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Abstract
Late wilt disease (LWD) caused by Harpophora maydis (Samra, Sabet and Hing) is emerging as major production constraint 
in maize across the world. As a prelude to develop maize hybrid resistance to LWD, genetic basis of resistance was inves-
tigated. Two  F2:3 mapping populations (derived from CV156670 × 414-33 (P-1) and CV156670 × CV143587 (P-2)) were 
challenged with LWD at two locations (Kallinayakanahalli and Muppadighatta) during 2017 post-rainy season. A wider 
range of LWD scores was observed at both locations in both the populations. LWD response was influenced by significant 
genotype × location interaction. Six and 56  F2:3 progeny families showed resistance level better than resistant parent. A 
total of 150 and 199 polymorphic single nucleotide polymorphism markers were used to genotype P-1 and P-2, respectively. 
Inclusive composite interval mapping was performed to detect significant Quantitative Trait Loci (QTL), QTL × QTL, 
QTL × location interaction effects. Three major and four minor QTL controlling LWD resistance were detected on chromo-
some-1. The position and effect of the QTL varied with the location. Significant di-QTL interactions involving QTL (with 
significant and/or non-significant effects) located within and between all the ten chromosomes were detected. Five of the 
seven detected QTL showed significant QTL × location interaction. Though two major QTL (q-lw-1.5 and q-lw-1.6) with 
lower Q×L interaction effects could be considered as stable, their phenotypic variance is not large enough to deploy them 
in Marker Assisted Selection (MAS). However, these QTL are of paramount importance in accumulating positive alleles 
for LWD resistance breeding.

Keywords Late wilt disease · Mapping · QTL × QTL interaction · QTL × Location interaction

Introduction

Maize productivity in India is constrained by several preva-
lent and emerging insect pests and diseases. Of these, post-
flowering stalk rot (PFSR) is a complex disease caused by 
three pathogens, namely, Fusarium moniliforme J. (Sheld), 
Macrophomina phaseolina (Tassi) Goid and Harpophora 
maydis (Samra, Sabet and Hing) (Khokhar et al. 2014). 

Stalk rot caused exclusively by seed-borne and soil-borne 
pathogen H. maydis causes premature wilting symptoms 
at post-flowering stage, a condition known as late wilt dis-
ease (LWD). Harpophora maydis is similar to Harpophora 
anamorphic states of Gaeumannomyces species in culture. 
Harpophora spp. mycelia are characterized olivaceous 
brown with radiating hyphae, and cylindrical conidia with 
curved borne in slimy heads (Gams, 2000). Older hyphae 
are heavily pigmented, younger hyphae are nearly hyaline 
and phialides are intermediate in pigmentation (Gams, 
2000; Saleh and Leslie, 2004). Typical symptoms of LWD 
include pre-mature wilting of leaves, discoloration of the 
stalk followed by stalk tissue disintegration and fibrous-
ness in advanced stages (Samra et al. 1963; Ramana et al. 
1997; Johal et al. 2004). Upon severe infection, pathogen 
colonizes in the kernels causing seed rot and early stage 
damping-off (El-Shafey and Claflin 1999). Although it is a 
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weakly competitive saprophyte, the production of sclerotia 
in infested host debris ensures its long-term survival (Sabet 
et al. 1970; Johal et al. 2004). It is also known to infest cot-
ton, lupine, green foxtail and watermelon in addition to corn 
(Dor and Degani, 2019). The Egyptian, Indian and Hungar-
ian isolates have been reported to differ in their morphology, 
pathogenicity and route of infection (Warren 1983; Degani 
et al. 2019).

