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Abstract
Septoria tritici blotch (STB) caused by Zymoseptoria tritici is one of the most important foliar diseases of wheat causing 
significant yield losses worldwide. In this study, a panel of bread wheat genotypes comprised 185 globally diverse genotypes 
were tested against 10 Z. tritici isolates at the seedling stage. Genome-wide association study (GWAS) using high-throughput 
DArTseq markers was performed and further gene expression analysis of significant markers trait association (MTAs) asso-
ciated with resistance to STB was analyzed. Disease severity level showed significant differences among wheat genotypes 
for resistance to different Z. tritici isolates. We found novel landrace genotypes that showed highly resistance spectra to all 
tested isolates. GWAS analysis resulted in 19 quantitative trait loci (QTLs) for resistance to STB that were located on 14 
chromosomes. Overall, 14 QTLs were overlapped with previously known QTLs or resistance genes, as well as five poten-
tially novel QTLs on chromosomes 1A, 4A, 5B, 5D, and 6D. Identified novel resistance sources and also novel QTLs for 
resistance to different Z. tritici isolates can be used for gene pyramiding and development of durable resistance cultivars in 
future wheat breeding programs.
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Introduction

Common wheat (Triticum aestivum L.) is one of the most 
important cereal crop in the world and plays important role 
in the diets of humans and livestock. The global wheat pro-
duction was reported to be 759.9 million tons in 2019/20 
(https://​www.​fao.​org/​world​foods​ituat​ion/​csdb/​en/). This 
makes wheat the third important crop in terms of produc-
tion after maize and rice. Global wheat production can be 
negatively influenced by abiotic and biotic stresses. Septoria 
tritici blotch (STB) caused by Zymoseptoria tritici is one of 
the most destructive fungal diseases of wheat worldwide 
(Kema et al. 1996; Hardwick et al. 2001). The fungus causes 
expanded necrotic lesions from early-emerging leaves to flag 
leaves, and the overall damage caused by STB can result in 
grain yield losses up to 50% under optimal environmental 
conditions (Mehrabi et al. 2006; Goodwin, 2007; Kema and 
van Silfhout, 1997; Suffert et al. 2011). Under epidemic con-
ditions, fungicide application is required to control STB, but 
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this strategy is not adequately effective due to quick adap-
tation of the pathogen to fungicides by sexual recombina-
tion and mutation (Torriani et al. 2009; Mohammadi et al. 
2017; Kema et al. 2018). Today, there is evidence that the 
frequently use of fungicides causes long-term severe nega-
tive effects on human health and the environment (Gikas 
et al. 2022). Therefore, the characterization of new resist-
ance sources and the development of resistant wheat culti-
vars is the most economical and environmentally friendly 
approach and fundamental strategy in breeding programs 
for sustainable agriculture and food security (Talebi et al. 
2010; Mehrabi et al. 2015). Up to now, 22 major genes and 
89 QTLs for resistance to Z. tritici have been reported and 
mapped on the wheat genome along with their closely linked 
markers (reviewed by Brown et al. 2015; Yang et al. 2018).

Both qualitative and quantitative resistance has been 
reported for resistance to STB in wheat. Qualitative resist-
ance is usually controlled by major genes that confer com-
plete resistance and follows by the gene for-gene model 
(Brown et al. 2015). This model has been reported for the 
first time on Z. tritici isolate IPO323 and cv. Flame (Kema 
et al. 2000; Brading et al. 2002). Quantitative resistance 
is controlled by many minor genes and widely reported in 
wheat cultivars at both seedling and adult growth stages 
(Arraiano and Brown 2006; Chartrain et al. 2004; Good-
win 2007). The qualitative resistance has been shown to be 
effective strategy for controlling different fungal diseases in 
wheat, but on the other hand, the rapid evolution and adapta-
tion of Z.tritici populations result in overcoming resistance 
in most improved cultivars (Cowger et al. 2000; Stuken-
brock et al. 2007; Makhdoomi et al. 2015; Muqaddasi et al. 
2019). Therefore, in order to increase the durability of wheat 
resistance to STB, combining qualitative and quantitative 
resistance genes is required to preserve resistance effective-
ness over time (Brown et al. 2015; Vagndorf et al. 2017). 
Availability of high-definition genotyping using genotype-
by-sequence (GBS) technologies enables breeders to identify 
resistance genes in diverse germplasm that can be employed 
for the development of new resistant cultivars using the gene 
pyramiding approach (Kidane et al. 2017; Vagndorf et al. 
2017; Arraiano and Brown, 2017; Muqaddasi et al. 2019).

The genetic architecture of resistance to STB has been 
mostly evaluated in different bi-parental populations for 
detection of large-effect genes or quantitative trait loci 
(QTLs) (Chartrain et al. 2004, 2005a,b,c; Simón et al. 2005; 
Tabib Ghaffary et al. 2011, 2012). Genome-wide association 
mapping (GWAS) using a large number of markers with high 
genome coverage is a powerful tool for detecting the resist-
ance loci associated with diverse germplasm possessing nat-
ural variation of resistance genes (Bartoli and Roux 2017). 
Various GWAS studies have been performed on diverse 
wheat germplasm (Mirdita et al. 2015; Vagndorf et al. 2017; 
Kidane et al. 2017; Muqaddasi et al. 2019; Arraiano and 

Brown 2017). Most previous GWAS studies for revealing 
QTLs against STB have been done for detecting resistance 
loci against a mixture of isolates under natural field condi-
tions (Goudemand et al. 2013; Kidane et al. 2017; Arraiano 
and Brown, 2017; Muqaddasi et al. 2019). Therefore, GWAS 
analysis for specific isolate resistance using globally diverse 
pathotypes of Z. tritici is of great interest for breeders to 
identify new genes/loci that can be used in wheat breeding 
programs.

