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Abstract
Powdery mildew is a barley foliar disease that causes great loss in yield. Because of the limited number of effective resistance
genes, efforts to identify new sources of resistance are frequently focused on genetically diversified landraces. The goal of this
study was to characterise the powdery mildew resistance gene in barley line 2553-3 selected from the Moroccan landrace.
Phytopathological testing against a set of differential pathogen isolates revealed different pattern responses of this gene from
those of other known resistance genes. F2 and F2:3 (2553-3 × Manchuria) mapping populations were employed to investigate
resistance inheritance. Two approaches were applied for the linkage analysis: in the first approach, 22 resistant and 21 susceptible
homozygous F2 plants genotyped by the DArTseq platform (Diversity Arrays Technology, Pty. Ltd.) were used; in the second, 94
F2 plants were genotyped by converted DArTseq markers and SSRs. Both analyses delineated a new resistance gene on the short
arm of chromosome 2H. The authors proposeMlMor as a gene symbol for newly characterized powdery mildew resistance genes
in barley line 255-3-3. The results presented herein provide a good foundation for the development of closer linkage markers and
MAS breeding.

Keywords Barley (Hordeum vulgare L.) . DArTseq markers . Powdery mildew (Blumeria graminis f. sp. hordei) . Resistance
gene . Linkagemapping

Introduction

Barley (Hordeum vulgare L.) is the second most important
cereal according to harvest area in Europe (FAOSTAT 2016.
http://www.fao.org/faostat) and is generally grown as fodder
and for brewing purposes. Although barley has low
environmental requirements and can be farmed under harsh
conditions (Nevo 1992; Stanca et al. 1992; Newton et al.
2010; Honsdorf et al. 2014), fungal infections are a cause of
concern. Blumeria graminis (D.C.) Golovin ex Speer f. sp.
hordei Em. Marchal (Bgh) is an obligate Ascomycota patho-
gen that causes powdery mildew, one of the most widespread
foliar diseases. Infection by this fungus leads to yield loss and
decreased feed and malting quality. The two common

approaches of controlling epidemics involve the use of fungi-
cides and the cultivation of resistant crops. Chemical protec-
tion can provide positive selection for pathogen fungicide-
resistant strains (Lucas et al. 2015), whereas the cultivation
of resistant crop varieties is among the most economically
effective and environmentally friendly methods of controlling
disease.

Resistance genes for powdery mildew are widely distribut-
ed on the barley genome. Known resistance genes mapped on
the barley genome include Mla - with almost 30 alleles, as
well as five other genes—Mlat,MlGa,Mlk,Mlnn, andMlra—
on the chromosome 1H;MlLa on 2H; mlo,Mlg, andMlBo on
4H;Mlj on 5H;Mlh on 6H; andmlt andMlf on 7H (Jørgensen
and Wolfe 1994; Schönfeld et al. 1996). Except for mlo, all of
these genes are race-specific, major resistance genes and sub-
ject to the “boom and bust effect,” with newly emerging
pathotypes eventually overcoming resistance within a few
years. The most effective and durable resistance depends on
mlo, a recessive allele originating from Ethiopian landraces
(Büschges et al. 1997) that has been widely introduced into
European cultivars. However, the introduction ofmlo can gen-
erate some negative outcomes: Mlo-resistant varieties are
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more susceptible to necrotrophic and hemibiotrophic patho-
gens (Brown and Rant 2013), and mlo has an impact on yield
by decreasing the thousand-grain weight and yield from a
given plot due to pleiotropic effects (Kjær et al. 1990).

Because of the limited number of known resistance
genes utilised to control barley powdery mildew, new po-
tential resources need to be identified. Barley landraces
originate from regions with traditional and primitive farm-
ing systems, which lack explicit crop progress (Camacho
Villa et al. 2005). These materials are promising sources of
genetic diversity. Landraces comprise heterogenic dynamic
populations subject to natural selection. Long-term co-evo-
lution of a host with the fungus that causes powdery mil-
dew provides low pathogen pressure and increases durabil-
ity and polymorphism at resistance gene loci. Previous
screening studies on powdery mildew resistance in barley
landraces have revealed novel resistant lines (Comadran
et al. 2009). For example, Czembor (2000, 2002) investi-
gated 131 barley lines originating from Moroccan land-
races. During phytopathological testing, previously un-
known powdery mildew resistance genes were found in
66 lines, which showed unique resistance reaction spectra
that were distinguishable from those of other known genes.
Among these lines, only 255-3-3 was resistant to all 23
Bgh isolates studied and it exhibited no visible infection
symptoms to most (74%) of them (Czembor 2002). The
aim of the present study was to identify resistance genes
in barley line 255-3-3.