LWD has been reported in more than 10 maize growing 
countries (Chalkley, 2016), with significant economic losses 
in Egypt (Sabet et al. 1961), India (Payak et al. 1970; Suni-
tha et al. 2020), Spain and Portugal (Molinero-Ruiz et al. 
2010) and Israel (Drori et al. 2013; Degani et al. 2019). It 
is opined that dry environments like India, Egypt and Ibe-
rian peninsula maize growing regions are more prone to 
late wilt infection (Ortiz-Bustos et al. 2019) in the context 
of increased temperatures due to climate change. Based on 
survey, economic losses of 40% have been reported in Egypt 
(Labib et al. 1975; Galal et al. 1979), up to 100% in Israel 
(Degani et al. 2019) and up to 51% in India (Johal et al. 
2004) due to LWD. However, 3.5 to 38.4% loss of grain 
yield attributable to soil inoculation by H. maydis has been 
reported based on an empirical study using a limited num-
ber of genotypes in Egypt (El-Naggarr et al. 2015). Very 
recently, we have reported 5.8 to 44.2% grain yield losses 
attributable to LWD by creating artificial epiphytotic con-
dition through injecting H. maydis inoculum into the stem 
internode (Sunitha et al. 2020) in India. It is considered as 
an endemic disease in maize growing areas (Degani and 
Cercina, 2014). Despite increasing reports from Israel and 
Egypt in the last 10 years, there are only a few reports on 
the incidence of late wilt disease in India. It was identified 
as threat at Hyderabad, Pantnagar and Rajasthan (Payak 
et al. 1970; Singh and Siradhana 1986); Johal et al. (2004) 
reported 70% incidence and economic losses up to 51% in 
India. Even though this pathogen was identified 30 years 
back in India, further reports on its incidence and damage 
were very limited. However, several maize researchers have 
reported its potential of causing endemic from last one dec-
ade (Shekhar et al. 2010; Biradar et al. 2020).

Genetic intervention is regarded as eco-friendly and 
cost-effective option to mitigate losses caused by LWD 
(El-Shafey et al. 1988; Zeller et al. 2000). As a prelude 
to genetic intervention, stable sources of resistance to H. 
maydis (Satyanarayana 1995; Shekhar et al. 2010; Rakesh 
et al. 2016b; Aruna 2017; Biradar et al. 2020; Kamara 
et al. 2021) have been identified. The inheritance of resist-
ance to LWD has been reported as complex with signifi-
cant genotype × environment interaction (Shekhar et al. 
2010; Rakesh 2016; Aruna 2017; Biradar 2019). Hence, 
direct selection for LWD resistance is likely to be less 
effective. Nevertheless, DNA markers could be used as 
effective surrogates of such traits in maize for which a 

priori identification and validation of closely linked mark-
ers are essential. As a step towards this, Quantitative Trait 
Loci (QTL) conferring LWD tolerance (Rakesh 2016) 
on chromosomes 1, 3, 5, 7 and 10 have been detected. 
The objectives of our study were to (i) validate the QTL 
detected by Rakesh (2016), (ii) to detect and estimate size 
effects of new LWD resistance governing QTL, if any in 
two different genetic backgrounds, and (iii) detect and 
estimate size effects of their interaction with two spatial 
environments.

Material and methods

Basic genetic material and development of mapping 
populations

The basic genetic material consisting of one LWD-resist-
ant inbred line, CV156670 and two LWD susceptible 
inbred lines, 414-33 and CV143587, developed and being 
maintained at Bayer Crop Science (erstwhile Monsanto 
India Ltd.) were used as parents to develop two connected 
mapping populations. For intellectual property protection 
reasons, the pedigree of these inbreds is not included. The 
two  F1’s (available with Bayer Crop Science), CV156670 
× 414-33 and CV156670 × CV143587 were selfed dur-
ing 2017 summer season to derive  F2 populations. Two  F2 
populations derived from connected crosses CV156670 × 
414-33 and CV156670 × CV143587 were selfed during 
2017 rainy season. These  F2:3 populations (300 progeny 
families each) constituted inter-connected mapping popu-
lations to detect QTL controlling LWD resistance.

Phenotyping mapping populations for responses 
to LWD

Field experimentation

The mapping populations were evaluated at two locations, 
Kallinayakanahalli (KNH) 13.464013°N, 77.519178°E 
and Muppadighatta (MPG) 13.241161°N, 77.483637°E. 
300  F2:3 progeny families each from two  F2 populations, 
parental inbred lines and checks (susceptible and resist-
ant check) were sown in single rows of 4-m length with 
0.6-m spacing between rows and 0.2-m spacing between 
plants in two replications following randomized complete 
block design (RCBD) during 2017 post-rainy season. Rec-
ommended package of practices like fertilizer (N and P) 
application in intervals, earthing-up at knee-height stage 
and regular weeding were followed to establish good crop 
stand till artificial inoculation. The  F2:3 progeny families 

186 Journal of Applied Genetics (2022) 63:185–197



1 3

were screened for responses to LWD using artificial inocu-
lation. Mass multiplication and inoculum preparation has 
been followed as per the protocol given by Rakesh et al. 
(2016a).

