hd = hM - hm (hM the

hour at which the temperature is maximum (TM) in a day,

hm the hour at which the temperature is minimum (Tm) in a

day; mod 24), k = (TM - Tm)/2 and l = (TM ? Tm)/2.

Following this equation, it is possible to estimate the

temperature at each hour using only the maximum and

minimum daily temperature records and their

corresponding hours (when they are not known exactly,

the rounded values are sufficient for estimating the

variance because the variance is not affected by the

hours). Then, the variance is expressed by the variable Td

(=TM - Tm),

VfðCSWÞðTdÞ ¼
1

2

TM � Tm

2

� �2

¼ 0:125 � T2
d ð17Þ

Variances in the cosine-wave adjusted model

Although the cosine-wave simple model can provide some

appropriate fittings to real circadian rhythms of tempera-

ture, the daily average temperature is simply determined,

namely, (TM ? Tm)/2. Therefore, an improved model is

needed:

gða; hÞ ¼
l� k cos p h

hd

� �a� �
; for h� hd

lþ k cos p h�hd

24�hd

� �1
a

� �
; for h [ hd

8><
>:

ð18Þ

SðaÞ ¼ 1

24

X23

h¼0

gða; hÞ � l













 ffi 0; ð19Þ

where S(a) is the performance function for determining the

value of a that minimizes S(a). In practice, it is suitable to

use Goal-Seeking software in the Excel tool menu (Excel

2010; Microsoft, Redmond, WA, USA) for the solution.

Because the cosine-wave adjusted model can give an

almost correct daily average temperature for recorded data

from the natural environment, it is expected to obtain a

more accurate variance from the general meteorological

records summarized as the maximum, minimum and

average temperatures only (Fig. 4).

The recorded hourly temperatures and the hourly tem-

peratures estimated using the cosine-wave model, and their

variances are shown in Table 1. The sampled date for each

meteorological station was selected for the largest range of

(Td) temperatures in a day of the previous year. Because

Chichibu and Asahikawa Cities are basin-inland areas, the

diurnal variations of temperatures are larger than those in

other areas in Japan. The Td (=TM - Tm) range of

14.9–22.2 �C results in a large variance from 27.6 to 61.9;

in contrast; Td of 7.4 �C in oceanic Naha gives a small

variance of 6.9. There is a negligible difference of 1.2 at

the maximum between the variance estimated using the

cosine-wave adjusted model and that calculated using

actual recorded values (Table 1).

For predictive purposes, it might be more appropriate to

use the normal values of hourly temperatures calculated

using long-term records than the real-time daily records. In

Table 2, the variances of hourly temperatures were exam-

ined using the monthly mean of normal values in 30 years.

The differences of estimated values among the five areas

and their monthly fluctuations were well reflected in the

regional and seasonal characteristics. Therefore, the

cosine-wave models might be superior for estimating the

variance of hourly temperatures in a day. These differences

might be sufficiently applicable for Eq. 15; the detailed

discussion about these differences will be continued below.

Variances in pulse-wave model

Let us assume that the daily alternating temperatures can

be recorded with two values, TM and Tm. The graph of

318 Appl Entomol Zool (2013) 48:313–323
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temperature is demonstrated by using a pulse-wave, and

then we denote by SM and Sm (hrs) the durations of TM and

Tm, respectively. We note that Td = TM - Tm and SM ? Sm

= 24. Similarly to Eq. 12, the average of alternating tem-

peratures is given by

TaðSM:SmÞ ¼ TM �
SM

24
þ Tm �

Sm

24
: ð20Þ

The variance of alternating temperatures can be written as

a function of Td through thefollowing calculation:

VaðSM:SmÞðTdÞ ¼ TM2 � SM

24
þ Tm2 � Sm

24

� �
� TM2 � SM

24

� �2
 

þ 2TMTm �
SM

24
� Sm

24
þ Tm2 � Sm

24

� �2
!

¼ TM2 � 2TMTm þ Tm2ð Þ � SM

24
� Sm

24

¼ Td2 � SM

24
� Sm

24

ð21Þ

Eq. 21 says that VaðSM:SmÞðTdÞ ¼ VaðSm:SMÞðTdÞ. Thus we

obtain the following results:

Vað12:12ÞðTdÞ ¼ 0:2500 � T2
d ð22aÞ

Vað8:16ÞðTdÞ ¼ Vað16:8ÞðTdÞ ¼ 0:2222 � T2
d ð22bÞ

Vað6:18ÞðTdÞ ¼ Vað18:6ÞðTdÞ ¼ 0:1875 � T2
d ð22cÞ

Figure 5 shows some of the development rate curves

obtained using the SSI model and Eq. 15, assuming the

presence of variances of hourly temperatures. The higher

values of variance make the deviations larger, especially at

the higher temperatures of insect development. However,

at temperatures near the intrinsic optimum temperature TU,

the deviations are comparatively small. It might be difficult

to detect the deviations, especially when the variance is

less than 25. The variance of 25 corresponds to the ranges

of maximum and minimum temperatures, which are

Td = 14.1 �C in the cosine-wave simple model and

Td = 10.0 �C in the pulse-wave model of 12 h of

alternating temperatures. Generally, at least in Japan, it

might be difficult to find any places and any seasons with

high variances as far as analyzing the limited data on

normal values accumulated over 30 years (1981–2010), as

shown in Table 2. Thus, the deviation, namely, the

Kaufmann effect, is markedly effective for the seasons or

Fig. 4 Cosine-wave models fitted using for hourly fluctuating

temperatures. The left panels are data from Chichibu City on 9 April

2012, and the right panels are those from Asahikawa City on 20 May

2012. The upper panels are fitted using the hourly temperature data

set. The lower panels are fitted using only the maximum, minimum

and average temperatures. The detailed information is shown in

Table 1
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places where the fluctuation of temperatures in a day is

quite extreme in global environments.

Complete picture

The laboratory experiments on insect development rate

conducted at constant and alternating temperatures are not

a final goal on their own but as a means to predict a future

event in an actual environment. Thus, the many methods

described above should be related to each other.

At constant temperatures, the temperature and devel-

opment rate function rc(T) in the SSI model is well known:

Method 1 When the hourly temperatures for the duration

of insect development are known, the real development

rate at an average temperature in a day can be directly

estimated using Eq. 13.

Method 2 When the maximum and minimum tempera-

tures in a day are only known, the real development rate at

an average temperature in a day can be estimated using

Eq. 15 after estimating the variance of temperatures in a

day using Eqs. 9, 18 and 19.

Table 1 Recorded and estimated hourly temperatures and their variances. Hourly temperatures were estimated using the cosine-wave adjusted

model

Hour Chichibu Asahikawa Tokyo Nagoya Naha

St. no. 47641 St. no. 47407 St. no. 47662 St. no. 47636 St. no. 47936

9 Apr 2012 20 May 2012 24 Apr 2012 24 Apr 2012 27 Mar 2012

Recorded Estimated Recorded Estimated Recorded Estimated Recorded Estimated Recorded Estimated

