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Abstract
Innovative models for medical research are strongly required nowadays. Convincing evidence supports dog as the most suit-
able spontaneous model for several human genetic diseases. Decades of studies on dog genome allowed the identification 
of hundreds of mutations causing genetic disorders, many of which are proposed as counterparts responsible for human 
diseases. Traditionally, the murine model is the most extensively used in human translational research. However, this spe-
cies shows large physiological differences from humans, and it is kept under a controlled artificial environment. Conversely, 
canine genetic disorders often show pathophysiological and clinical features highly resembling the human counterpart. In 
addition, dogs share the same environment with humans; therefore, they are naturally exposed to many risk factors. Thus, 
different branches of translational medicine aim to study spontaneously occurring diseases in dogs to provide a more reli-
able model for human disorders. This review offers a comprehensive overview of the knowledge and resources available 
today for all the researchers involved in the field of dog–human translational medicine. Some of the main successful exam-
ples from dog–human translational genomics are reported, such as the canine association studies which helped to identify 
the causal mutation in the human counterpart. We also illustrated the ongoing projects aiming to create public canine big 
datasets. Finally, specific online databases are discussed along with several information resources that can speed up clinical 
translational research.
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Introduction

With around 400 breeds recognized worldwide, dog (Canis 
lupus familiaris) represents an incomparable species in 
terms of phenotypic variability. After centuries of selection, 
each breed possesses a breed-specific gene pool resulting in 

unique phenotypes such as body size, morphology, coating, 
and behavior. Fixation of favored alleles by selection, cross-
ing, and genetic drift, it has led to an increased frequency of 
deleterious alleles, mainly recessive, responsible for heredi-
tary diseases (Switonski 2014).

As observed in human, dog is prone to monogenic and 
complex diseases. Around 800 canine monogenic diseases 
have been described: the causal gene mutation is known 
for at least 318 disorders, and about 543 diseases are con-
sidered models for human diseases (December 28, 2021, 
https:// omia. org/ home). Notably, several canine monogenic 
disorders are characterized by a breed-specific distribu-
tion (Switonski 2014), with lower frequency in populations 
with a wide gene pool (characteristic of mixed-breed dogs) 
than within narrow purebred populations. Indeed, the inci-
dence of certain genetic diseases is higher among some pure 
breeds compared to others and their prevalence can reach 
very high levels in a single breed (Zierath et al. 2017). To 
date, most research focused on monogenic diseases due to 
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their relatively simple molecular background and their large 
numbers observed in pure breeds. In 1989, Evans and col-
leagues (Evans et al. 1989) reported the first gene muta-
tion causing hemophilia B in dogs (OMIA#000,438–9615). 
Since then, many mutations were identified for hundreds 
of disorders, mostly inherited by an autosomal recessive 
pattern (Switonski 2014), such as lethal acrodermatitis 
(OMIA#002,146–9615) and hereditary nasal parakeratosis 
(OMIA#001,373–9615).

Canine epidemiological studies determined that the 
combination of genetic, environmental, and lifestyle factors 
cause most of the complex diseases, including several con-
genital defects and adult-onset diseases (Donner et al. 2018). 
The most common orthopedic condition diagnosed in dog, 
canine hip dysplasia (OMIA#000,473–9615), is an example 
of complex disease with high prevalence in large and giant 
breeds, characterized by a relatively low heritability and a 
phenotypic expression strongly influenced by environmental 
factors such as caloric intake during growth (King 2017). 
Diabetes is another example of common complex disease for 
which segregation analysis suggested a polygenic mode of 
inheritance in Australian Terriers; indeed, no evidence for a 
large effect of a single gene was found in diabetic dogs (Mui 
et al. 2020). Similarly, Addison’s disease (AD) or primary 
hypoadrenocorticism is a polygenic autoimmune disorder 
characterized by adrenal insufficiency which follows the 
destruction of the adrenal cortex. Although the risk for AD 
is higher in some breeds such as Bearded Collie, the disorder 
is commonly observed in purebred and mixed breed dogs 
(Gershony et al. 2020).

Here we reviewed the most relevant studies on 
dog–human translational genomics, while providing a sum-
mary of the data accessible from publicly available canine 
databases. The aim is to offer a comprehensive overview 
of the knowledge and resources available today for all the 
researchers involved in the field.