Materials and methods

Plant materials

Spring barley (H. vulgare) line 255-3-3 (National Centre for
Plant Genetic Resources Plant Breeding and Acclimatization
Institute, Poland, https://bankgenow.edu.pl, ID number
17I00361) was used for identifying powdery mildew
resistance genes. This line was selected from Moroccan
landrace 255 (ICARDA No. ICB 31956) and showed broad-
spectrum resistance to powdery mildew in a previous study
(Czembor 2002).

The mapping population was derived from a cross of 255-
3-3 as the female parent with susceptible cv. Manchuria as the
male parent.

An F2 population derived from a cross of 255-3-3 with P23
(MlLa) was used for allelic testing.

A set of 30 differential varieties (DV) carrying various
known powdery mildew resistance genes was used for the
phytopathological tests. This set contained cv. Pallas, 21
Pallas near-isogenic lines (Kølster et al. 1986) and 8 selected
cultivars (Table 1). This DV set represented most of the major
resistance genes used in European cultivars.

Plants were grown in a control environment under a 19 °C/
15 °C (16-h day/8-h night) regime. For Bgh propagation and
the phytopathological tests, the plants were grown in transpar-
ent boxes to prevent mildew contamination.

Phytopathological tests

A set of 25 Bgh isolates collected in Poland in 2010, 2015 and
2017 were obtained from the collection of Plant Breeding and
Acclimatization Institute, Poland. Bgh isolates were selected
to achieve differences in virulence spectra and to specify the
presence of resistance genes among the DV (Table 1).

Fungal inoculumwas freshly propagated on susceptible cv.
Manchuria. Ten-day-old seedlings with fully expanded first
leaves were inoculated by shaking conidia from diseased
plants. On the 8th day after inoculation, infection types (ITs)
were scored on a 0–4-point scale (Mains and Dietz 1930),
where 0, 1, and 2 indicate resistance, and 3 and 4 indicate
susceptibility; extended by 0(4) level indicates Mlo resistance.

To determine the resistance of 255-3-3, the ITs of this line
after inoculation with the set of Bgh isolates were compared
with those obtained for the DV set. Tests were conducted with
ca. 15 seedlings per line in two repetitions.

To determine the inheritance of resistance of 255-3-3, 190
F2 255-3-3 × Manchuria plants and 128 F2:3 families (25 in-
dividuals per family) were inoculated with the isolate Bgh27
avirulent to 255-3-3.

For allelic testing, 315 F2 255-3-3 × P23 plants were inoc-
ulated with isolate Bgh1-26 avirulent to both parental lines.

The numbers of resistant and susceptible plants were com-
pared to those expected based on the theoretical Mendelian
segregation ratio by the chi-square (χ2) test (p = 0.05).