The present study relies on genotyping and phenotyping 
of a globally diverse panel of 185 wheat genotypes that were 
evaluated at the seedling stage against ten Z. tritici isolates 
(collected from Iran, Algeria, Turkey, France, and The Neth-
erlands). DNA fingerprinting of the wheat genotypes was 
performed using high-throughput DArTseq technology (Sili-
coDArT and SNP markers) aiming to identify and localize 
possible novel QTLs associated with isolate-specific resist-
ance against Z. tritici in wheat.

Materials and methods

Plant material and evaluation of STB infection

A total of 185 wheat genotypes comprised commercial 
cultivars, breeding lines, and landraces with a wide range 
of genetic background which was used in this study (Sup-
plementary Table S1). The germplasm set included (1) 63 
Iranian cultivars and breeding line that mainly used in wheat 
growing zones in Iran and also in national wheat breeding 
programs, (2) 103 landraces genotypes from globally diverse 
origins (20 countries), and (3) 18 wheat differential lines 
with previously known STB genes and Bezostaya which is 
originated from Russia and still grown in large wheat cul-
tivation zones in northeastern Iran. To ensure the purity of 
the seeds, all landraces were grown in Iranian Seed and Plant 
Improvement Institute (SPII) field station and each genotype 
was selected from a single-spike.

Phenotypic evaluation of wheat genotypes against ten Z. 
tritici isolates (Table 1) was described in detail by Mah-
boubi et al. (2020). Briefly, STB isolates were pre-cultured 
in yeast-extract glucose (YG) liquid medium, and then these 
pre-cultures were used to inoculate 100 ml YG media per 
isolate. YG media were placed in an orbital shaker (set at 
125 rpm) and incubated at 18 °C for 5–6 days. The propa-
gated yeast-like spores were collected and their concentra-
tions were adjusted to 107 spores/ml (Abrinbana et al. 2012). 
Five seeds of each genotype were sown in plastic pots and 
first leaf of the10-day-old seedlings was spray-inoculated 
using hand sprayers. Inoculated plants were kept in dark 
plastic bags for 48 h at 20–25 °C and then transferred to a 
greenhouse with the environmental condition of 18–22 °C 
and > 85% humidity (Kema et al. 1996; Makhdoomi et al. 
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2015). After 21 days post-inoculation, percentage necrotic 
leaf area covered with pycnidia of the first leaf for each gen-
otypes (at least three plants per pot) was scored visually as 
described before (Kema et al. 1996; Ghaneie et al. 2012). 
Experiments were set up with a randomized complete block 
design with three replications.

Phenotypic data analysis

Data were normalized using arcsin square root transfor-
mation (Sokal and Rohlf 1995) . Normalized data were 
for ANOVA analysis using a linear mixed model (LMM), 
in which the isolates and wheat genotypes were the main 
effects and their two-way interaction as fixed effects.

The BLUE value for disease severity (% of leaf area cov-
ered by pycnidia) for all isolates was calculated using the 
PROC MIXED procedure in SAS v9.3 (SAS Institute Inc., 
Cary, NC, USA) considering the genotype as a fixed effect 
and replication (block) considered as random effect. These 
BLUE values were then used for broad sense heritability 
estimates and correlations between isolates, cluster analy-
sis of wheat genotypes, and also to perform GWAS (Godoy 
et al. 2018).

Cluster analysis of wheat genotypes according to pycnidia 
coverage data by each isolate was performed using the un-
weighted pair-group method (UPGMA) and the dissimilarity 
matrix was measured using the Ward’s method implemented 
in PAST software (Hammer et al. 2001). Pearson correla-
tion coefficients among 10 STB isolates were calculated for 
the percentage of leaf covered by pycnidia in 185 wheat 
genotypes.

Genotypic data

DNA was extracted from seedling plants of each genotype 
using the CTAB protocol (Lassner et al. 1989) . The quality 

and quantity of DNA were checked by a spectrophotometer, 
and DNA concentration was adjusted to 100 ng/µl. DNA 
samples were plated in 96-plex and shipped to DArT Pty 
Ltd, Canberra, Australia, and genotyped using the DArT-
seq technology (Sansaloni et al. 2011; Alam et al. 2018). 
The detailed methodology for the generation of DArTseq 
markers (SNP and SilicoDArT) was described in Egea et al. 
(2017). We received a total of 94,535 (54,309 SilicoDArT 
and 40,225 SNP) markers, which were polymorphic across 
185 wheat genotypes (Supplementary Table S2). The physi-
cal position of markers obtained by aligning to the reference 
genome of to the reference genome of Chinese Spring (CS) 
IWGSC Ref Seq v1.0 (IWGSC et al. 2018).

Marker loci with unknown chromosome positions (based 
on genome assembly) were removed from the analysis, 
and the remaining markers were filtered using a minimum 
minor allele frequency (MAF) of 0.05 in TASSEL v.5.2.37 
software (Bradbury et al. 2007). Wheat is a self-pollinated 
crop and we assumed that all genotypes are homozygous. 
Therefore, markers showing heterozygous were indicated as 
missing and markers with > 20% missing were excluded. In 
total, 21,773 (15,856 SilicoDArT and 5917 SNP) distributed 
across the 21 chromosomes were maintained for analysis.

Linkage disequilibrium and population structure 
analysis

Linkage disequilibrium (LD) for DArTseq markers was 
implemented in TASSEL v.5.2.37. The critical r2-value was 
determined by root transforming the unlinked r2-values and 
taking the 95th percentile of the distribution as the thresh-
old beyond which LD is likely caused by genetic linkage 
(Nielsen et al. 2014; Monostori et al. 2017). The graphical 
LD decay was imputed by the GAPIT R package (VanRaden, 
2008; Lipka et al. 2012). Population structure was performed 
in STRU​CTU​RE 2.1 based on an admixture model (Evanno 
et al. 2005). The optimal value of K ranges from 1 to 10, 
with three independent runs. For each run, the analysis 
was performed with 10,000 burn-in replicates and 10,000 
Markov chain Monte Carlo (MCMC) iterations. Principal 
coordinate analysis (PCoA) and cluster analysis among the 
wheat genotypes conducted by DARwin ver. 5.0 software 
using the Unweighted Neighbor-Joining (UNJ) algorithm.