Dog as translational model

In human disease research, the murine model is the most 
extensively used (Rosenthal and Brown 2007) to unveil 
mechanisms underlying disorders, to test the efficacy of 
drugs (Justice and Dhillon 2016), and to study the funda-
mentals of cancer biology (Gordon et al. 2009). However, 
this species shows large physiological differences when 
compared to humans, such as size and metabolic rate. 
Body size is correlated to different life-history traits; 
indeed, the two species show large differences in repro-
ductive parameters such as age at reproductive maturity, 
length of gestation, litter size, birth interval, fraction 
of energy devoted to reproduction, and life expectancy 
(Perlman 2016). Also, murine and human cells differ in 

mitochondrial density (Hulbert and Else 2005), meta-
bolic rate, and fatty acid composition of their membrane 
phospholipids (Hulbert 2008). The differences between 
humans and mice are also a reflection of the interac-
tions with environmental factors (e.g., food sources) and 
other species (e.g., microbiota and pathogens) (Perlman 
2016). Moreover, mice are kept in artificial and highly 
controlled conditions; therefore, it is hard to replicate 
the presence of environmental elements which may play 
a crucial role in determining the occurrence of the dis-
ease. Conversely, in dogs, many diseases show patho-
physiological and clinical features similar to the human 
counterpart. This is the case of some canine cancer for 
instance (LeBlanc and Mazcko 2020) where the prev-
alence is high in some pure breed due to genetic bot-
tlenecks (Capodanno et al. 2022). It has been estimated 
that nearly 27% of purebred dogs die of cancer (Dobson 
2013), with a morbidity rate over ten times higher than 
in humans (Capodanno et al. 2022).

Notably, dogs share the same environment with 
humans; therefore, they are exposed to millions of antigens 
(Dow 2020) and chemical risk factors for human diseases, 
such as cigarette smoke and pesticides (John and Said 
2017). Moreover, the canine gut microbiome is similar 
to the human microbiome compared to what observed in 
other species such as mice or pigs. In fact, dog and human 
microbiome responds in highly similar way to dietary 
changes, suggesting that dog studies may be predictive of 
the results obtained in humans (Coelho et al. 2018).

Thus, dog represents a more reliable, naturally occur-
ring, model for translational comparative studies than 
mice, also applicable in clinical trials for chemotherapy 
and immunotherapy (Tsamouri et al. 2021). Other advan-
tages of using canine animal models, as reported by Bujak 
et al. (2018), are summarized in Fig. 1. Many known cases 
of breed-specific cancer susceptibility, or apparent protec-
tion from a particular disorder, have been reported. Golden 
Retriever, Boxer, French Bulldog, Boston Terrier, and Rat 
Terriers breeds display an increased risk of developing 
central nervous system cancers, while some breeds such 
as Cocker Spaniel and Doberman Pinscher are at low risk 
(Song et al. 2013). Among the types of cancer, glial tumors 
affect more frequently brachycephalic breeds, whereas 
dolichocephalic breeds are more prone to meningiomas 
(Song et al. 2013). In translational oncogenic studies, dog 
is considered a useful model for human osteosarcoma. 
Indeed, canine osteosarcoma is another common example 
of cancer with breed-specific susceptibility and relatively 
high incidence. It is considered the most common primary 
bone tumor in dogs (Davis and Ostrander 2014), often 
observed in breeds characterized by large body size and 
long limbs such as the Leonberger (Letko et al. 2020) and 
the Great Dane (Dobson 2013).
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Successful examples of human–dog 
translational genomics

Decades of studies using dog genome led to the identifica-
tion of hundreds of pathogenic mutations. More than 500 
canine disorders are proposed as counterparts responsible 
for human diseases (Switonski 2014). The most common 
dog diseases, studied in the past 30 years, for which the 
causal mutation for the human counterpart has been identi-
fied, are reported in Supplementary Table 1. Among the pure 
breeds used as a model, the Labrador Retriever proved to be 
the most valuable, enabling researchers to identify single 
nucleotide variants (SNVs) responsible for at least 28 canine 
disorders (Fig. 2). Golden Retriever, German Shepherd, Bea-
gle, and Border Collie are other important breeds for clinical 
research that allowed the discovery of genetic variants for 
16, 15, 14, and 12 canine disorders, respectively. More infor-
mation on single breeds contribution to medical research is 
provided in Supplementary Tables 1 and 2, and Fig. 2.

The main disorders for which the genetic variants have 
been identified in both dogs and humans can be classified 
into 16 clusters (Fig. 3 and Supplementary Table 3). Eye 
and ear disorders are the most extensively studied group of 
diseases (more than 50 disorders), followed by neurologi-
cal (n = 45), musculoskeletal (n = 40), metabolic (n = 32), 
cutaneous (n = 27), lysosomal (n = 20), and blood diseases 
(n = 18). The remaining groups of disorders (i.e., immune 
disorders, cancer, and respiratory disorders) account only 
for 8 studied diseases, followed by gastrointestinal and neu-
romuscular diseases (n = 5) and heart and reproductive dis-
orders (n = 3).

In the following subsections, we summarized the main 
findings on the disease classes for which the mutations caus-
ing the human counterpart were identified.

Eye and ear diseases

Retinitis pigmentosa (RP) is a blinding eye disorder affect-
ing circa two million people worldwide. A class of com-
mon canine disorders known as progressive retinal atro-
phies (PRA) proved to be an appropriate model for the 
study of this human ocular disease (Bunel et al. 2019), as 
dogs affected with PRA develop symptoms similar to RP. 
Recently, a whole-genome sequencing (WGS) study of 
affected Lapponian Herders revealed a missense variant 
(g.5648046C > T—c.3176G > A—p.R1059H) in the intrafla-
gellar transport 122 gene (IFT122) (OMIA#002,320–9615), 
which impairs the protein function. This finding points to 
IFT122 as a potential candidate gene to identify the biologi-
cal mechanisms at the basis of human RP (Kaukonen et al. 
2021).