Artificial inoculation of H. maydis inoculum

Isolation and mass multiplication of H. maydis were done 
as per Shekhar and Kumar (2012) modified by Rakesh et al. 
(2016a). Naturally infested LWD stalk specimens collected 
from commercial maize production fields were used for iso-
lation of pathogens and inoculum preparation. Pure cultured 
isolate characteristics were compared with reported morphol-
ogy and fruiting body characteristics of H. maydis (Gams, 
2000). Similarity with spore characters reported by Rakesh 
(2016), Aruna (2017) and Biradar et al. (2020) was considered. 
Pathogenicity test based on Koch’s postulates were proved to 
confirm the pathogen used for inoculation. The inoculum 
concentration was assessed using hemocytometer and was 
adjusted to 4×106 spore  ml−1. A hole was made at the second 

internode on the stem of plants using stem jabbers, and 2 ml 
of the H. maydis was injected to the holes using a syringe 
twice at 45 and 55 days after sowing (DAS). From each prog-
eny family, 20 plants were inoculated. All the recommended 
production practices were followed except for the application 
of potassium fertilisers and fungicides to maintain the plants 
after inoculation.

Sampling and data recording

The stalks of the artificially inoculated plants were split open 
at 110 DAS to examine the typical symptoms of LWD. Disease 
symptoms were manifested by discoloration, disintegration 
and fibrousness at the inoculated internode. Based on the cov-
erage of disease symptom within an internode and its spread 
across internodes, the data on LWD severity was recorded on 
all the inoculated plants using modified 1–9 scale given in 
Supplementary table 1 (Rakesh et al. 2016a).

Fig. 1  Frequency distribution for responses to LWD of  F2:3 populations: a P-1 at KNH (Wilk’s statistic = 0.988; P = 0.087). b P-1 at MPG 
(Wilk’s statistic = 0.993; P = 0.563). c P-2 at KNH (Wilk’s statistic = 0.987; P = 0.177). d P-2 at MPG (Wilk’s statistic = 0.984; P = 0.069)
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Genotyping F2:3 families

Five  F2:3 seeds from each plant of two  F2 populations were 
pooled and ground to fine powder using liquid nitrogen. DNA 
isolated from fine powder using CTAB method (Khairallah 
and Hoisington, 1994) and genotyped using Monsanto propri-
etary-single nucleotide polymorphism (SNP) markers (Sup-
plementary table 2 and 3) through TaqMan assay (Semagn 
et al. 2015). A total of 150 and 199 SNP markers polymor-
phic between the parents of the two mapping populations were 
selected from proprietary database (unpublished) for genotyp-
ing the two mapping populations derived from CV156670 × 
414-33 and CV156670 × CV143587, respectively.

Statistical analysis

LWD responses

LWD responses from 20 plants of each  F2:3 progeny fam-
ily were recorded (Supplementary figure 1). Data were 
cured based on missing data points, outliers and correla-
tion between replicates (Mailman et al. 2007; Rakesh 2016). 
Following data curation, mean LWD scores of 236 and 187 
 F2:3 progeny families out of 300 families of P-1 and P-2, 
respectively were used for statistical analysis. Analysis of 
variance (ANOVA) of  F2:3 progeny families was performed 

to partition the total variation in LWD response scores into 
those attributable to  F2:3 progeny families and within fami-
lies. Additionally, pooled ANOVA was performed to test 
for the consistency of the  F2:3 progeny families for LWD 
response across two locations and to quantify the contribu-
tion of location and genotype × location interaction. Geno-
typic data of markers with >15% missing data and markers 
showing significant segregation distortion were not consid-
ered for statistical analysis.