Genome‑wide association analysis

Genome-wide association mapping (GWAS) was conducted 
using 21,773 DArTseq markers and the best linear unbiased 
estimates (BLUE) for phenotypic scoring data of 10 Z. tritici 
isolates. The R package Genome Association and Predic-
tion Integrated Tool (GAPIT) (Lipka et al. 2012) was used 
for GWAS by fitting four different models such as mixed 
linear model (MLM), multiple loci mixed model (MLMM), 

Table 1   List of isolates used for phenotypic analysis on 185 wheat 
genotypes at seedling stage under greenhouse conditions

Isolates code Origin
Country Location

IPO02166 Iran Dezful
IPO99031 France Beauce
IPO98022 France Villaines la Gonais
IPO92034 Algeria Guelma
IPO86013 Turkey Adana
IPO323 Netherlands W.Brabant
RM230 Iran Bokan
RM22 Iran Khozestan
RM6 Iran Fars
RM183 Iran Ardabil
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compressed mixed linear model (CMLM), and fixed and 
random model Circulating Probability Unification (Farm-
CPU) methods to select the best fitting model and reduced 
false discovery rate (FDR). FarmCPU method uses both the 
fixed-effect model (FEM) and random effect model (REM) 
iteratively to eliminate confounding factors, which prevents 
model overfitting and control false positives simultaneously 
(Liu et al. 2016). This model was highly efficient in compu-
tation for complex traits by eliminates confounding issues 
arising due to population structure, controlling false posi-
tive and reduce their effect in GWAS analysis (Gahlaut et al. 
2019; Kaler et al. 2020). Therefore, GWAS was performed 
on the BLUE for each trait (diseases severity data for each 
isolate) to identify DArTseq markers associated with both P 
levels and efficiency traits using FarmCPU model. In order 
to detect the marker-trait association (MTA) in GWAS, if the 
significant markers cross the false discovery rate threshold 
(P = 0.05), a uniform suggestive genome-wide significance 
threshold level of P-value ≥ 0.0001 (− log10 P = 4.00) was 
selected for MTA considering the deviation of the observed 
test statistics values from the expected test statistics values 
in the Q–Q plots.

Map positions of significant MTAs were determined 
according to their genetic positions in a high-resolution 
DArT-seq consensus map version 4, including 105,122 
markers distributed across the 21 hexaploid wheat chromo-
somes (https://​www.​diver​sitya​rrays.​com/​techn​ology-​and-​
resou​rces/​genet​icmaps/) and bread wheat IWGSC RefSeq 
v1.0 with BLAST + v2.7.1 (Camacho et al. 2009). Over-
lapping significant markers on the same chromosome for 
resistance to different STB isolates were considered to tag a 
single QTL if their positions were closer than 10 cm. Then, 
for comparison of the QTLs identified in this study, the map 
position of significant markers in each QTL was projected 
onto the two different wheat SSR consensus maps (Somers 
et al. 2004; Maccaferri et al. 2015) for cross-reference with 
previous SSR maps. Each QTL considered new if its posi-
tion was ≥ 10 cm from previously reported STB resistance 
genes or QTLs.

Candidate genes identification and expression 
analysis

Promising candidate genes for individual MTA were iden-
tified by aligning the physical position of markers to the 
sequence of the wheat genome assembly IWGSC v.1.0 
(https://​plants.​ensem​bl.​org/​Triti​cum_​aesti​vum/​Info/​Index). 
High-confidence annotated genes were retrieved from 
a ± 3-Mb window of left and right of each identified MTA. 
For the expression analysis of annotated candidate genes 
(CG), the transcripts per kilobase million (TPM) values for 
every CG were retrieved from the public wheat expression 
database at http://​wheat​expre​ssion.​com (Ramírez-González 

et al. 2018) and the Log transformed (Log2X) value was 
used to generate a heatmap using online tool ClustVis (Met-
salu and Vilo 2015).

Results

Response of wheat genotypes to Zymoseptoria tritici 
isolate at seedling stage

Analysis of disease severity data showed significant differ-
ences (P˂0.001) among wheat genotypes for resistance to Z. 
tritici (Table 2). Genotype × isolate interaction was highly 
significant (P˂0.001) and indicated the differences in wheat 
genotypes for their responses to Z. tritici isolates. Heritabil-
ity values for disease severity were high for all isolates. The 
high heritability values indicated that there was a limited 
replication variation relative to genotypic variation for all 
isolates. This is supported by high Pearson correlation coeffi-
cients for disease severity between all isolates (Table 3). The 
Pearson correlation coefficient between STB isolates ranged 
from 0.26 (IPO02166 and IPO92034) to 0.90 (IPO323 and 
IPO86013) with an average value of 0.61 (Table 3). All iso-
lates showed high virulence, which among them IPO02166 
was the most aggressive isolates with the highest mean dis-
ease severity (63%) across all wheat genotypes and only 15 
wheat genotypes (8%) were resistant to this isolate, while 
IPO323 was the least aggressive isolate (mean disease sever-
ity = 40%) and 35 wheat genotypes (20%) were resistant to 
this isolate (Supplementary Table S1). In total, 239 interac-
tions among all (n = 1850) were found for resistance to one 
isolate, of which 183 showed disease severity P ≤ 5% (highly 
resistance), and 56 were disease severity 5 < P ≤ 10% (resist-
ance) (Supplementary Table S1).