1 3.7 5.8 8.1 8.9 14.9 15.5 13.3 14.2 14.7 15.2

2 2.9 4.2 7.4 7.6 15.2 14.9 13.3 13.1 15.0 14.5

3 2.3 2.8 7.4 6.7 15.2 14.5 12.4 12.2 14.4 14.0

4 1.9 1.8 6.4 6.4 14.8 14.3 12.7 11.7 13.6 13.6

5 1.1 1.1 6.8 6.8 14.2 14.2 11.5 11.5 13.3 13.3

6 0.9 0.9 7.6 7.8 14.3 14.3 11.7 12.1 13.2 13.2

7 4.2 2.3 9.4 9.2 15.4 14.7 13.6 13.6 14.0 13.7

8 7.7 5.8 11.5 10.9 16.2 15.4 15.9 15.6 16.0 14.7

9 12.0 10.4 13.8 12.7 17.8 16.5 19.1 18.0 17.2 16.0

10 15.6 15.2 15.9 14.6 18.6 17.9 21.3 20.3 18.3 17.4

11 19.5 19.4 18.3 16.4 20.5 19.4 24.0 22.4 19.7 18.7

12 23.0 22.1 19.3 18.1 21.7 20.9 24.4 24.1 20.0 19.7

13 23.1 23.1 19.6 19.4 22.9 22.2 24.8 25.1 19.8 20.4

14 22.7 23.0 21.0 20.5 23.3 23.1 25.5 25.5 20.6 20.6

15 22.9 22.6 21.1 21.1 23.4 23.4 25.1 25.4 20.5 20.6

16 22.0 21.8 21.3 21.3 23.3 23.1 24.1 25.1 20.2 20.4

17 20.1 20.7 20.6 21.1 21.5 22.5 23.6 24.5 19.3 20.2

18 18.5 19.4 19.4 20.6 20.7 21.8 22.3 23.7 18.6 19.9

19 17.5 17.7 17.8 19.6 19.4 20.9 20.9 22.6 18.1 19.4

20 15.6 15.9 15.8 18.3 17.4 19.9 20.4 21.3 17.5 18.8

21 12.6 13.9 14.8 16.6 17.2 18.9 19.6 19.9 17.5 18.2

22 11.1 11.8 14.2 14.6 17.1 17.9 18.3 18.4 17.4 17.4

23 9.6 9.7 12.7 12.6 17.2 17.0 17.6 16.9 17.1 16.7

24 8.7 7.7 12.3 10.7 17.2 16.2 17.4 15.5 16.4 15.9

TA 12.5 12.5 14.3 14.3 18.3 18.3 18.9 18.9 17.2 17.2

TM 23.1 23.1 21.3 21.3 23.4 23.4 25.5 25.5 20.6 20.6

Tm 0.9 0.9 6.4 6.4 14.2 14.2 11.5 11.5 13.2 13.2

TM-Tm 22.2 22.2 14.9 14.9 9.2 9.2 14.0 14.0 7.4 7.4

Var 61.6 61.9 26.2 27.6 9.4 10.4 22.4 24.5 5.7 6.9

Recorded data are cited from the web site of the Japan Meteorological Agency (http://www.jma.go.jp/)

TA average (mean) temperature (�C), TM maximum temperature (�C), Tm minimum temperature (�C), Var variance
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Method 3 When the maximum and minimum tempera-

tures are known after conducting experiments at alternating

temperatures, the real development rate at the mean tem-

perature in a day can be estimated using Eq. 15 after directly

calculating or estimating the variance of temperatures in a

day using Eqs. 21 or 22a–c. In alternating temperatures, the

variance should be adjusted from artificial fluctuation to that

under natural fluctuations of temperatures as much as pos-

sible. Then, the relationship between V12:12 and Vf(CSW) (Td)

as an example is expressed by

VfðCSWÞðTdÞ ¼
1

2
Vað12:12ÞðTdÞ ð23Þ

which is derived from Eqs. 17 and 22a.

However, method 3 can be excluded because it is the-

oretically possible to predict the development rate in the

environment by applying method 2. Hence, the laboratory

experiments on alternating temperatures might help detect

some important factors that may not conform to the tem-

perature dependency.

Figure 6 shows simulations of method 2 using the data

of the diamondback moth (Liu et al. 2002) and the record

of hourly temperatures at Nara district, Japan, in the hottest

summer season ever recorded, August 2010. The devel-

opment of the preadult stages was completed at the time

Table 2 Variances of hourly temperatures estimated from the monthly mean of normal values over 30 years (1981–2010) using the cosine-

wave simple model and the cosine-wave adjusted model

Month Chichibu station Asahikawa station Tokyo station Nagoya station Naha station

Simple Adjusted Simple Adjusted Simple Adjusted Simple Adjusted Simple Adjusted

Jan 21.1 20.6 9.7 9.7 6.8 6.8 8.4 8.2 3.0 3.0

Feb 20.5 20.1 14.0 13.8 7.0 7.0 10.1 9.9 3.1 3.1

Mar 19.5 19.4 9.9 9.9 7.4 7.4 11.8 11.6 3.4 3.3

Apr 21.1 21.0 17.1 17.0 8.2 8.2 13.3 13.1 3.3 3.2

May 17.7 17.5 18.9 18.9 6.8 6.8 11.5 11.3 3.0 2.9

Jun 11.0 10.9 16.0 15.4 5.1 5.1 8.4 8.2 2.6 2.6

Jly 10.1 9.8 12.3 11.8 5.1 5.0 7.6 7.4 3.1 3.0

Aug 11.3 10.9 11.3 11.1 5.4 5.3 9.0 8.5 3.0 2.9

Sep 8.8 8.5 13.5 13.2 4.7 4.5 7.8 7.5 3.0 2.9

Oct 12.5 12.1 14.9 14.8 5.1 5.1 9.5 9.3 2.9 2.8

Nov 18.6 18.0 7.6 7.6 6.1 6.1 9.9 9.8 2.8 2.7

Dec 22.1 21.4 6.3 6.3 6.7 6.7 9.0 8.9 3.0 3.0

The original data were cited from the web site of Japan meteorological agency (http://www.jma.go.jp/). As the temperatures were recorded at 3, 6, 9, 12, 15, 18, 21

and 24 o’clock, each variance was calculated for the temperatures at these times and for the maximum and minimum temperatures

Fig. 5 Development rate curves illustrated using the SSI model Eq. (15) with the assumption that the variances of hourly temperatures are

known. The left panel shows data of the diamondback moth. The right panel shows those of the cotton bollworm (see the explanation in Fig. 3)
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when the accumulated development rate was just 1.0. The

emergence date of the moth was accurately determined by

calculating using the temperature at 11 o’clock of 13

August. Almost the same date was estimated using method

2. In contrast, the dates estimated using the mean temper-

ature over the duration of development showed shorter

days to emergence, namely, 0.5–1.0 days. These results

indicate the decrease in development rate at fluctuating

temperatures in the higher temperature regions in com-

parison with the case of constant temperatures, as shown in

Fig. 5. Thus, the efficacy of method 2 is proved.