Mutations in the lipoxygenase homology PLAT 
domains 1 gene (LOXHD1) (OMIA#002,336–9615) 
are known to be involved in hearing loss of humans and 
mice. The gene was studied in Rottweiler dogs affected 
by non-syndromic hearing loss, an important medical 
problem whose causes are still unknown. As observed 
for other species, the affected dogs carried a missense 
variant (g.44806821G > C—c.5747G > C—p.G1914A) in 
LOXHD1, a gene essential for cochlear hair cell function 
(Hytönen et al. 2021a).

Fig. 1  Why use the domestic dog as a model for human translational medicine studies
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Neurological diseases

Dogs affected by degenerative myelopathy, which is caused 
by two SNVs (c.118G > A—p.E40K; c.52A > T—p.

Thr18Ser) in the superoxide dismutase type 1 gene (SOD1) 
(OMIA# 000,263–9615) (Zeng et al. 2014), were proposed 
as animal model for human amyotrophic lateral sclerosis. 
A study of Dutch Markiesje dogs led to the identification 

Fig. 2  Dog breeds used as a model to discover mutations associated with genetic disorders for which the human counterpart has been identified 
or proposed. Breeds for which less than 4 diseases were studied are not reported but are listed in the Supplementary Table 2

Fig. 3  The main types of disorders for which the genetic variants have been identified in dogs and humans
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of a frameshift mutation, at the fourth codon in SOD1. The 
shifted coding sequence generates a stop codon at the tenth 
codon. This mutation is responsible for an autosomal reces-
sive form of juvenile paroxysmal dyskinesia laying the basis 
for the study of the human juvenile, progressive spastic tetra-
plegia, and axial hypotonia (Mandigers et al. 2021).

Parson Russell Terrier is a breed prone to develop a pecu-
liar neurodegenerative disorder characterized by the onset of 
severe seizures at the age of about 4 months that sometimes 
evolves to a fatal status epilepticus. Analysis of the pitrilysin 
metallopeptidase 1 gene (PITRM1) (OMIA#002,324–9615) 
from affected dogs identified a homozygous deletion of 6 
nucleotides (g.32188565_32188570del—c.175_180del—p.
L59_S60del) likely responsible for the disease. This result 
suggests dog as a model for neurodegenerative disease with 
mitochondrial respiratory deficiency and severe epileptic 
encephalopathy (Hytönen et al. 2021a).

Musculoskeletal diseases

In human, the most common genetic muscle disorders are 
the congenital muscular dystrophies and the congenital 
myopathies (Bönnemann et al. 2014) which are caused by 
mutations on the collagen VI (COL6), the laminin subu-
nit alpha 2 (LAMA2), the LARGE xylosyl- and glucuro-
nyltransferase (LARGE), the selenoprotein N (SEPN1), 
and the ryanodine receptor 1 (RYR1) genes (Shelton et al. 
2021). Similarly, dogs affected by muscular dystrophy 
showed mutations in the collagen type VI alpha 3 chain 
(COL6A3) (OMIA#002,274–9615) (g.48007994C > T—c.
6210 + 1G > A; g.48014962G > A—c.4726C >—p.R1576*) 
(in Labrador Retrievers) (Bolduc et al. 2020), in collagen 
type VI alpha 1 chain (COL6A1) (c.289C > T- p.Q97*) 
(OMIA#001,967–9615) (in Landseer dogs) (Steffen et al. 
2015), in LARGE (g.30357716C > T—c.1363C > T—p.
R455*)  (OMIA#002,460–9615)  ( in  Labrador 
Retrievers) (Shelton et  al. 2022), and in LAMA2 
( g . 6 7 8 8 3 2 7 1 G  >  A — c . 3 2 8 5 G  >  A — p . W 1 0 9 5 * ; 
g.67734331-67736575del) (OMIA#002,459–9615) (in Staf-
fordshire terriers) (Shelton et al. 2022).

Metabolic diseases

Diabetes mellitus is a metabolic disorder commonly 
diagnosed in dogs. SNVs affecting immune response and 
cytokine genes were associated with increased suscepti-
bility to disease in several breeds (Catchpole et al. 2013; 
Short et al. 2007; 2009; 2010). In humans, mutations in 
the proopiomelanocortin gene (POMC) are linked to obe-
sity and consequently to a higher risk of obesity-related 
diseases such as type 2 diabetes (Farooqi et al. 2006). A 
recent study on Labrador Retriever reported a deletion 
of 14 bp in POMC gene (g.19431807_19431821del—p.

E188fs) (OMIA#001,258–9615) that is involved in food 
motivation and obesity (Raffan et al. 2016). However, no 
association was found between the presence of this muta-
tion and canine diabetes mellitus (Davison et al. 2017).