Detection of QTL controlling resistance to LWD

Markers showing segregation distortion were removed 
(Supplementary table 4 and 5). Information on 115 out of 
150 and 137 out of 199 markers were used in P-1 and P-2 
respectively after data curation. The genotypic and pheno-
typic data of  F2:3 progeny families evaluated in two locations 
were integrated to detect QTL controlling LWD resistance, 
initially using single marker analysis. Subsequently, Inclu-
sive Composite Interval Mapping (ICIM) was performed 
to detect and estimate size effects of QTL and QTL × 
QTL interactions (Li et al. 2015) controlling LWD resist-
ance at individual locations and across locations (pooling 
data from both locations). The accuracy of QTL position 
and significance of size effect of QTL and QTL × location 
interaction conferring LWD resistance was determined using 

Fig. 2  Patterns of expression of responses to LWD by two  F2:3 populations (a P-1 and b P-2) across two locations
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data-driven estimates of threshold LOD scores obtained by 
1000 permutations (Churchill and Doerge 1994). Similarly, 
significant QTL × QTL interactions controlling LWD resist-
ance were detected at threshold LOD value of 5.0, and their 
size effects were estimated. All these statistical analyses 
were implemented using QTL ICiMapping software version 
4.0 (Wang et al. 2016). The detected di-QTL interactions 
associated with resistance to LWD, dominance × dominance 
di-QTL interactions were interpreted based on theoretical 
investigations of Kearsey and Pooni (1996).

Results

LWD responses of F2:3 mapping populations

The LWD response scores of the  F2:3 progeny families 
derived from CV156670 × 414-33 (P-1) and CV156670 
× CV143587 (P-2) (Supplementary figure 1) recorded at 
both KNH and MPG locations were normally distributed 
(Fig. 1a–d). While LWD response scores of  F2:3 progeny 
families ranged from 3.17 to 9.00 and from 3.13 to 8.11 at 
KNH and MPG, respectively in P-1 (Fig. 2a), the responses 
ranged from 2.38 to 8.38 and from 3.12 to 8.64 at KNH and 
MPG, respectively in P-2 (Fig. 2b). A wider range of LWD 
scores at both locations in both the populations indicated 
sufficient LWD expression. Further, there were consider-
able numbers of plants towards both resistant and suscepti-
ble parents (Fig. 2). Six progeny families including two at 
KNH and four at MPG in P-1; 56 progeny families including 
37 at KNH and 19 at MPG in P-2 showed resistance level 
better than resistant parent. Similarly, six progeny families 
including four at KNH and two at MPG in P-1; five progeny 
families including two at KNH and three at MPG in P-2 
showed higher susceptibility than susceptible parent. The 
 F2:3 families derived from each of the two mapping popula-
tions differed significantly across both the locations except 
P-1 at MPG (Table 1). Further, LWD responses of  F2:3 fami-
lies of both populations interacted significantly with location 
as evident from significance of genotype× location (G×L) 
interaction mean squares in pooled ANOVA (Table 2). 
While mean squares attributable to location was non-signif-
icant, those attributable to genotype × location were signifi-
cant in P-2. This trend was reversed in P-1 (Table 2).

Detection of QTL controlling LWD resistance

QTL main effects

Seven QTL, i.e. two (q-lw-1.1 and q-lw-1.2) in P-1 (Fig. 3) 
and five (q-lw-1.3, q-lw-1.4, q-lw-1.5, q-lw-1.6 and q-lw-
1.7) in P-2 detected on chromosome-1 (Fig. 4) were found 
associated with LWD resistance with phenotypic variation Ta
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explained (PVE) ranging from 4.34 to 13.06% (Table 3). 
Among these, three major QTL (q-lw-1.4 and q-lw-1.6 at 
MPG; q-lw-1.5 at KNH) with > 10% PVE were detected 
in P-2. Among the remaining four minor QTL, two (q-lw-
1.1 and q-lw-1.2) were from P-1, and other two (q-lw-1.3 
and q-lw-1.7) were from P-2. Further, while five (q-lw-1.1, 
q-lw-1.3, q-lw-1.5, q-lw-1.6 and q-lw-1.7) of these seven 
detected QTL showed dominance effects, one (q-lw-1.4) 

showed additive effects in desirable direction (decreasing 
effects) for LWD resistance (Table 3).