However, the approach needs to be further tested under

different conditions. Additionally, it is important to

investigate how well hourly temperature modeling can be

conducted for those situations where the actual microcli-

mate is somewhat different to standard meteorologically

measured temperature.

The mathematical models for the development rates of

insects and mites at fluctuating temperatures suggested

here must be of importance for predictive applications,

ranging from pest management to conservation in changing

climates.
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Appendix: derivation of the SSI model for fluctuating

temperatures

In the text, the SSI model for fluctuating temperatures is

derived employing that for constant temperatures. The

model equation provides the expected value of a function,

the variable of which is random.

Let f be a smooth function. The Taylor series of f(x) at

point x0 is given by the form

f ðxÞ ¼ f ðx0Þ þ f 0ðx0Þðx� x0Þ þ
f 00ðx0Þ

2!
ðx� x0Þ2

þ f 000ðx0Þ
3 !

ðx� x0Þ3 þ � � � :

ð24Þ

By ignoring the third and higher order terms, it follows

that in the neighborhood of x0,

f ðxÞ � f ðx0Þ þ f 0ðx0Þðx� x0Þ þ
f 00ðx0Þ

2!
ðx� x0Þ2:

ð25Þ

Let X be a random variable and let us denote E[X] with

the expected value of X, as the variance V [X]. Using the

above argument, in the neighborhood of E[X], f(X) can be

approximately written by

f ðXÞ ¼ f ðE ½X�Þ þ f 0ðE ½X�ÞðX � E ½X�Þ

þ f 00ðE ½X�Þ
2!

ðX � E ½X�Þ2: ð26Þ

Note that f (X) is a random variable. Taking the expected

values of both sides of Eq. 26, we find

E ½f ðXÞ� ¼ E ½f ðE ½X�Þ� þ E ½f 0ðE ½X�ÞðX � E½X�Þ�

þ E ½ f
00ðE ½X�Þ

2!
ðX � E½X�Þ2�

¼ f ðE ½X�Þ þ f 0ðE ½X�ÞE ½X � E ½X��

þ f 00ðE ½X� Þ
2!

E ½ðX � E ½X�Þ2�

¼ f ðE ½X�Þ þ f 0ðE ½X�ÞðE ½X� � E ½X�Þ

þ f 00ðE ½X�Þ
2!

E ½ðX � E ½X�Þ2�

¼ f ðE ½X�Þ þ 1

2
f 00ðE ½X�ÞV ½X�: ð27Þ

If V[X] is invariant for any X, E[f(X)] is expressed as a

function of E[X] by Eq. 27.

Let us denote Tf as fluctuating temperatures; Tf is a

random variable. Write TAf = E[Tf]. In the SSI model for

fluctuating temperatures, rf(TAf) is obtained by replacing f

and X of Eq. (27) with rc and Tf, respectively, that is,

rfðTAfÞ ¼ rcðTAfÞ þ
1

2
r00c ðTAfÞ V½Tf �: ð28Þ

Fig. 6 Simulations for accumulated development rates of the

diamondback moth estimated by the four methods. The predictive

simulation using the cosine-wave adjusted model, daily maximum–

minimum temperature and Eq. (15) enables the detection of negative

effects of high temperatures in the midsummer season on the

development. Hourly records of temperatures are from the Nara

district of Japan obtained in August 2010. (Nara Station no. 47401;

Lat., 45824.90N; Lon., 141840.70E. (http://tenki.jp/past/detail/pref-32.

html?year=2010&month=8&day=1) The development was completed

(Y-axis = 1.0) at noontime on the 13th day. (On the X-axis, the

interval 0–1 corresponds to the 1st day, 1–2 to the 2nd day 12–13 to

the 13th day in August.) The presented data are from the diamond-

back moth reported by Liu et al. 2002 (see the explanation in Fig. 3)
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Jensen’s inequality

In order to explain the relationship between the graphs of

the constant temperatures model rc(Tc) and the fluctuating

temperatures model rf(TAf), we introduce the following

theorem known as ‘‘Jensen’s inequality.’’ For details, refer

to Feller (1966).

Theorem Let X be a random variable. If f is a convex

function, then

E f Xð Þ½ � 	 f E X½ �ð Þ:

If f is a concave function, then

E f Xð Þ½ � � f E X½ �ð Þ:

When the two graphs are plotted using the common

horizontal axis T, ‘‘Jensen’s inequality’’ implies that

rf(T) C rc(T) for T to satisfy rc

00
(T) [ 0; rf(T) B rc(T) for

rc

00
(T) \ 0.
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