The mean disease severity (DS) among wheat genotypes 
ranged from 0 (M3 synthetic) to 68% (KC4821 from Iran). 
Among 63 Iranian commercial cultivar and lines, 51 cul-
tivars (80%) were susceptible to all isolates, while ER-M-
92–20 was resistant to all isolates. In addition, Sayson and 
Hirmand showed resistance responses to all isolates, except 
for IPO02166 and IPO99031. Although “Zare” was resist-
ance to all isolates, expect for low disease susceptibility 

Table 2   Summary of the linear mixed model (LMM) of percentages 
of leaf area with necrotic lesions bearing pycnidia of 10 isolates of 
Zymoseptoria tritici on 185 wheat genotypes

a Significant at P = 0.001

Fixed effect Wald statistics d.f Wald/d.f Pa

Genotype 7718.23 184 41.94 ***
Isolate 1398.49 9 155.38 ***
Genotype × Isolate 14,317.59 1656 8.64 ***
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rate for two Iranian isolates RM22 and RM230 (Supple-
mentary Table S1). In total, 39 isolate-specific resistances 
were found among all interactions (n = 640). The overall 
mean disease severity among Iranian commercial cultivar 
and lines was 45% ranging from 2 (ER-M-92–20) to 62% 
(Parsi). Among 103 landrace genotypes, 80 genotypes were 
susceptible to all isolates. The landrace IPK40740 (France) 
showed immune responses to all isolates, and in addition, 
five landraces (IPK45227, IPK46116, IPK40793, IPK41079, 
and IPK16452) were resistance to nine isolates. Overall, 
the mean disease severity of wheat landraces ranged from 
0.9 to 68% with an average value of 44%, and in total, 116 

isolate-specific resistances were found among landrace-iso-
late interactions (n = 1030). Cluster analysis and principal 
component analysis using omitted data from the percentage 
of leaf area covered by pycnidia grouped wheat genotypes in 
three distinct clusters (Fig. 1). The first cluster comprised 63 
wheat genotypes, of which 19 genotypes were Iranian culti-
var and breeding lines, 7 genotypes with previously known 
Stb genes (Bulgaria, Israel 493, Cs-Synthetic, Shafir, Es-
Federal, M6, and Balance), and the remaining genotypes 
were from different sources. Resistance spectra of geno-
types for this cluster ranged from 30.98 (IPO323) to 56.61% 
(IPO02166) (Table 4). Cluster-II contained 85 genotypes, 

Table 3   Pearson correlation coefficient and broad-sense heritability (h2) for response to Zymoseptoria tritici isolates against 185 wheat geno-
types across three replication under controlled greenhouse conditions

*  and **Significant at P = 0.05 and P = 0.01, respectively

Isolates IPO02166 IPO99031 RM230 RM22 RM6 RM183 IPO98022 IPO92034 IPO86013 IPO323 Heritability

IPO02166 1 0.98
IPO99031 0.57** 1 0.97
RM230 0.28* 0.52* 1 0.97
RM22 0.49* 0.64** 0.63** 1 0.99
RM6 0.45* 0.55** 0.55** 0.80** 1 0.99
RM183 0.47* 0.58** 0.60** 0.84** 0.90** 1 0.97
IPO98022 0.37* 0.48* 0.54** 0.75** 0.81** 0.85** 1 0.92
IPO92034 0.26* 0.39* 0.45* 0.65** 0.66** 0.69** 0.80** 1 0.98
IPO86013 0.31* 0.42* 0.48* 0.70** 0.71** 0.75** 0.82** 0.82** 1 0.98
IPO323 0.29* 0.41* 0.48* 0.68** 0.73** 0.74** 0.81** 0.79** 0.90** 1 0.95

Fig. 1   Cluster analysis (a) and principal component analysis (PCA) of 185 wheat genotypes based on mean disease severity data against ten 
Zymoseptoria tritici isolates
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with 32 Iranian cultivars, one differential cultivar (Curtot), 
and 52 genotypes from diverse origins. All genotypes in 
this cluster were highly susceptible to most of the isolates 
and the mean disease severity ranged from 45.14 (IPO323) 
to 66.57% (IPO02166) (Table 4). Cluster III comprised 37 
genotypes, most of the differentials with known Stb genes 
(Veranopolis, Tadinia, Kavkaz-K4500, TE9111, Salamoni, 
Arina, Riband, and M3) grouped in this cluster. In general, 
genotypes from this cluster showed low mean disease sever-
ity that ranged from 7.76 (IPO323) to 43.59% (IPO02166) 
(Table 4). Cluster-III comprised of 37 genotypes, including 
13 Iranian cultivar and breeding lines, eight differentials 
(Veranopolis, Tadinia, Kavkaz-K4500, TE9111, Salamoni, 

Arina, Riband, and M3), and 16 landraces from different 
origins. In general, genotypes grouped in this cluster had a 
low mean disease severity ranging from 7.76 (IPO323) to 
43.59% (IPO02166) (Table 4).

Population structure and linkage disequilibrium

Extensive genotyping on 185 wheat genotypes resulted in 
21,773 (15,856 SilicoDArT and 5917 SNP) markers. The 
unweighted Neighbor-Joining cluster analysis (Fig. 2a) and 
Bayesian model-based structure analysis (Fig. 2b) grouped 
wheat genotypes into four distinct subpopulations. Sub-pop-
ulation 1 (50 genotypes) consisted of 17 Iranian landraces 

Table 4   Means of disease severity of wheat genotypes to different Zymoseptoria tritici isolates in three clusters

Cluster No. genotypes IPO2166 IPO99031 RM230 RM22 RM6 RM183 IPO98022 IPO92034 IPO86013 IPO323

1 63 56.61 43.10 44.24 39.15 38.06 39.92 35.79 38.44 40.61 30.98
2 85 66.57 60.78 53.89 55.49 61.12 59.91 54.32 51.61 50.68 45.14
3 37 43.59 30.39 25.77 15.03 13.34 13.16 9.28 8.22 9.08 7.76

Fig. 2   The neighbor-joining cluster analysis based on genetic dissim-
ilarity in 185 wheat genotypes (a). The color of branches indicates 
accessions corresponding to the subpopulations in population struc-

tute analysis. Determination of the optimal value of K and popula-
tion structure analysis (b) and principal coordinate analysis (c) of 185 
wheat genotypes based on DArTseq markers