QTL × location interaction

Pooled analysis across locations indicated significant QTL 
× location (Q×L) interaction. Of the seven detected QTL, 
five (q-lw-1.2, q-lw-1.4, q-lw-1.5, q-lw-1.6 and q-lw-1.7) 
interacted significantly with location with their size effects 

Table 2  Pooled ANOVA of mean LWD scores in  F2:3 populations across two locations

Source of variation CV156670 × CV143587 (P-1) CV156670 × CV414-33 (P-2)

Degrees of 
freedom

Mean sum 
of squares

‘F’ probability Percent 
contribution

Degrees of 
freedom

Mean sum 
of squares

‘F’ probability Percent 
contribution

Genotypes 235 1.52 <0.001 46.55 186 3.17 <0.001 77.89
Locations 01 22.41 <0.001 2.92 01 0.01 0.971 0.00
Genotype × location (G × L) 235 0.61 0.08 18.68 186 0.44 <0.001 10.81
Error 470 0.52 - 31.85 372 0.23 - 11.30

Fig. 3  Genome-wide detection of QTL and their effects controlling LWD response mapped in  F2:3 of CV156670 (R) × 414-33(S) (P-1) at (a) 
Kallinayakanahalli and (b) Muppadighatta
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ranging from 0.04 to 6.80% PVE (Table 3). Of these five 
interacting QTL, only q-lw-1.7 was not detected when indi-
vidual location-wise analysis was performed. This means 
that, remaining four (q-lw-1.2, q-lw-1.4, q-lw-1.5 and q-lw-
1.6) of these five QTL detected using pooled analysis were 
detected only in either of the locations but not in both the 
locations. These four QTL were also stable for their posi-
tion but unstable for their effects (decreased size effects) as 
evident from pooled analysis.

Of the five QTL which showed significant Q × L inter-
action, one QTL, q-lw-1.4 (6.80% PVE Q × L), interacted 
with locations to a greater extent than the other four QTL 
(Fig. 5). None of the QTL detected through location-wise 
analysis were common in both locations. Two QTL (q-lw-
1.3 and q-lw-1.5) flanked by same pair of markers, namely, 
Marker-151 and Marker-152 (with inter-marker distance 
of 23.8 cM) were detected in P-2. While the QTL, q-lw-
1.3 was mapped at 11.40 cM in KNH (in location-wise 
analysis), q-lw-1.5 was mapped at 9.40 cM in MPG (in 
location-wise as well as pooled analysis). Further, their 
position and effects differed (Table 3).

Di‑QTL epistasis

A total of 48 significant di-QTL interactions with size 
effects (in % PVE) ranging from 4.00 to 19.03% were 
detected across both locations in P-1. Of these, ten were 
between QTL located within the same chromosome 
(Fig. 6a). Only nine of these 48 interactions involved QTL 
with significant effects. Similarly, 52 significant di-QTL 
epistatic interactions including ten within same chromo-
some were detected in P-2 with their size effects (in % 
PVE) ranging from 3.18 to 13.83% (Fig. 6b). Only four 
of these 52 significant di-QTL interactions involved QTL 
with significant effects. Summation of direction and effects 
of dominance (h) and dominance × dominance (l) effects 
associated with all di-QTL interaction effects indicated 
duplicate di-QTL epistasis in both the populations. Dupli-
cate di-QTL epistasis was in desirable direction (domi-
nant decreasing effects) at KNH and MPG in P-1 and P-2, 
respectively (Table 4).

Fig. 4  Genome-wide detection of QTL controlling LWD response and corresponding additive and dominance effects mapped in  F2:3 of 
CV156670(R) × CV143587(S) (P-2) at (a) Kallinayakanahalli and (b) Muppadighatta
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Validation of reported QTL conferring resistance to LWD

Rakesh (2016) reported QTL on chromosome-1 at 103.20 
cM (IMD- 10.6 cM), flanked by MONIND14101828 and 
MONIND14262087. This QTL explained only 7.26% 
of LWD resistance in mapping population derived by 
CV138811 × CV143587. We identified one of these mark-
ers namely, Marker-161 (MONIND14101828) flanking 
the QTL, q-lw-1.6 could be validated in P-2 (CV156670 
× CV143587). However, this QTL flanked by Marker-160 
and Marker-161 was detected at position (83.40 cM) and 
phenotypic variation (13.06% PVE at MPG and 4.35% PVE 
across locations) different from that reported by Rakesh 
(2016) (Table 3).

