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Abstract Synthetic hexaploid wheat (SHW) possesses nu-
merous genes for resistance to stress, including phosphorus
(P) deficiency. Root diameter (RDM) plays an important role
in P-deficiency tolerance, but information related to SHW is
still limited. Thus, the objective of this study was to investi-
gate the genetic architecture of RDM in SHW under P-
deficient conditions. To this end, we measured the RDM of
138 Fy recombinant inbred lines derived from an F, popula-
tion of a synthetic hexaploid wheat line (SHW-L1) and a com-
mon wheat line (Chuanmai32) under two P conditions, P suf-
ficiency (PS) and P deficiency (PD), and mapped quantitative
trait loci (QTL) for RDM using an enriched high-density ge-
netic map, containing 120,370 single nucleotide polymor-
phisms, 733 diversity arrays technology markers, and 119
simple sequence repeats. We identified seven RDM QTL for
P-deficiency tolerance that individually explained 11-14.7%
of the phenotypic variation. Five putative candidate genes
involved in root composition, energy supply, and defense re-
sponse were predicted. Overall, our results provided essential
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information for cloning genes related to P-deficiency toler-
ance in common wheat that might help in breeding P-
deficiency-tolerant wheat cultivars.
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Introduction

The uptake of soil phosphorus (P) affects crop growth and
yield. Plants absorb P as inorganic phosphate; however, up
to 80% of applied P fertilizer is fixed into organic forms
(Holford 1997), and thus the concentration of inorganic phos-
phate in the soil solution is usually low (Raghothama 1999)
and its supply to the root surface by diffusion is slow (Fitter
and Hay 2012). Consequently, P deficiency is one of the major
abiotic stresses worldwide (Sharpley 1985; Hayes et al. 2000;
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Mudge et al. 2003; Yadav et al. 2014), and the development of
wheat cultivars with P-deficiency tolerance is considered es-
sential in wheat production.

Synthetic hexaploid wheat (SHW) obtained from the dis-
tant hybridization of Triticum turgidum L. and Aegilops
tauschii is a source of novel genetic variability associated with
the D genome of A. fauschii (Mares and Mrva 2008). SHW
lines show a significantly better performance in disease resis-
tance, abiotic stress tolerance, suitable quality, anti-sprouting
ability (Lage et al. 2003; Trethowan and Mujeeb-Kazi 2008;
Yang et al. 2016), and P-deficiency tolerance compared with
the tetraploid and common wheat lines (Wang et al. 2015).

Previous studies indicated that root diameter (RDM) is an
important trait for evaluating root development, because it
defines the volume of soil that comes in contact with the roots
(Atkinson 1990). It has been reported that the primary RDM
in Arabidopsis thaliana, Zea mays, and Quercus robur is
strongly correlated with the root length and weakly correlated
with the elongation rate (Cahn et al. 1989; Pages 1995). RDM
was believed to directly influence phosphorus uptake in low
phosphorus soils. A previous study showed that barley RDM
highly contributes to P uptake under low P conditions (Chen
etal. 2015). However, most reports on root morphology quan-
titative trait loci (QTL) have focused on root length and
weight (Coudert et al. 2010; Den Herder et al. 2010; Cao
et al. 2014). Compared with the identified RDM QTL for P-
deficiency tolerance in A. fauschii, Z. mays, and Phaseolus
vulgaris (Beebe et al. 2006; Chen et al. 2009; Liu et al.
2015), our knowledge on the genetic base of RDM under P-
deficient conditions is still limited. The objective of this study
was to identify RDM QTL and putative candidate genes for P-
deficiency tolerance in SHW, in order to obtain useful infor-
mation for cloning RDM genes and breeding wheat cultivars
with P-deficiency tolerance.