434 Journal of Applied Genetics (2022) 63:429–445



1 3

and genotypes from Western Asia and Eastern Europe (Tur-
key, Tajikistan, Romania, Hungary). Sub-population 2 (29 
genotypes) contained genotypes from diverse origins and 
two Iranian cultivars. Sub-population 3 (86 genotypes) com-
prised most of the Iranian improved genotypes (45 geno-
types) and eight wheat differentials for resistance to STB. 
Sub-population 4 (20 genotypes) consisted of landraces 
accessions from different origins. In general, there was no 
significant relationship between cluster grouping and origin 
of wheat genotypes, most probably due to the ancient and 
recent international exchange of germplasm, while the Ira-
nian improved cultivars mainly grouped in the same cluster. 
Several of the genotypes used in this study have been uti-
lized as parental lines or have the same background pedigree. 
Therefore, a mixture of origins was observed in all clusters. 
Nevertheless, a clear distinction on the abovementioned four 
main subpopulations was clearly observed based on molecu-
lar data analysis. Principal component analysis (PCA) was 
used to confirm the results of population structure and this 
also showed a distinct pattern of subpopulations. The first 
two PCs represented 66.72% of the total variation (Fig. 2c). 
A comparable result similar to cluster analysis and PCA was 
also observed by the heatmap plot of kinship matrix where 
four distinct clusters were identified (Fig. 3). Different sub-
populations showed different resistance levels for most of 
the isolates. Subpopulation 1 (mostly of Iranian landraces 
and landraces from West Asia) has the highest susceptibility 
(mean DS = 48.2), followed by the subpopulation 2 (mean 
DS = 43.4) and subpopulation 3 and 4 (mean DS are 43.3 
and 40.4, respectively) (Fig. 4). These associations between 
population structure and STB resistance indicated that cor-
rections for population structure were required for associa-
tion mapping analysis. In general, the PCA analysis was 
consistent with the results of STRU​CTU​RE analysis, while 
the cluster analysis showed more consistence with subpopu-
lations identified by STRU​CTU​RE analysis (Fig. 2).

In LD analysis, the square of the correlation coefficient 
of alleles between loci (r2) was not significant for most of 
the pairwise comparisons, whereas out of 104,8575 marker 
pairs, only 297,546 (28%) intra-chromosomal pairs showed 
a significant level (P < 0.001) of LD. Marker pairs on the 
genome-B showed a higher number of significant pairs in 
comparison to the genome-A and genome-D. Mean and criti-
cal r2 values were 0.09 and 0.16, respectively. LD declined 
with increasing physical genetic distances between markers 
and r2 value falling below the critical value over distances 
of 1.6 Mb (Fig. 5).

Genome‑wide association analysis

Among different GWAS models, FarmCPU model shows 
reliable results and presented low spurious associations. For 
the analysis, BLUE value of phenotypic data (percentage of 

necrotic leaf area covered by pycnidia) for each isolate and 
21,773 mapped DArTseq markers on 185 wheat genotypes 
were used. The highest number of markers was mapped on 
A genome (8031) and B genome (9537) compared to those 
mapped on D genome (4205). Association analysis was per-
formed separately for each isolate. A total of 27 significant 
MTA were identified for STB resistance on 14 chromosomes 
(Table 5). Manhattan plots for the association between mark-
ers and STB responses to ten Z. tritici isolates are displayed 
in Fig. 6 (Supplementary Fig. 1).

The QTLs identified for different isolates but located at 
overlapping genomic region on a chromosome were consid-
ered a single QTLs and assigned the same name using the 
nomenclature Qstb.iau- followed by the number of QTLs 
in chromosome order (Table 5; Supplementary Figure S2), 
and finally, 19 significant genomic regions associated with 
resistance to Z. tritici were detected on 14 chromosomes 
(Table 5). Most of the significant MTAs showed small 
effects, and regarding significant associations (P < 0.0001), 
only the MTA that explaining > 5% of the phenotypic vari-
ations are presented in Table 5.

The position of these QTLs was compared to the posi-
tion of mapped QTLs and known genes reported in previ-
ous studies (summarized in Supplementary Fig. 2). Overall, 
13 QTLs were associated with resistance to one isolates, 
although 6 QTLs were associated with resistance to multi-
ple isolates that were on chromosome 2B (Qstb.iau-3), 2D 
(Qstb.iau-5), 3B (Qstb.iau-6), 4A (Qstb.iau-7 and Qstb.iau-
8), and 6B (Qstb.iau-15) (Table 5).

The corresponding locations of the identified QTLs were 
checked on a consensus map and their overlaps compared 
with previously known STB resistance genes and QTLs. Out 
of 19 QTLs, 15 QTLs were identified in overlap regions or 
very close (≤ 10 cM) to genomic regions of the previously 
reported QTLs/genes. Five genomic regions were identified 
as putatively new QTLs for resistance to STB on chromo-
somes 1A, 4A, 5B, 5D, and 6D (Supplementary Fig. 2). 
Among these putatively novel genomic regions, Qstb.iau1, 
Qstb.iau-11, Qstb.iau-13, and Qstb.iau-16 were specific-
isolate resistance QTLs for isolate RM6 (Iran),

IPO02166 (Iran), IPO86013 (Turkey), and IPO98022 
(France), respectively, and interestingly the Qstb.iau7 were 
associated with resistance to four isolates (IPO98022, 
IPO99031, RM6, RM183) (Table 5).