Discussion

LWD is emerging as a major and serious biotic produc-
tion constraint with a potential to reduce yield and quality 
of both grain and fodder (Sunitha et al. 2020; El-Naggarr 
et al. 2015; Drori et al. 2013; Johal et al. 2004). Develop-
ing LWD-resistant cultivars is considered as an eco-friendly 
and sustainable approach to mitigate losses caused by LWD. 
Precise information on the number and mode of action of 
genes/QTL controlling resistance to LWD help devise suit-
able strategies to develop resistant cultivars. The results of 
our study indicate possible involvement of a large number 
of genes controlling resistance to LWD as evident from the 
normal distribution of LWD responses in  F2:3 populations. 
Several previous work by Shehata (1976), Nawar and Salem 
(1985), Abdel-Snbour and Bekhit (1993) and El-Hosary and 
El-Fiki (2015) have also reported the involvement of a large 
number of genes controlling LWD resistance in maize. Fur-
ther, recovery of individuals that surpass the levels of resist-
ant and susceptible parents indicate (i) presence of alleles 
controlling resistance even in susceptible parent and those 
controlling susceptibility even in resistant parent and (ii) 
complementation of parental alleles controlling resistance. 
Thus,  F2:3 populations serve as potential source for recover-
ing inbred lines with levels of resistance to LWD better than 
the resistant parent.

Most of the reports (Wu et al. 2020; Zhang et al. 2012; 
Yang et al. 2010; Suneetha 2016) related to mapping QTL 
controlling resistance to stalk rot are predominantly on 
stalk rot caused by Fusarium sp. followed by Macropho-
mina phaseolina but not on the stalk rot caused exclusively 
by Harpophora maydis (Late wilt disease). This could be 
because of co-existence of Harpophora with Fusarium sp. 
and/or Macrophomina sp. which form a pathogen com-
plex causing PFSR (Degani et al. 2020; Khokhar et al. 
2014). Additionally, soil-borne Fusarium sp. and/or Mac-
rophomina sp. are known to invade the H. maydis infested Ta

bl
e 

3 
 P

os
iti

on
 a

nd
 e

ffe
ct

 o
f Q

TL
 c

on
fe

rr
in

g 
LW

D
 re

si
st

an
ce

 d
et

ec
te

d 
in

di
vi

du
al

 lo
ca

tio
n-

w
is

e 
an

d 
ac

ro
ss

 lo
ca

tio
ns

 (p
oo

le
d)

Tr
ai

t
Q

TL
En

vi
ro

nm
en

t
Po

pu
la

tio
n

C
hr

om
os

om
e

G
en

om
ic

po
si

tio
n 

(c
M

)
Fl

an
ki

ng
 m

ar
ke

rs
LO

D
PV

E 
Q

 (%
)

PV
E 

Q
 ×

 L
 (%

)
A

dd
iti

ve
eff

ec
t

D
om

in
an

ce
eff

ec
t

R
ig

ht
Le

ft

La
te

 w
ilt

 d
is

ea
se

q-
lw

-1
.1

K
al

lin
ay

ak
an

ah
al

li
C

V
15

66
70

× C
V

14
35

87
 (P

-1
)

01
13

8.
60

M
ar

ke
r-1

2
M

ar
ke

r-1
3

4.
45

7.
92

-
0.

44
-0

.1
3

q-
lw

-1
.2

M
up

pa
di

gh
at

ta
11

2.
60

M
ar

ke
r-9

M
ar

ke
r-1

0
4.

56
9.

91
-

0.
30

0.
05

Po
ol

ed
4.

61
8.

28
3.

80
0.

17
0.

04
q-

lw
-1

.3
K

al
lin

ay
ak

an
ah

al
li

C
V

15
66

70
× C

V
41

4-
33

 (P
-2

)

11
.4

0
M

ar
ke

r-1
51

M
ar

ke
r-1

52
4.

06
4.

34
-

0.
41

-0
.2

9
q-

lw
-1

.5
M

up
pa

di
gh

at
ta

9.
40

4.
22

10
.1

0
-

0.
33

-0
.3

1
Po

ol
ed

8.
19

8.
85

0.
04

0.
33

-0
.2

9
q-

lw
-1

.4
K

al
lin

ay
ak

an
ah

al
li

22
4.