Materials and methods
Plant material

A total of 138 Fg recombinant inbred lines (RILs) derived by
single-seed descent from the F, population of SHW-L1/
Chuanmai 32 was used in this study. SHW-L1 is a SWH de-
rived from a cross between 7. turgidum ssp. turgidum AS2255
(AABB) and A. tauschii ssp. tauschii AS60 (DD). Chuanmai
32 is a commercial cultivar of hexaploid wheat grown in the
southwest winter wheat areas of China (Yu et al. 2014).

Plant growth and experimental treatments
The RILs, along with the parental lines, were hydroponically

cultured for measuring RDM. Thirty uniformly sized seeds
from each line were surface-sterilized by soaking in 10%
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sodium hypochlorite for 5 min, and then rinsed three times
with deionized water. Seeds were then germinated on filter
paper in petri dishes at 25 °C (= 1 °C) for 7 d. After removing
residual endosperm materials, the uniform seedlings with co-
leoptile (ca. 1-2 cm in length) were transplanted into a differ-
ent hydroponic system under two P conditions, P sufficiency
(PS) and P deficiency (PD), in a completely randomized de-
sign with four replications. PS and PD treatments contained
modified Hoagland’s nutrient solution (Hoagland and Arnon
1950) that consisted of Ca(NO3)2-4H,0 (4 mmol I 1), KNO;
(6 mmol L"), MgS0O,4-7H,0 (2 mmol 1""), H;BO;
(46 pmol '), Na-Fe:EDTA (100 pmol '), MnCl,
(9.146 pmol '), ZnSO,4 (0.76 pmol '), CuSO,
(0.32 pmol "), and (NH4)6Mo0;0,4 (0.0161 pmol ') with
and without NH,H,PO, (1 mmol 1Y), respectively. The hy-
droponic system was formed by a cystosepiment substrate that
was placed into plastic tanks (50 cm x 40 cm x 30 cm) filled
with 21 I modified Hoagland’s nutrient solution. The nutrient
solution was continuously aerated by pumps and renewed
every 4 d. The sponge-wrapped seedlings were fixed on the
cystosepiment substrate and grown at 25 °C (£ 1 °C) during
the day (16 h) and 22 °C (+ 1 °C) during the night (8 h).

Collection and analysis of phenotypic data

At 16 d of growth, seedlings were carefully washed with clean
water, and the RDM was measured using an Epson XL
(11,000 x) scanner with the WinRHizo Pro 2008a image anal-
ysis system. The experiment was repeated three times to in-
crease the credibility of RDM measurements. The three repli-
cations were designated as R1, R2, and R3. Phenotypic data
were the means of four replications in one independently re-
peated experiment. For estimating random effects, we used a
mixed mode called the best linear predictors (BLUPSs) to ob-
tain BLUP-RDM values (Piepho et al. 2008). The BLUP
model for the phenotypic value of plant Y; was calculated as
follows: Y; = X; f + a; + €;, where f'is a vector of fixed effects,
X; is an incidence vector, ¢; is environment deviation, and a; is
the phenotypic value (Goddard 1992). Analysis of variance
(ANOVA) was performed using SAS 9.1.3 (SAS Institute,
Cary, NC, USA) to estimate the effects of genotype on
RDM. The estimated broad-sense heritability of RDM was
calculated as follows: h> = 0> G/(0” G + 0” e/r), where 0> G
is the genetic variance, o2 ¢ is the residual variance, and r 1S
the number of replicates per genotype.

QTL mapping

An enriched high-density genetic map that contained 120,370
single nucleotide polymorphisms (Axiom™ Wheat 660 k
Arrays), 733 diversity arrays technology markers, and 119
simple sequence repeats (121,222 markers in total) and had
atotal length of 17,889. For the QTL analysis, 62 ¢cM was used
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(Yang 2016). The average distance between markers was
0.148 cM, which corresponds to 143 kb (wheat genome size
according to the International Wheat Genome Sequencing
Consortium database). QTL screening was conducted using
interval mapping (IM) by MapQTL 6.0 (Kyazma,
Wageningen, Netherlands). Logarithm of odds (LOD) thresh-
old values for IM were determined based on 1,000 permuta-
tions to declare significant QTL at p < 0.05, and the QTL with
LOD values <2.0 were excluded to ensure the authenticity and
reliability of reported QTL. QTL that explained more than
10% of the phenotypic variation for RDM were considered
major QTL.