Putative candidate gene identification 
and expression analysis

All the MTA associated with resistance to STB isolates 
identified by FarmCPU method were mapped to the wheat 
physical genome. The physical reference genome of Chi-
nese Spring cv. was used to survey the genes in the flank-
ing regions on each MTA (IWGSC RefSeq v1.0 with 
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BLAST + v2.7.1). For each MTA, ± 3 Mb regions toward 
the left and right side was used to identify the putative can-
didate genes (CGs) using Ensembl Plant database. A search 
for candidate genes resulted in identification of multiple 
genes (70 CGs, ranges from 1 to 12 CGs per MTA); by 
annotation, these CGs based on gene ontology (GO) using 
the IWGSC RefSeq v1.0, 24 genes were found to have puta-
tive role in diseases stress on the basis of literature search 
(Table 6). These genes are involved in different biological 
activities like protein kinase-like domain, Cytochrome P450, 
leucine-riche repeat domain superfamily, Fbox domain, and 

Homeobox-like domain superfamily (Table 6). Gene expres-
sion analysis for 24 CGs was conducted using RNA-seq 
expression data retrieved from Wheat Expression Browser 
(http://​www.​wheat-​expre​ssion.​com/). The results are indi-
cated for expression of 10 of the 24 genes that expressed 
at different developmental stages under disease stress like 
septoria, fusarium, and leaf rust (Supplementary Fig. 3). 
Five genes (TraesCS2A02G582500, TraesCS3B02G348200, 
TraesCS5A02G367700, TraesCS5B02G380400, and 
TraesCS6D02G327400) had high expression (up to 3 
Transcripts Per Million; TPM) at different developmental 

Fig. 3   Heatmap plot of kinship matrix displaying relationships of 185 wheat genotypes based on DArTseq markers
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stages of wheat under septoria tritici blotch, leaf rust, and 
fusarium head blight diseases, and interestingly, all these 
genes belonged to protein kinase-like domain superfamily 
(Supplementary Fig. 3). Some candidate genes like TraesC-
S1A02G004400, TraesCS2B02G001600, and TraesC-
S2D02G029700 are expressed uniquely only in reproductive 
stage (Supplementary Fig. 3).

Discussion

Novel sources for resistance to Z. tritici

Z. tritici is one of the most important foliar diseases in many 
wheat-growing areas, including Europe, Northern America, 
and Asia (Hardwick et al. 2001; Mehrabi et al. 2015). The 
use of genetic resistance is the most appropriate strategy 
to control the disease. However, the rapid adaptation of Z. 
tritici populations leads to a quick breakdown of resistance. 

Thus, continuous characterization and utilization of new 
sources of resistance in breeding programs are prerequisites 
(Abrinbana et al. 2010; Ghaneie et al. 2012). Iran is one of 
the primary centers of origin of wheat, and it is proposed 
that the co-evolution of wheat and Z. tritici occurred in this 
region. Therefore, the characterization of wheat genotypes 
using isolates from this region is likely required to add new 
resources to gene pool, which can be used for pyramiding 
resistance genes (Ghaneie et al. 2012; Makhdoomi et al. 
2015; Aghamiri et al. 2015) . We have recently studied the 
interactions of 185 wheat genotypes against ten Z. tritici 
isolates from different sources (Mahboubi et al. 2020). Most 
wheat genotypes showed were susceptible to all isolates. 
High broad-sense heritability suggested that the resistance 
variation is heritable, which are in agreement with previous 
studies on septoria resistance in different wheat germplasm 
both at seedling and adult plant stages (Dreisigacker et al. 
2015; Muqaddasi et al. 2019; Riaz et al. 2020).

Among the isolates, IPO323 showed the highest num-
ber of incompatible interactions (n = 35), while IPO02166 
(originated from Iran) showed a high level of aggressive-
ness on wheat genotypes. All the differential wheat geno-
types (except M3, Riband, Arina, and Kavkaz-K4500) 
possessing known Stb genes were susceptible to most of 
Z. tritici isolates, which are in agreement with previous 
reports for the ineffectiveness of known Stb genes against 
Z. tritici populations (Abrinbana et al. 2012; Makhdoomi 
et al. 2015; Mahboubi et al. 2020). Interestingly, two geno-
types (ER-M-92–20 and IPK40740) and four differentials 
(Kavkaz-K4500, Arina, Riband, and M3) were resistant 
to all isolates. These genotypes could be of interest as 
resistance sources that contain resistance genes or a com-
bination of diverse yet unknown Stb genes. Therefore, it 
can be concluded that the high resistance pattern of these 
genotypes should be due to the presence of Stb6, Stb15, 
or new unknown resistance genes. Besides these highly 
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resistant genotypes, five genotypes (IPK45227, IPK26116, 
IPK41079, IPK16452, and IPK40793) showed resistance 
to nine isolates and can be used as valuable resistance 
sources in wheat breeding programs. Among wheat geno-
types, M3 showed highly resistance (immune) responses to 
all isolates. This genotype contains Stb16 and Stb17 (Tabib 
Ghaffary et al. 2012; Mahboubi et al. 2020). Therefore, it 
can be concluded that this gene still is effective against 
STB, which is consistent with previous reports (Hosseinn-
ezhad et al. 2014; Makhdoomi et al. 2015). The resistance 
sources used in this study that we previously reported as 
likely novel sources of resistance (Mahboubi et al. 2020) 
can be used in breeding programs for the development of 
modern wheat cultivars.

QTL validation and alignment to previously 
reported STB genes and QTLs

In line with our previous study, we used GWAS analysis to 
identify novel QTLs against Z. tritici isolates. This approach 
enables breeders to enhance crop genetic improvement by 
incorporating suitable QTLs into wheat breeding programs 
(Ibrahim et al. 2020). To this aim, DArTseq markers were 
successfully used to genotype a globally diverse wheat germ-
plasm. The use of high-density markers with broad genome 
coverage in GWAS improved the accuracy of identified 
QTLs for resistance to STB, which is a highly quantitative 
disease trait with a minor contribution of each QTL (Mirdita 
et al. 2015; Muqaddasi et al. 2019). Overall, we found 19 

Table 5   Summary of the septoria tritici blotch resistance quantitative trait loci identified against 10 Zymoseptoria tritici isolates in the panel of 
185 wheat genotypes

* The physical position of markers obtained by aligning to the reference genome at IWGSC Ref Seq v1.0, using Wheat_ChineseSpring04 as a 
reference model
** The markers were positioned on the latest high-resolution DArT-seq consensus map (version 4.0), provided by Dr. Andrzej Kilian (Diversity 
Arrays Technology Pty Ltd, Canberra, Australia)

QTL Associated marker Isolate Chromosome Physical position (bp)* Map posi-
tion (cM)**