Cutaneous diseases

Canine junctional epidermolysis bullosa is characterized 
by ulcers of the skin, footpads, oral mucosa, and gastroin-
testinal tract which often requires euthanasia of the affected 
dog. In Australian Shepherd, the disorder was associated 
with a missense mutation in the laminin subunit beta 3 
gene (LAMB3) (g.8286613A > G—c.1174  T > C—p.
(C392R)) (OMIA#002,269–9615), which leads to a reces-
sive form of junctional epidermolysis bullosa (Kiener et al. 
2020). Similarly, genetic variants in the LAMB3 and other 
genes such as the laminin subunit alfa 3 gene (LAMA3) 
and the laminin subunit gamma 2 (LAMC2) have also 
been identified in human epidermolysis bullosa (Has et al. 
2020).

Lysosomal diseases

Among the neurodegenerative lysosomal storage diseases, 
canine GM2-gangliosidosis is a fatal disorder caused by 
a 3-base pair deletion in the hexosaminidase subunit beta 
gene (HEXB) (g.57243656_57243658del—c.849_851del—
p.L284del) (OMIA#001,462–9615) gene. There is no cure 
for the disease and ill dogs are euthanized. The mutation was 
found in affected Shiba Inu, suggesting dog as a possible 
model for this disorder in humans (Wang et al. 2018).

Blood diseases

Hereditary methemoglobinemia is a rare autosomal recessive 
disorder in animals characterized by the deficiency of nicoti-
namide adenine dinucleotide (NADH)-cytochrome b5 reduc-
tase (CYB5R3) which leads to an increase in the concentra-
tion of oxidized hemoglobin. Clinical manifestations in dogs 
are associated with signs of cyanosis of the oral mucous 
membranes, tongue, and skin (Shino et al. 2018). The dis-
order was studied in the Pomeranian dog. Researchers found 
a missense mutation (c.580A > C—p.I194L) in cytochrome 
b5 reductase 3 gene (CYB5R3) (OMIA#002,131–9615) 
associated with the disorder (Otsuka-Yamasaki et al. 2021). 
Similarly, human hereditary methemoglobinemia is due to 
CYB5R3 gene variants causing a missense mutation or trun-
cated protein because of the presence of premature termina-
tion codons and incorrect exon–intron splicing sites (Percy 
and Lappin 2008).
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Immunological diseases

Hereditary myeloperoxidase deficiency is a rare human 
disorder (estimated frequency of 1/1000 to 1/4000 people) 
(Parry et al. 1981) caused by mutations in the myeloper-
oxidase gene (MPO), leading to a reduction or absence of 
myeloperoxidase activity in neutrophils and monocytes 
(Kizaki et al. 1994), increasing susceptibility to fungal infec-
tions such as candidiasis (Aratani et al. 1999). Studying an 
affected Italian hound dog, a homozygous mutation in MPO 
gene (c.1987C > T—p.R663*) (OMIA#002,028–9615) was 
found, leading to a premature termination codon (Gentilini 
et al. 2016).

Cancer

Pediatric colorectal polyps are recorded in hamartomatous 
polyposis syndrome, an autosomal dominant human genetic 
disorder, characterized by gastrointestinal polyps and symp-
toms such as rectal bleeding and prolapse (Bronner 2003). 
The canine colorectal hamartomatous polyposis and gangli-
oneuromatosis was studied in a Great Dane puppy showing 
clinical sings of hematochezia, tenesmus, and rectal prolapse 
(Bemelmans et al. 2011). Genetic analysis revealed a dupli-
cation on the phosphatase and tensin homolog gene (PTEN) 
(OMIA#001,515–9615). This mutation also characterizes 
human Cowden syndrome (OMIN#158,350), where patients 
are at greater risk of colon, breast, thyroid, and endometrial 
cancer (Bemelmans et al. 2011).

A chromosomal translocation producing a breakpoint 
cluster region protein-tyrosine-protein kinase gene hybrid 
(BRC-ABL) (OMIA#002,299–9615) was reported as a cause 
of lethal chronic monocytic leukemia in mixed dog. A simi-
lar mutation leads to the “Philadelphia” chromosome abnor-
mality recognized in human chronic myelogenous leukemia 
(Cruz Cardona et al. 2011).

Respiratory diseases

Canine idiopathic pulmonary fibrosis (CIPF), which shares 
several clinical and pathological features with human idi-
opathic pulmonary fibrosis, has been proposed as a possible 
disease mode in human patients. The CIPF is a chronic and 
progressive fibrotic disorder affecting dog’s lungs with a par-
ticular high incidence in West Highland White Terrier dog 
breed (Heikkilä et al. 2011). Although the general causes 
triggering the disease are still unknown, a recent genome-
wide association study (GWAS) identified genetic risk fac-
tors located in the cleavage and polyadenylation specificity 
factor subunit 7 (CPSF7) and the succinate dehydrogenase 
complex assembly factor 2 (SDHAF2) genes (Piras et al. 
2020).