40
M

ar
ke

r-1
79

M
ar

ke
r-1

80
12

.2
7

11
.7

2
-

-0
.0

2
1.

08
Po

ol
ed

12
.3

4
8.

73
6.

80
-0

.0
1

0.
56

q-
lw

-1
.6

M
up

pa
di

gh
at

ta
83

.4
0

M
ar

ke
r-1

60
M

ar
ke

r-1
61

5.
97

13
.0

6
-

0.
40

-0
.2

8
Po

ol
ed

6.
23

4.
35

1.
20

0.
24

-0
.1

7
q-

lw
-1

.7
Po

ol
ed

23
2.

40
M

ar
ke

r-1
80

M
ar

ke
r-1

81
5.

42
5.

60
0.

31
0.

18
-0

.3
8

192 Journal of Applied Genetics (2022) 63:185–197



1 3

stalks (Drori et al. 2013). This causes difficulty in pheno-
typing the symptoms caused exclusively by H. maydis. 
To address the issue of possible confounding effects of 
pathogens other than H. maydis, we used Indian pure iso-
lates of H. maydis to inoculate the spores directly into the 
second internode of the stem (Rakesh et al. 2016a, b) using 
stem jabbers (specialized injectors) twice at 45 DAS and 
55DAS (Sunitha et al. 2020).

LWD resistance conferring QTL

Difficulty arising due to complexity of the disease and phe-
notyping could be the potential causes for sporadic reports 
on genetic basis of LWD resistance. The only report (Rakesh 
2016) on mapping genomic regions controlling LWD resist-
ance in two  F2:3 populations (derived using CV138811 and 
CV143587 as donor and susceptible parents, respectively) 
resulted in the identification of three major QTL on chro-
mosomes 3, 5 and 10; and six minor QTL on chromosomes 
1, 2, 3, 5, 6 and 7. QTL analysis is not only intended to 
implement Marker Assisted Selection (MAS) for QTL but 

Fig. 5  Genome-wide detection of QTL controlling LWD response and QTL × location interactions in  F2:3 of (a) CV156670(R) × 414-33(S)/P-1 
and (b) CV156670(R) × CV143587(S)/P-2
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also for understanding the genetics of the quantitative trait. 
Hence, all the identified QTL, whether their effects are large 
or small and with or without environmental sensitivity are 
informative (Asins 2002). We could identify three major 
QTL and four minor QTL. In most of the studies, QTL with 
small effects go undetected due to bias caused by less-strin-
gent threshold levels. To minimize such bias, we used LOD 
threshold derived from 1000 permutations (Churchill and 
Doerge 1994).

QTL×location interaction
The position and effect of the QTL associated with LWD 

resistance varied significantly with the spatial environments 
represented by two locations. If a quantitative trait exhibits 
significant genotype by environment interaction, it then fol-
lows that underlying QTL should also display significant 

interaction with either temporal or spatial environments 
(Bernardo 2020).  F3 progenies of both the crosses displayed 
significant interaction with the environment represented 
by two locations for responses to LWD (Table 2). Hence, 
detected significant interaction of LWD resistance governing 
QTL with location environments did not surprise us. Several 
researchers have also reported significant QTL × location 
interaction associated with resistance response of maize dis-
eases such as Fusarium ear rot (Wu et al. 2020; Robertson-
Hoyt et al. 2006), northern leaf bight (Xia et al. 2020; Chen 
et al. 2016) and rough dwarf disease (Wang et al. 2019). 
The major QTL (>10% PVE) detected through location-wise 
mapping behaved as minor QTL (<10% PVE) when detected 
through pooled analysis. We could also observe shift in the 
position of QTL (q-lw-1.3 and q-lw-1.5) within the same 

Fig. 6  Genome-wide detection of significant di-QTL interactions controlling LWD response mapped in  F2:3 of (a) CV156670(R) × 414-33(S)/
P-1 (b) CV156670(R) × CV143587(S)/P-2

Table 4  Direction of dominance effects and all possible dominance × dominance di-QTL interactions controlling resistance to LWD without 
considering their significance or otherwise

Main QTL 
effect (h)

Dom × Dom 
effect (l)