Molecular analysis

Genomic DNA from 94 plants from F2 255-3-3 × Manchuria
and the parental lines was used for the molecular analysis.
DNAwas extracted from a single plant leaf using the CTAB
method (Murray and Thompson 1980). Samples from 43 ho-
mozygous F2 plants (22 homozygous resistant and 21 homo-
zygous susceptible) and from the parental lines were geno-
typed using the DArTseq platform (Diversity Arrays
Technology, Pty. Ltd.) (Von Cruz et al. 2013), and the
DArTseq data were used for linkage analysis. For that pur-
pose, DArTseq markers that were low quality, homozygous
and had >20% missing calls were removed. The remaining
markers were assessed for compatibility with the resistance/
susceptibility trait. Markers with > 80% goodness of fit were
evaluated by Fisher’s exact test on 2 × 2 count tables using R
(www.r-project.com). The null hypothesis was a random
distribution of DArTseq marker variants within resistant and
susceptible plants. Significant markers according to F-test re-
sults were assigned to a genetic location by BLASTN
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(Altschul et al. 1997) against barley genome Hv_IBSC_
PGSB_v2 on the EnsemblPlants database release 37 (www.
plants.ensembl.org, accessed 28.11.2017) (Aken et al. 2017).
Alignments with a BLASTN E value < 1.0E−10 and with a
minimum difference > 1.0E−5 between the first and second
hits were selected for genotyping of 94 individuals from the
F2 population using DArTseq markers that were converted to
allele-specific dominant PCR (AS-DArT) markers. Extended
DArTseq sequences from the BLASTN results were used to
design allele-specific primers in BatchPrimer 3.0 (You et al.
2008) or manually without additional mismatch at the -3′ po-
sition. The nucleotide at the 3′-end of the forward primer or
the 5′-end of the reverse primer was in the SNP locus. For
silicoDArT markers, allele-specific primers were designed
for all six potential SNPs located in the PstI restriction enzyme
recognition sequence (5′-C|TGCAG-3′). The PstI enzymewas
used for the DArTseq pipeline, and the sequencing reads were
consistently generated from the PstI site. Other primers were
designed by Primer BLAST NCBI (Ye et al. 2012). PCR
products were amplified using modified DNA polymerase
SNPase (GeneON GmbH, Germany) in accordance with the
manufacturer’s protocol. In addition, a set of 57 SSR markers
was selected from the GrainGenes database (https://wheat.pw.
usda.gov, access 11.2017) according to known localization on
a chromosome of interest. SSRs were employed to genotype
the F2 plants and parental lines. The PCR amplified fragments
were separated by 1.5% agarose gel electrophoresis and
visualised with ethidium bromide; fluorescently labelled
fragments were detected on 4.5% polyacrylamide gels using
an ABI377XL genetic analyser (Applied Biosystems, USA).

Linkage analysis and genetic mapping

Genetic linkage maps were constructed using the JoinMap 4.0
software (Stam 1993) under the standard calculation settings:
linkages with a recombination frequency smaller than 0.45
and an LOD score higher than 1; goodness-of-fit jump thresh-
old for removing loci of 3 and performing a ripple after adding
3 loci and the Kosambi mapping function (Kosambi 1944).
The phenotypic scores for the F2 255-3-3 × Manchuria popu-
lation were converted to binary data according to the IT
scores; specifically, 0, 1 and 2 (resistant) were recoded as 1,
and 3 and 4 (susceptible) were recoded as 0. The converted

scores were included in the analysis as resistance gene
RBgh255. AS-DArT, SSR markers, and the RBgh255 gene
were used for genetic map construction, and another map
was generated for silicoDArT markers with physical positions
on 2H. The map positions of the DArTseq markers were com-
pared with a barley consensus 2H map from Barleymap data-
base POPSEQ data (http://floresta.eead.csic.es/barleymap)
(Cantalapiedra et al. 2015; Mascher et al. 2013) in
MapChart software (http://www.joinmap.nl) (Voorrips
2002). Kruskal-Wallis analysis of associations between the
DArTseq markers and resistance was carried out in
MapQTL 6 software under standard conditions (van Ooijen
2009).

Results

Phytopathological tests

To determine the possible resistance genes present in the 255-
3-3 line, we assessed resistance against a diverse collection of
25 Bgh isolates and compared the results with the ITs of the
DV set carrying various resistance genes and with susceptible
cultivar Manchuria as a control (Table 1). The 255-3-3 line
exhibited distinctive disease response patterns, with IT scores
of 0, 1, and 2 according to the Mains’ and Dietz’s 5-level scale
(1930). The line was resistant to all Bgh isolates.

Evaluation of the Bgh-inoculated F2 255-3-3 × Manchuria
population revealed both susceptible and resistant individuals.
Furthermore, phytopathological tests of F2:3 families showed
segregating heterozygous and non-segregating homozygous
F2 plants. The results of chi-squared tests confirmed the ex-
pectations of 3:1 for the F2 population and 1:2:1 for F2:3 (p =
0.05) (Table 2).