Gastrointestinal diseases

Human Imerslund-Gräsbeck syndrome is a condition caused 
by a congenic cobalamin malabsorption, characterized by 
an autosomal recessive pattern of inheritance. Two different 
mutations on cubilin gene (CUBN) (p.P1297L and p.P337L) 
have been identified in human patients (Aminoff et al. 1999; 
Storm et al. 2011). Similarly, the canine disease is caused by 
a mutation on cubilin gene (c.8392delC—p.Gln2798Argfs) 
(OMIA#001,786–9615) identified in Komondor dogs exhib-
iting failure-to-thrive, inappetence, vomiting and/or diar-
rhea, and weakness due to selective cobalamin malabsorp-
tion (Fyfe et al. 2018).

Neuromuscular diseases

Congenital myasthenic syndromes are rare neuromus-
cular diseases occurring in dogs, characterized by the 
disruption of signal transmission across neuromuscular 
junction leading to skeletal muscle weakness. The disor-
der has been studied in a few breeds. The first research 
was carried out in Old Danish Pointing Dogs, where a 
missense mutation (g.1484906G > A—c.85G > A—p.
V29M) in choline O-acetyltransferase gene (CHAT) gene 
(OMIA#002,072–9615) was identified (Proschowsky et al. 
2007). More recently, the disorder was studied in Labrador 
Retriever. Affected dogs were homozygous for a missense 
variant in the collagen like tail subunit of asymmetric ace-
tylcholinesterase gene COLQ gene (c.1010 T > C—p.I337T) 
(OMIA#001,928–9615) (Rinz et al. 2014). Similarly, the 
disorder in Golden Retrievers is associated with a COLQ 
mutation (g.27175559G > A—c.880G > A—p.G294) (Tsai 
et al. 2020). Congenital myasthenic syndromes are observed 
also in human. Some patients were found to be homozygous 
for an identical COLQ mutation (c.1010 T > C) (Matlik et al. 
2014).

Heart diseases

Several forms of human cardiomyopathy are caused by 
variants in the phospholamban gene (PLN) (Van der 
Heijden and Hassink 2013). The familial dilated car-
diomyopathy is one of the most common diagnosed car-
diac disorder characterized by cardiac enlargement and 
decreased myocardial function (Wilcox and Hershberger 
2018). The canine counterpart was studied in Welsh 
Springer Spaniels where the disease is characterized by a 
highly penetrant dilated cardiomyopathy resulting in sud-
den death. Affected dogs showed a missense mutation in 
the PLN gene (g.58588129C > T—c.26G > A—p.R9H) 
(OMIA#002,195–9615) (Yost et al. 2019) identical to that 
in humans (Medeiros et al. 2011).
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Reproductive diseases

Among the causes of gonadal carcinogenesis, infertility, and 
sterility, disorders of sex development are one of the most 
important classes studied (Nowacka-Woszuk et al. 2020). In 
human patients with disorders/differences of sex develop-
ment and infertility, insertions and deletions in the nuclear 
receptor subfamily 5 group A member 1 gene (NR5A1) 
(p.Ser4*, p.Cys55Ser, p.Met78Leu, and p.Met98Glyfs*45) 
were described (Fabbri-Scallet et  al. 2020). Moreover, 
NR5A1 deletions were observed in patients with XY disor-
ders of sex development with female external genitalia, no 
uterus, and dysgenetic testes (Shojaei et al. 2017). Similar 
mutations were observed in dogs; indeed, a large deletion 
of four exons of the NR5A1 gene (OMIA#002,296–9615) 
was identified in a Yorkshire Terrier with rudimentary penis, 
hypospadias, bilateral cryptorchidism, and spermatogenesis 
inactive testes (Nowacka-Woszuk et al. 2020).

Dog genomic data handling and available 
resources

In human genetics, the 1000 Genomes Project (1KGP) rep-
resents a milestone in providing a global picture of human 
genetic variability. The 1KGP consortium made their data 
publicly available to the worldwide scientific community 
committed to the study of human genetic variation through 
freely accessible public databases (Siva 2008).

Several projects to provide canine genomic database 
and catalog, as occurred for human genome studies, 
have been completed or are still ongoing (Table 1). The 
improvement of next-generation sequencing (NGS) tech-
nologies led to an enormous amount of genomic data from 
domestic dogs and wild gray wolves, often freely available 
for evolutionary, zootechnical, or medical research.