CV156670 × 
CV143587 (P-1)

CV156670 ×  
CV414-33 (P-2)

Interpretation on type of epistasis

KNH MPG Across 
locations

KNH MPG Across 
locations

+ + Complementary epistasis between dominant increasing effect QTLs
- - Complementary epistasis between dominant decreasing effect QTLs
+ - ✓ ✓ Duplicate epistasis between dominant increasing effect
- + ✓ ✓ ✓ ✓ Duplicate epistasis between dominant decreasing effect
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flanking marker interval in different locations. However, 
such QTL despite showing significant G × E interaction 
help select genotypes adapted to specific locations (Asins 
2002). As expected based on previous reports by Shekhar 
et al. (2010), we could also observe significant influence of 
location and genotype × location interaction on the expres-
sion of LWD. Significance of G × E interaction for a trait 
reflects that underlying genomic regions exhibit significant 
QTL × Location interaction (Bernardo 2020). Among the 
three major QTL identified by us, although two QTL (q-lw-
1.5 and q-lw-1.6) showed significant Q×L interaction, the 
magnitude of interaction effects was relatively low. These 
QTL with lower Q×L interaction effects could be consid-
ered as stable and deployed to implement MAS for LWD 
resistance after validation. This is because, the efficiency 
of MAS may get reduced if detected QTL controlling target 
trait exhibits significant interaction with either the environ-
ment or background genotype used (Asins 2002).

QTL×QTL interaction
The chances of recovering recombinant inbred lines 

(RILs) with dominant di-QTL interactions are fewer with 
any population other than  F2. However, even a large  F2 map-
ping population may contain fewer two-QTL RILs limiting 
the statistical power of detecting di-QTL interactions (Ber-
nardo, 2020; Pandey et al. 2006). Hence, there are chances 
that epistatic interactions go undetected. We addressed this 
limitation by increasing the LOD significance of >5.0 and 
considering phenotypic data from replicated trials from 
 F2:3. Some of the di-QTL interactions which involve QTL 
with their individual effects being non-significant are also 
informative, provided their di-QTL interaction effects are 
of higher magnitude. Under such instance, deployment of 
QTL alone in MAS without considering its significant di-
QTL interaction would be ineffective. Hence, such QTL 
showing significant epistatic effects of large magnitude 
need to be introgressed together into recipient genetic back-
ground. However, there are chances that the magnitude of 
the significant di-QTL interaction may get reduced or get 
enhanced in recipient parent genetic background. The effects 
of such interacting QTL in recipient genetic background will 
be known after introgression. The direction of cumulative 
dominance effects associated with duplicate di-QTL epista-
sis varied with location. The duplicate di-QTL epistasis with 
decreasing dominance effects on LWD response is desirable. 
However, these di-QTL interaction effects need to be con-
firmed through extensive multi-location evaluation.

QTL genetic background interaction

Genetic background has considerable influence on the 
position and effect of QTL conferring disease resistance 
(Asins 2002; Awata et al. 2020). The same was evident in 
our study, and none of the QTL was common between both 

populations, P-1 and P-2 (which differed for susceptible 
parent genome). However, we could validate only one of 
the reported markers, MONIND14101828 (Marker-161), 
flanking the reported QTL (Rakesh 2016) in P-2. While 
the QTL region having this marker, MONIND14101828 
(Marker-161), in common is flanked by an inter-marker 
distance of 11.8 cM in the present study, it is flanked by 
an inter-marker distance of 10.6 cM in a previous report 
(Rakesh 2016). Thus, this region needs fine mapping to iden-
tify QTL with a narrow inter-marker distance for efficient 
deployment in MAS.

In summary, three major QTL, q-lw-1.4, q-lw-1.5 and 
q-lw-1.6, were identified from our study. However, PVE% 
explained by these three QTL is not large enough for use in 
MAS, but these are of paramount importance in accumulat-
ing positive alleles for LWD resistance breeding. Further, 
only one of these QTL, q-lw-1.6, could be validated. The 
three major QTL exhibited significant interaction with loca-
tions. Considering that the validated QTL reported by us 
and those reported by previous researcher exhibit significant 
interactions with locations, further research investigation is 
essential to identify stable QTL with large PVE for imple-
menting MAS.
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