P value MAF

Qstb.iau-1 5,332,931 RM6 chr1A 2,187,418 7.5 6.08E-05 0.43
Qstb.iau-2 4,544,165 IPO99031 chr2A 748,128,615 113.78 7.16E-05 0.49

3,533,473 IPO99031 chr2A 776,037,491 120.68 3.43E-05 0.31
Qstb.iau-3 3,064,517 IPO323 chr2B 11,132 0.57 6.27E-05 0.17

1,864,355 IPO323, IPO86013 chr2B 11,066 1.26 3.60E-05 0.28
Qstb.iau-4 1,093,912 IPO98022 chr2B 775,155,639 96.12 4.27E-05 0.48
Qstb-iau-5 1,265,720 RM230 chr2D 12,587,173 11.54 4.99E-05 0.20

3,937,084 RM6 chr2D 22,776,052 21.81 5.70E-05 0.48
Qstb.iau-6 1,205,624 IPO98022 chr3B 310,392,089 53.24 3.49E-05 0.18

1,124,803 IPO323 chr3B 557,176,126 65.26 6.95E-05 0.14
Qstb.iau-7 5,582,113 IPO98022, 

IPO99031, RM6, 
RM183

chr4A 140,700,686 21.83 2.96E-05 0.11

Qstb.iau-8 2,257,551 RM22, RM183 chr4A 641,506,835 96.35 9.54E-05 0.23
Qstb.iau-9 1,238,557 RM230 chr4A 722,708,344 121.39 4.36E-05 0.33
Qstb.iau-10 2,258,488 RM183 chr5A 568,491,318 80.07 5.20E-06 0.17
Qstb.iau-11 5,970,385 IPO02166 chr5B 488,112,132 44.5 2.26E-05 0.09

1,088,825 IPO02166 chr5B 490,053,583 45.23 3.16E-05 0.10
Qstb.iau-12 2,354,562 IPO92034 chr5B 557,353,675 78.82 2.58E-05 0.19
Qstb.iau-13 6,038,202 IPO86013 chr5D 541,681,037 137.5 1.207E-05 0.31

7,157,166 IPO86013 chr5D 541,902,658 138.2 1.253E-05 0.35
Qstb.iau-14 1,110,173 IPO92034 chr6A 5,125,140 8.31 7.85E-05 0.40
Qstb.iau-15 1,009,838 IPO02166 chr6B 129,858,768 25.34 3.68E-05 0.39

1,266,810 IPO98022 chr6B 648,849,374 37.82 8.80E-05 0.39
5,577,074 IPO98022 chr6B 655,271,759 41.64 2.17E-05 0.43

Qstb.iau-16 2,275,399 IPO98022 chr6D 433,578,091 72.21 6.16E-05 0.45
Qstb.iau-17 4,008,741 IPO86013 chr7A 670,929,737 75.21 1.606E-05 0.30
Qstb.iau-18 3,020,733 RM22 chr7D 15,219,082 11.07 9.15E-05 0.19
Qstb.iau-19 2,242,097 IPO323 chr7D 556,246,143 119.31 6.99E-05 0.09
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QTLs for resistance to STB that were located on 14 chromo-
somes (Table 5). The phenotypic variation explained by each 
QTLs mapped on different chromosomes was relatively low 
(R2 ≤ 0.17), suggesting that the resistance to this pathogen 
follows a highly quantitative nature, which is consistent with 
previous reports (Kidane et al. 2017; Arraiano and Brown 
2017; Yates et al. 2019).

The precise comparisons of these QTLs with known 
QTLs were difficult due to different populations, isolates, 
and markers used elsewhere. However, using consensus 
wheat maps, it was possible to compare QTLs with the 
mapped chromosomal location of previously known genes/
QTLs. Most of the QTLs identified in this study were local-
ized in adjacent regions with known QTLs that have previ-
ously been identified (Goudemand et al. 2013; Brown et al. 
2015).

A QTLs on chromosome 1A (Qstb.iau-1) was isolate-
specific for resistance to RM6 isolate from Iran. This QTLs 
did not align with any previously reported QTLs or STB 
resistance genes; therefore, we assume it as a potentially 
novel QTL. One isolate-specific QTLs was identified on 
chromosome 2A, co-located with previously known MQTL5 
reported by Goudemand et al. (2013) for resistance under 
natural infection as also for two different isolates (IPO323 
and IPO98099), but interestingly, this QTLs was not in 

association with IPO323 used in our study. This can be con-
cluded by the different nature of wheat germplasm and also 
the molecular markers used in our study.

Two QTLs mapped on chromosomes 2B, Qstb.iau-3, 
was associated with resistance to two isolates (IPO323 
and IPO86013) co-located with previously known QTLs 
reported by Goudemand et al. (2013) with the same isolate, 
IPO323. Another QTL was isolate-specific for IPO98022, 
co-localized with previously known resistance gene (Stb9) 
and QTLs under natural field condition (Eriksen et al. 2003; 
Risser et al. 2011). Another QTLs mapped on chromosomes 
2D was in association with resistance to two Iranian Z. trit-
ici isolates (RM6 and RM230) colocalized with previously 
reported meta-QTLs for resistance to septoria as seedling 
stage (Goudemand et al. 2013). As well as, identified QTLs 
on chromosome 3B in this study for resistance to isolates 
IPO323 and IPO98022 was overlapped with previously 
reported meta-QTLs on this chromosome with the same 
isolates (Goudemand et al. 2013).

Three genomic regions were identified on chromosome 
4A, of which two QTLs (Qstb.iau-8 and Qstb.iau-9) were 
in association with resistance to Iranian Z. tritici isolates 
(RM22, Rm183, and RM230) overlapped with previously 
reported QTLs on this region at adult stage (Goudemand 
et  al. 2013), while another QTLs, Qstb.iau-7, was in 

Fig. 6   Circular Manhattan plot 
for association analysis between 
DArTseq markers and ten dif-
ferent Z. tritici isolates in 185 
hexaploid wheat genotypes. 
(1) IPO323, (2) IPO02166, (3) 
IPO86013, (4) IPO98022, (5) 
IPO92034, (6) IPO99031, (7) 
RM6, (8) RM22, (9) RM183, 
and (10) RM230
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association with multiple isolates that did not align with 
any previously reported QTLs or STB resistance genes; 
therefore, we consume it as a potentially novel QTLs.