Genotyping and genetic mapping

DArTseq analysis of 43 homozygous F2 255-3-3 ×Manchuria
plants identified 3544 codominant DArTSNP markers and
8711 dominant silicoDArT markers. Of these DArTseq
markers, 33 were selected for conversion to AS-DArT
markers and used to genotype 94 F2 individuals. Based on

Table 2 Segregation ratio and chi-square test results for the analysed populations after inoculation with Blumeria graminis f. sp. hordei

Population Bgh isolate Number of plants/families Predicted ratio χ2 p value (p = 0.05)

Res Seg Sus

255-3-3 × Manchuria F2 Bgh27 145 – 45 3:1 0.1754 0.6753

F2:3 Bgh27 40 58 30 1:2:1 2.6875 0.2609

255-3-3 × P23 (MlLa) F2 Bgh1–26 237 – 78 15:1 184.2305 0.0000
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BLASTN alignment to the barley reference genome, each is
located on the 2H chromosome.

Linkage analysis for AS-DArT (Table 3), SSR and
RBgh255 assembled 14 markers into a single 36.59-cM group
containing nine AS-DArTs, four SSRs, and RBgh255 (Fig. 1).
Based on the known position of these markers, RBgh255 was
mapped to the distal end of chromosome 2H, 5.50 cM distal to
the nearest marker 3262153.

The linkage map for the silicoDArT markers from 2H and
RBgh255 assembled 82 markers into one linkage 10.67-cM
group (Fig. 1).RBgh255wasmapped to 3.65 cM, 0.91 cM prox-
imal to 5249632 and 3257525 and 0.16 cM distal to 3256284.

The Kruskal-Wallis analysis demonstrated that only
DArTseq markers mapping to the distal end of chromosome
2HL were significantly associated with RBgh255 (Fig. 1); the
analysis did not reveal other significant loci in the genome
(data not shown). The highest K value (α = 0.05) was for
3255919. The physical position of these sequences is
chr2H:1839535:1839604:1 according to the barley reference
genome (Table 4). These markers were previously mapped to
2.12 cM on the 2H consensus barley map (Fig. 1). With ref-
erence to the highest K value marker 3255919, RBgh255
mapped 0.32 cM distal on the silicoDArT map and 8.36 cM
distal on the AS-DArT map.

Comparative map analysis revealed eight common
DArTseq markers between the AS-DArT and silicoDArT
maps and 12 between the silicoDArT and consensus 2H maps
(Fig. 1).

Test of allelism

An allelic test was performed between the barley 255-3-3
resistance gene and MlLa, a powdery mildew resistant gene
previously mapped to chromosome 2H (Giese et al. 1993;
Hoseinzadeh et al. 2019). A phytopathological test of 315 F2
255-3-3 × P23 (MlLa) individuals revealed resistant and sus-
ceptible plants. The chi-squared test did not support a 15:1
segregating ratio (Table 2). Analysis of Res (resistant) and
Sus (susceptible) AS-PCR variants of MWG097 marker link-
ages withMlLa (Mohler and Jahoor 1996) revealed polymor-
phism between the parental lines (Fig. 2). Amplification of a
Sus variant was obtained for Manchuria and 255-3-3, and
amplification of a Res variant was obtained for P23 (MlLa).

Discussion

Investigation of barley landrace genetic resources can broaden
the available gene pool. The aim of the present study was to
characterise a new source of barley resistance to powdery
mildew. The barley line 255-3-3, which was previously de-
scribed as having broad-spectrum resistance, originates from
the Moroccan landrace (Czembor 2002). Czembor (2002)

showed that the 255-3-3 line was resistant to all 23 Bgh iso-
lates assessed, and exhibited an IT score of 0 according to the
Mains and Dietz scale (1930) after inoculation with 17 (81%)
isolates. In the present phytopathological tests, 255-3-3 exhib-
ited resistance to all 25 Bgh isolates tested (Table 1).
Nonetheless, due to the distinctiveness of the 255-3-3 IT spec-
trum from the spectra of the DV set, representing the majority
of known powdery mildew resistance genes introduced into
European crops (Dreiseitl 2014), the IT data did not indicate
any commonly known resistance genes. This result indicates
that 255-3-3 carries unique resistance genes that are not rep-
resented in the DV set.

Phenotypic analysis of F2 and F2:3 progeny of 255-3-3 ×
Manchuria showed a segregation rate indicating a single dom-
inant resistance gene in the 255-3-3 line.