Table 1  Projects and resources available for dogs’ genomics research

scRNAseq, single-cell RNA sequencing; VCF, Variant Call Format

Database Information available Link web References

Dog 10 K genomes project VCF files, content not assessable http:// www. dog10 kgeno mes. org/ Wang et al. 2019
Dog Aging Project Not assessable https:// dogag ingpr oject. org/
Dog Biomedical Variant Database 

Consortium (DBVDC)
VCF file from domestic dogs and 

wolfs
https:// www. ebi. ac. uk/ eva/? eva- 

study= PRJEB 32865
Jagannathan et al. 2019

Dog Genome SNP Database—
iDOG

• Reference genome files for dog, 
dhole (Cuon alpinus), and wolf

• Catalog of breeds phenotypic 
information and breed-specific 
disease

• Catalog of canine diseases
• SNPs detector and visualization 

tool
• RNA-seq data from 62 projects
• scRNAseq data from hippocam-

pus in brain tissue

https:// ngdc. cncb. ac. cn/ idog/
https:// www. re3da ta. org/ repos 

itory/ r3d10 00121 76

Bai et al. 2015; Tang et al. 2019; 
CNCB-NGDC Members and 
Partners, 2021

Golden Retriever Lifetime Study 
(Morris Animal Foundation)

Health, environmental, and 
behavioral data on more than 
3000 purebred Golden Retriev-
ers (questionnaires from the dog 
owner and physical examina-
tions and collection of biological 
samples from veterinarian)

https:// www. morri sanim alfou ndati 
on. org/ golden- retri ever- lifet ime- 
study

Guy et al. 2015

CanFam6 Dog reference genome https:// www. ncbi. nlm. nih. gov/ 
assem bly/ GCF_ 00000 2285.5/

Jagannathan et al. 2021

The NHGRI Dog Genome Project • VCF files from domestic dogs, 
village and feral dogs, and wild 
canids

• Plink format files including geno-
type of dogs and wild canids

https:// resea rch. nhgri. nih. gov/ dog_ 
genome

OMIA: Online Mendelian Inherit-
ance In Animals

Catalog of inherited disorders, 
other traits

https:// www. omia. org/ home/

Sequence Read Archive (SRA)—
NCBI

BAM and FASTQ files from 
the primary analysis phase of 
sequencing

https:// www. ncbi. nlm. nih. gov/ sra
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http://www.dog10kgenomes.org/
https://dogagingproject.org/
https://www.ebi.ac.uk/eva/?eva-study=PRJEB32865
https://www.ebi.ac.uk/eva/?eva-study=PRJEB32865
https://ngdc.cncb.ac.cn/idog/
https://www.re3data.org/repository/r3d100012176
https://www.re3data.org/repository/r3d100012176
https://www.morrisanimalfoundation.org/golden-retriever-lifetime-study
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Dog 10 K genomes project (dog10K)

This project aims to coordinate the global effort on genome 
sequencing in dogs and build a collection of data consist-
ing of the genome from 10,000 dogs. To reduce sequencing 
costs, the project currently plans to sequence each sample 
at ≅ 4X coverage. Despite the low sequencing coverage, 
combining data across thousands of samples should allow a 
highly accurate genotype imputation for each sample (Wang 
et al. 2019).

Dog Aging Project (DAP)

The DAP started in 2016 and is an example of gerosci-
ence project which shares some parallels with the Golden 
Retriever Lifetime Study, although with much larger pheno-
typic diversity collection and analysis of big data. Indeed, 
the project is based on the retrieval of dog data through the 
coordinated efforts of owners, veterinarians, researchers, 
and volunteers. DAP relies on these communities to follow 
10,000 dogs across the USA over a 10-year period with the 
goal to unveil the biological, lifestyle, and environmental 
factors that maximize dogs’ health and longevity. The gov-
ernance is based at the University of Washington and Texas 
A&M College of Veterinary Medicine and Biomedical 
Sciences. Several studies were carried out by the project; 
the most recent found that canine cognitive dysfunction, a 
canine counterpart for the human Alzheimer’s disease, cor-
relates with amyloid-beta 42 levels in dog brain (Urfer et al. 
2021).

Dog Biomedical Variant Database Consortium 
(DBVDC)

This database consists of a list of functionally annotated 
SNPs detected through WGS of 582 dogs from 126 breeds 
and 8 wolves.

The main technical details are listed below:

– Approximate sequencing coverage: about 24X (minimum 
coverage 10X).

– Genomic variants identified: 23,133,692 SNPs and 
10,048,038 short indels (including 93% undescribed 
variants).

– Variant effect classification: 247,141 SNPs and 99,562 
short indels have impact on 11,267 protein-coding genes.

– Loss-of-function variants discovered: each genome con-
tains heterozygous loss-of-function variants in 30 poten-
tially embryonic lethal genes and 97 genes associated 
with developmental disorders.

The catalog has already been used to unravel the genetic 
background for more than 50 inherited disorders and traits. 

The DBVDC is updated approximately every 3–6 months 
with new sequencing runs.

Dog Genome SNP Database (DoGSD)—iDOG

The DoGSD is a web-based, open-access resource (compris-
ing around 19 million high-quality whole-genome SNPs), 
created as a storage for the information on dog and wolf 
genome variation (CNCB-NGDC Members and Partners 
2021). The database provides the research community with 
a variety of data services. However, its main feature is the 
SNPs detector and visualization tool. In addition, DoGSD 
incorporates information as SNP annotation, summary lists 
of SNPs located in genes, sampling location, and breed 
information.

The main resources available from the website are 
described below.