Two QTLs on chromosomes 5A (Qstb.iau-10) and 5B 
(Qstb.iau-12) overlapped with known STB resistance 
genes, Stb17 and Stb1, respectively. Two QTLs on chro-
mosomes 5B (Qstb.iau-11) and 5D (Qstb.iau-13) were 
isolate-specific resistance and did not align with any pre-
viously reported QTLs or STB resistance genes; there-
fore, we consume that these are potentially novel QTLs. 
Recently reported QTLs of chromosome 5D (Langlands-
Perry et al. 2022) did not align with the physical position 
of our finding QTL on this chromosome, which may be 
related to differences in wheat GWAS panel, isolates, and 
molecular markers that used in both studies. Therefore, 
we could not confirm that these are the same QTLs or 
different, because the physical position of our detected 
QTL on chromosome 5D is different from the previous 
report. This region on chromosome 5D is also known as 
the introgressed region from Aegilops umbellulata and Ae. 
tauschii into wheat and is an important chromosomal loca-
tion having resistance genes against leaf rust, stripe rust, 
soil-borne mosaic virus, and powdery mildew (Bansal 
et al. 2020; Mohler et al. 2020; Liu et al. 2020; Fu et al. 
2014), although the mapped QTLs on chromosomes 5A, 
5B, and 6A were overlapped with Stb17, Stb1, and Stb15 
genes, respectively. This can confirm the results of the 
phenotyping experiment using the differential cultivars 
that the high resistance pattern of genotypes that showed 
broad resistance to all isolates should be due to the pres-
ence of Stb15.

A QTLs identified on chromosome 6B (Qstb.iau-15) 
overlapped with previously reported QTLs and meta-QTLs 
for resistance to septoria under natural field infection at 
both seedling and adult stages (Eriksen et al. 2003; Goude-
mand et al. 2013). Novel genomic region (Qstb.iau-16) 
was identified on chromosome 6D, which was not aligned 
with any previously reported resistance genes or QTLs; 
therefore, we assume it as a potentially novel isolate-spe-
cific resistance QTLs. Three genomics regions associated 
with isolate-specific resistance were co-localized with pre-
viously reported QTLs at adult stages (Goudemand et al. 
2013).

To better understand the functional roles of QTL regions, 
significant MTA were annotated and reviewed for putative 
candidate genes associated with diseases resistance in plant, 
and the expression analysis of these candidate genes also 
was examined. The results suggested that among 24 iden-
tified candidate genes, 10 genes showed expression under 
diseases stresses in different developmental stages of wheat. 
Overall, five genes belonged to protein kinase-like domain 
superfamily and a few genes belonged to leucine-rich repeat 
domain proteins exhibited a significantly higher expression 

under different diseases like septoria, leaf rust, and fusarium 
head blight (Supplementary Fig. 3).

These genes are well known as typical broad-spectrum 
genes that provide resistance to biotic stresses in different 
crop species (Yan et al. 2016; Andersen et al. 2018; Han 
2019; Pandian et al. 2020) as well as for p-loop ATPase 
domain which has been associated with STB resistance in 
the previous studies (Louriki et al. 2021). Furthermore, we 
found several QTLs in close position of previously reported 
QTLs for resistance to Z. tritici isolates at both seedling and 
adult stages, which can be used as valuable sources for intro-
gression of these QTLs into advanced wheat lines (Odilbe-
kov et al. 2019). In addition to previously known QTLs, we 
found several potentially novel QTLs on chromosomes 1A, 
4A, 5B, 5D, and 6D. Detection of these putative new QTLs 
provided useful information that could be used to track 
favorable alleles for developing wheat cultivars resistant to 
STB. This knowledge can be used for generation of new 
allelic combination through cross between novel sources 
for resistance to STB (Riaz et al. 2020). As we used differ-
ent isolates with diverse origins and identified potentially 
novel QTLs that were associated with multiple isolates, this 
suggests that these QTLs remain effective as putative broad 
spectrum sources for resistance to STB, which can be used 
for future wheat breeding programs globally.

Conclusion

In this study, we investigated the resistance spectra of a 
diverse wheat global panel against ten Z. tritici isolates. 
Many of the Iranian cultivars and landraces were suscepti-
ble to most of the isolates. GWAS results revealed that 27 
significant MTA within 19 QTLs, of which 6 QTLs (Qstb.
iau-3, Qstb.iau-5, Qstb.iau-6, Qstb.iau-7, Qstb.iau-8, and 
Qstb.iau-15), are more interesting as they are associated 
with resistance to two or more Z. tritici isolates. Although 
most of the QTLs identified in this study co-localized with 
previously known STB QTLs/genes, five novel genomic 
regions associated with resistance to multiple Z. tritici 
isolates were identified. The QTLs localized on chromo-
some 5D confers that resistance to IPO86013 isolate was 
not aligned with recently reported QTLs for STB on this 
chromosome. Given that the physical position of our iden-
tified QTLs is different from those reported previously, 
therefore, it can be considered as a potentially novel QTLs 
on this chromosome. By aligning the significant MTA 
against available wheat reference genome sequence and 
gene expression analysis, we characterized several candi-
date genes involved in plant defense mechanisms against 
pathogens. These genes are of interest and their exact roles 
in STB resistance remain to be functionally analyzed in the 
future. Molecular and functional characterization of these 
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QTLs/genes eventually will enhance our understanding of 
how resistance is achieved and sheds light on biochemi-
cal mechanisms underlying resistance against STB. As 
well as, the significant QTLs and MTA identified in this 
study will be further validated and can be used in marker-
assisted selection for resistance to STB in wheat breeding 
programs.
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