To reveal the linkage between the resistant gene and genet-
ic location, efforts were focused on homozygous F2 individ-
uals. Extreme segregants analysis on the DArTseq platform is
an economical and useful method to search for significantly
associated markers. DArTseq data processing allowed the
construction of two linkage maps. The genetic distance of
the RBgh255 resistance locus to the nearest markers is
5.5 cM on the AS-DArT map and 0.16 cM on the
silicoDArT map (Fig. 1). As the genotyping populations com-
prised 94 and 43 plants, the resulting map densities are satis-
factory for determining the RBgh255 locus. The results pro-
vide strong evidence for the presence ofRBgh255 on the distal
end of chromosome 2HS, despite divergence between the dis-
tances and the order of markers located on the analysis maps,
this inconsistency was caused by the small size of the mapping
population. In general, a population size ranging from 50 to
250 individuals is sufficient for preliminary genetic mapping
(Mohan et al. 1997), although larger mapping populations
may close the gap with markers having high linkage and pro-
ducing more accurate genetic maps (Ferrera et al. 2006).

There are 13 known powdery mildew race-specific resis-
tance genes and one partial resistance mlo gene of known
position in the barley genome. Among them, only MlLa has
been mapped to 2H, on the distal end of the long arm
(Hoseinzadeh et al. 2019). This powdery mildew resistance
gene, which originates from the botanical variety Laevigatum
(Giese et al. 1993), was introduced to the Dutch cultivar
‘Vada’ in the 1950s. There is no known major resistance gene
for powdery mildew on the short arm of chromosome 2H
originating from cultivated barley (Jørgensen and Wolfe
1994; Schönfeld et al. 1996).

�Fig. 1 Comparative analysis of partial barley 2Hmaps. Comparativemap
analysis between the linkage map constructed for 94 F2 255-3-3 ×
Manchuria plants (2H(AS-DArT)), the linkage map constructed for the
silicoDArT data for 43 homozygous F2 plants (2H(silicoDArT)) and the
barley consensus genetic map (2HS(POPSEQ)); Kruskal-Wallis K-statis-
tic plot of the associations analysis between the DArTseq markers and
resistance, α = 0.05
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An allelic test between RBgh255 andMlLa revealed segre-
gation in the F2 generation, with susceptible individuals prov-
ing that MlLa and RBgh255 are not allelic variants. The ratio
of resistant to susceptible plants within the population deviat-
ed from the expected 15:1 for two independent dominant
genes, which may be due to some error in the IT rating.
MlLa is known to confer moderate resistance, corresponding
to scores of 2–3 on Mains’ and Dietz’s scale (Marcel et al.
2007), and this level of resistance may cause misclassification
of resistant plants as susceptible. Res and Sus variants of the
marker MWG097 (Mohler and Jahoor 1996) confirmed dif-
ferent variants at MlLa carried by 255-3-3 and P23 (MlLa)
(Fig. 2). The different IT in interaction with the set of Bgh
isolates utilised indicated that the resistance gene carried by
255-3-3 is not allelic to MlLa (Table 1).

Extensive research on cultivars, landraces and wild barley
genotypes revealed resistance loci on 2H. MlHb, which is a
resistance gene originating fromH. bulbosum, was mapped to
chromosome 2H(2HI) after introgression to H. vulgare
(Pickering et al. 1995). A strong crossing barrier between
bulbous and cultivated barley excludes natural transfer of
MlHb to H. vulgare (Blattner 2018). Nevertheless,
Comadran et al. (2009), analysed almost 200 barley acces-
sions from the Mediterranean basin area and indicated coinci-
dence of the Bgh resistance gene with the approximate MlHb
location, which suggested the occurrence of an alternative
resistance locus in cultivated barley located on 2H bins: 3, 4
and 5 of the Steptoe × Morex bin map (Kleinhofs and Graner
2001; Druka et al. 2002; Cooper et al. 2004). The distal end of
2H bin 3 was mapped to the MWG878 marker with a physical
location of approximately 11 Mb (chr2H:11119104–
11119596) according to barley genome Hv_IBSC_PGSB_v2
on the EnsemblPlants database release 43 (www.plants.
ensembl.org) (Aken et al. 2017). The RBgh255 resistance
gene is located on 2H bin 1 according to the physical location
of DArTseq marker 3255919 with the highest K-statistic
(chr2H:1839535:1839604) (Table 4). The proximal end of
2H bin 1 is located on the ABG058 marker with a physical