• Genomes
  The reference genome for dog, dhole (Cuon alpinus), 

and wolf can be accessed via FTP (file transfer protocol) 
along with annotated genes and proteins.

• Breeds, Disease, and Genotype–Phenotype pairs (G2P)
  Breeds section contains phenotypic information for 

481 breeds curated from different kennel clubs (AKC, 
CKC, UKC, and FCI) and Wikipedia. Breed-specific dis-
eases are also reported.

  Disease section reports information on 806 canine dis-
eases retrieved from different databases (OMIA, CIDD, 
and The Dog Place website). Each disease is accompa-
nied by a short description of the clinical signs, the asso-
ciated gene/s (if known), and the related literatures.

  Genotype–Phenotype pairs (G2P) is a SNPs detector 
and visualization tool containing 71 million non-redun-
dant SNPs called from 722 individual samples, and 6 
million ancient SNPs from 27 individual samples. The 
information includes chromosome, position, dbSNP 
rsid, breed, disease trait, effect allele, OR value, P value, 
reported gene symbol, and PMID.

• Gene expression
  This section contains data from 62 gene expression 

profiles (RNA-Seq) projects and 1198 experiments col-
lected from NCBI. Analyses were carried out on different 
tissues and cell lines.

• Single cell
  This section reports single-cell RNA sequencing 

data from post-mortem hippocampus brain tissue from 
a 6-month-old Beagle divided into the following three 
sections.

Single cell cluster. Uniform Manifold Approximation and 
Projection of transcript profiles from 105,057 hippocampus 
cells. For each record, the associated cluster, type of cell, 
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gene name,  log2 fold change, P value, and adjusted P value 
are reported.

Gene marker explorer. Heatmap for 345 genes differen-
tially expressed in 9 cell types from hippocampus. For each 
gene, the cell type and the mean differentially expressed 
gene value are reported.

Gene in situ map. Map of 11 genes in hippocampus tis-
sues obtained by in situ hybridization.

Golden Retriever Lifetime Study (GRLS)—Morris 
Animal Foundation

The GRLS is one of the largest canine health studies in the 
USA which aims to investigate the complex associations 
between dietary, genetics, and environmental risk factors 
influencing cancer and other important diseases in dogs. 
The project is based on retrieving health, environmental, 
and behavioral data from more than 3000 purebred Golden 
Retrievers. The database is updated annually via online 
questionnaires from dogs’ owners, physical examinations, 
and collection of biological samples by primary care veteri-
narians (Guy et al. 2015). The collected data have already 
been used to study the effect of inbreeding on fertility (Chu 
et al. 2019), and the relationship between the timing of spay/
neuter and the development of obesity and non-traumatic 
orthopedic injury (Simpson et al. 2019).

CanFam6: domestic dog reference genome

CanFam6 is currently the most updated canine reference 
genome provided by the International Consortium of 
Canine Genome Sequencing (Wang et al. 2019) obtained 
by sequencing a female Boxer on an PacBio Sequel systems 
system. The breed was chosen following an analysis of 60 
dog breeds that demonstrated that the Boxer is one of the 
breeds with the least amount of variation in its genome (Jag-
annathan et al. 2021).

The National Human Genome Research Institute 
(NHGRI) Dog Genome Project

The NHGRI Dog Genome Project team consist of canine 
DNA samples, health histories, and pedigrees. The goal of 
the project is the identification of genetic variants associated 
with inherited diseases, morphological traits, and behavior. 
Three databases can be freely downloaded from the project’s 
webpage:

• Locus Specific Genotypes
  Provided data consist of two Variants Calling Files 

(VCF) containing biallelic variants on chromosome 15. 

One file combined information from the WGS of 1161 
dogs from 230 breeds, as well as from 141 indigenous and 
villages dogs, while the second file contains the genotypes 
of 86 wild canids.

• Genome-Wide Variant Discovery
  A single VCF file containing 91 million SNVs obtained 

from the WGS of 722 canids: 668 domestic dogs (of which 
528 from 144 established breeds and 36 samples from 
mixed-breed or dogs of unknown breed), 104 village and 
feral dogs from diverse localities, and 54 wild canids from 
five species (Andean fox, coyote, dhole, golden jackal, and 
gray wolf) (Plassais et al. 2019).

• SNP-based Population Studies
  A PLINK formatted file including genotypes from 

>150,000 SNPs in 1356 dogs and 9 wild canids (Parker 
et al. 2017).

OMIA—Online Mendelian Inheritance In Animals

Online Mendelian Inheritance in Animals (OMIA) is a 
catalog of inherited disorders, other traits, and genes in 
319 animal species edited by scientific staff of the Univer-
sity of Sydney (Lenffer et al. 2006). Information is stored 
in a free access database which accounts for a total of 829 
canine disorders/traits, divided into 4 sections: Mendelian 
trait/disorder; Mendelian trait/disorder with likely causal 
variant(s) known, likely causal variants, potential mod-
els for human traits (accessed on December 28, 2021). 
Each disorder/trait is accompanied by a descriptive sheet 
containing information on relative gene/s involved (if 
known), possibly relevant human trait(s) and/or gene(s), 
mode of inheritance, molecular basis, main clinical fea-
tures, prevalence, breed commonly affected, and relevant 
related literatures.