Fig. 2 Allele-specific PCR products of Res and Sus variants of marker
MWG097 and original MWG097 as a positive control (K+); (KH2O)—
not template control
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position of 3.2 Mb (chr2H:3239540–3239624). Considering
an approximate distance of 10 Mb between RBgh255 and the
candidate genes described by Comadran et al. (2009), there is
strong evidence that these loci are different. Spies et al. (2012)
mapped candidate genes for resistance to Bgh on 2H in barley
cv. Steffi. This variety was included in the DV set used in this
study and showed distinctive resistance spectrum from 255-3-
3 line after inoculation with the Bgh set (Table 1). Genetic
analysis of Steffi resistance (Spies et al. 2012) indicated quan-
titative trait segregation and polygenic inheritance that was
opposite to the qualitative and monogenic resistance of 255-
3-3 line. Previous reports have also revealed Bgh resistance
loci in wild barley (H. vulgare ssp. spontaneum) accessions on
2H (Řepková et al. 2009; Tuterová et al. 2010; Ames et al.
2015). Analysis of H. spontaneum lines PI282605 (Řepková
et al. 2009) and PI466197 (Tuterová et al. 2010) indicated
quantitative and semi-dominant loci opposite to those of the
qualitative fully dominant RBgh255. Furthermore, both de-
scribed QTL were mapped proximal to RBgh255, with the
highest associations with Bmac0134 (chr2H:4010391–
4010488) (Tuterová et al. 2010) and cMWG682 (chr2H:
3326342–3326919) (Řepková et al. 2009) located on 2H bin
2. Since RBgh255 is located on 2H bin 1, this gene is very
unlikely to be the same as the loci described by Řepková et al.
(2009) and Tuterová et al. (2010). The powdery mildew QTL
described by Ames et al. (2015) was collocated with the
lang1031QPm.S42-2H.a field resistance QTL (von Korff
et al. 2005) and mapped near the HVM36marker with a phys-
ical location of 22 Mb (chr2H:22074463–22074562) on 2H
bin 3, which was apart from the RBgh255 resistance gene.
Moreover, QTL corresponding to 2H (Aghnoum et al. 2010)
are involved in seedling and adult plant resistance to Bgh
under field and controlled conditions. Among them, Rbgq7
carries seedling resistance in controlled conditions but has
been mapped on 2H bin 4. These works showed many loci
corresponding to 2H as a significant and prospective source
for Bgh resistance. Differences in phenotypes, inheritances,
and location on 2H between RBgh255 and other described
loci indicate that RBgh255 is probably a distinctive and newly
described resistance gene.

Resistance genes have been previously reported in landraces
(Comadran et al. 2009; Czembor 2000, 2002; Newton et al.
2000; Spies et al. 2012), and have been successfully introduced
into elite germplasms. These genes includeMlg originating from
the German landrace Weihenstephan,Mla3 from the Uruguayan
landrace Ricardo, Mla12 from Arabische and the durable resis-
tance recessive gene mlo, originating from Ethiopian landraces.
The RBgh255 gene is potentially valuable to breeders for breed-
ing resistance to powdery mildew, and rare broad-spectrum re-
sistance is promising for growers and interesting for scientists.
According to the statement “Only when a pathogen isolate with
virulence corresponding to that resistance is found can the resis-
tance gene, according to terminology, be classified as race-

specific” (Jørgensen and Wolfe 1994), a Bgh isolate virulent to
255-3-3 has not been found, in either the previous research by
Czembor (2002) or this study. In this work, phytopathological
tests were conducted with a Bgh set covering 21 common and
known resistance genes and 13Mla alleles.However, a limitation
of the present study is that it focused only on Polish Bgh isolates;
conversely, Czembor’s studies, which were conductedmore than
15 years ago, utilised isolates from central Europe emerging at
that time. New promising resistance genes should correspond to
virulence genes in the pathogen population; therefore phytopath-
ological tests were performed usingBgh collected fromPoland in
recent years. The study of markers linked to the identified gene
provides a good basis for the development of more useful MAS
markers closer to RBgh255.

This study revealed and characterised a novel powdery
mildew resistance gene in barley line 255-3-3 selected from
the Moroccan landrace. In accordance with nomenclature rec-
ommendations (Jørgensen 1987), the authors propose MlMor
as a gene symbol for the resistance described.
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