Sequence Read Archive (SRA)—NCBI

The Sequence Read Archive is the largest international 
public repository of next-generation sequence data hosted 
by NCBI servers (Leinonen et al. 2011). It stores BAM 
(Binary Alignment Map) and FASTQ files from the pri-
mary analysis phase of sequencing. The database stores 
billions of SRA from thousands of species including 
canine data from the aforementioned project. However, 
searching for data can often be more time-consuming than 
the retrieval of files from the other “dog-specific” database. 
Moreover, often the data lacks detailed notes on pheno-
type which can sometimes be retrieved from the related 
literature. Detailed information on the data available are 
reported in Table 2.
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Main limitations of translational research 
from dogs to humans

Although canine clinical trials can be extremely beneficial 
when translated to human clinical studies, this approach is 
not exempt from limitations. Sebbag and Mochel (2020) 
pointed out the following issues when using dogs for trans-
lational research:

• Expensive to purchase and maintain dogs in specific 
housing.

• Limitation in molecular tool kits specific to dogs com-
pared to laboratory rabbits and rodents.

• The usage of dogs as experimental animal models is 
rightly subjected to important ethical and public‐per-
ception considerations.

• The mixed genetic background (crossbreed) of most 
subject affects the variability in disease characteristics 
such as its severity and response to therapy. On the 
other hand, inbred strains are available for rodents and 
rabbits with highly reduced genetic variability, as well 
as knockout and transgenic strains.

• Limitation in clinical trials involving dogs imposed 
by rigorous ethical review, unpredictable case enroll-
ment, variability in disease phenotype among individ-
ual dogs, economic challenges (e.g., owner ability to 
provide care), and owner compliance.

Conclusions and perspectives

Innovative models for medical research are strongly 
required. In fact, in many areas of clinical research, labora-
tory rodents continue to be used as test subjects, despite 
the wide anatomo-physiological divergence that exists 
with human (Sebbag and Mochel 2020). Although stud-
ies on mouse models have been suitable to unveil the basic 
physiopathological mechanisms of several disorders, such 
models cannot reproduce the complex biology behind some 
diseases, such as cancer, especially its recurrence and metas-
tasis (Capodanno et al. 2022). On the other hand, hundreds 
of canine diseases share features with the human counter-
part such as protein and gene homology, pathophysiological 
mechanisms of initiation and progression. Furthermore, the 
two species often share drug targets, drug resistance, poten-
tial prognostic, and diagnostic biomarkers. This evidence 
points to dog as the most suitable model for many human 
diseases (Tsamouri et al. 2021).

In view of the clinical and molecular similarities between 
canine and human diseases, different branches of transla-
tional medicine, such as comparative oncology, aim to study 
spontaneously occurring diseases in dogs to provide a more 
reliable model for human cancer (Capodanno et al. 2022). 
Throughout preclinical studies involving canine patients 
with spontaneous diseases, the expertise of veterinar-
ians, physicians, and basic science researchers may soon 

Table 2  Dog data available from SRA-NCBI (accessed on January 17, 2022, https:// www. ncbi. nlm. nih. gov/ sra)

Source N Type/strategy N Library layout N Platform N File type N

Total public
N 21,218

DNA 17,118 Exome 4164 Paired 4164 ABI SOLID
Illumina

22
4142

bam
cram
fastq

913
2349
796

Paired 6015 ABI SOLiD
BGISEQ
Illumina

24
19
5972

bam
cram
fastq
srf

1649
909
3276
41

Genome 7153 Single 1138 BGISEQ
Capillary
Illumina
Ion Torrent
Oxford Nanopore
PacBio SMRT

4
745
309
7
10
63

bam
cram
fastq
srf

71
20
289
7

RNA 4120 Paired 2696 BGISEQ
Illumina

1
2695

bam
cram
fastq
srf

331
3
1944
10

Single 1424 BGISEQ
Helicos
Illumina
Ion Torrent
Oxford Nanopore
PacBio SMRT

14
13
1367
14
6
10

bam
fastq

121
1165
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be integrated under the umbrella of the One Health Initia-
tive (Sebbag and Mochel 2020). Further deepening in the 
understanding of canine pathology will be beneficial for the 
clinical applications of treatments in both dogs and humans.

Numerous projects are ongoing to create big, publicly 
available, canine datasets with the aim of speeding up the 
clinical research efforts. However, caution is needed while 
recording phenotype to provide highly reliable data for the 
clinical association studies. Most of the available genomic 
datasets are accompanied by the record of limited pheno-
typic information accounting only for breed type without 
taking into consideration other important records, such as 
dietary factor, environment, and clinical history of dog. 
Although these data can be very useful in zootechnical 
research related to genetic-based improvement, they may 
be of limited use in the field of clinical research.
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