Prediction of candidate genes

For predicting candidate/flanking genes, the nearest flanking
marker sequence was aligned using BLAST against the
EnsemblPlants database (http://plants.ensembl.org/hmmer/
index.html) to determine the position with the highest identity
and detect genes within 5,000 bp upstream and 5,000 bp
downstream of this position. To predict the function of
candidate genes, we conducted gene ontology (GO) annotation
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis at p < 0.05 using A. thaliana,
Oryza sativa, and Z. mays as background species with
KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/) (Table S1).

Results
RDM variation in RILs

The RDM values of SHW-L1 were significantly higher than
those of Chuanmai32 in PD. In PS, the mean RDM of SHW-
L1 was 0.397 mm and that of Chuanmai32 was 0.360 mm. In
PD, the mean RDM of SHW-L1 showed an increase of 25.693
% and that of Chuanmai32 showed an increase of 17.778%.
The frequency distribution of RDM among the 138 RILs was
continuous in both PS and PD (Fig. 1), indicating its polygen-
ic inheritance. The RDM values ranged from 0.296 mm to
0.417 mm in PS, whereas in PD, the values ranged from
0.341 mm to 0.493 mm. RDM values showed significant dif-
ferences among the RILs and high heritability (h* = 0.75 and
0.86 in PS and PD respectively; Table 1).

P-deficiency-response QTL for RDM

A total of 16 QTL for RDM was detected, of which seven
major RDM QTL located on chromosomes (Chr.) 1B, 1D, 2B,
3B, 3D, and 7D were detected only in PD and individually
explained 11-14.7% of the phenotypic variation (Table 2; Fig.
2). These QTL for RDM were contributed by positive alleles
from SWH-L1. Among them, three QTL ( ORDM.sicau-1D,
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Fig.1 Frequency distribution of root diameter in the SHW-L1/Chuanmai
32 recombinant inbred line (RIL) population under phosphorus sufficient
(PS) and phosphorus deficient (PD) conditions. The horizontal axis
indicates RDM value, the ordinal axis indicates frequency

ORDM . sicau-3D, and QRDM.sicau-7D) were detected in the
D-genome.

Putative candidate genes associated with significant loci

Five candidate genes that may underlie QTL for RDM in PD were
identified: TRIAE CS42 IBL TGACvl 030534 _AA0093380
and TRIAE CS42 3DL TGACvI 251990 AA0886810 regulat-
ed the proliferation and differentiation of cells, and the latter was
also involved in N-glycan biosynthesis in PD.
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Table 1  Descriptive statistics of root diameter in the SHW-L1/Chuanmai 32 recombinant inbred line (RIL) population and the parental lines under
phosphorus sufficient (PS) and phosphorus deficient (PD) conditions
Conditions Parental line RIL population
SHW-L1 Chuanmai 32 P Min Max Mean SD b’
PS 0.397 0.36 0.93 0.296 0417 0.359 0.024 0.754
PD 0.499 0.424 0.006** 0.341 0.493 0.406 0.031 0.866

Min minimum; max maximum; SD standard deviation, #° broad-sense heritability; P probability

TRIAE CS42 2BL TGACvI 129475 AA0385390 regulated the
actin cytoskeleton organization and inhibited ligand-induced en-
docytosis. TRIAE CS42 3B TGACvl 227160 AA0821780 at-
fected composition of Golgi apparatus. And
TRIAE CS42 7DS TGACvI 621992 AA2030780 was involved
in cell energy conversion and defense response (Table S1).

Discussion

The important role of the D genome in the P-deficiency
tolerance of SHW

Previous studies have reported many QTL for P-deficiency
tolerance in the D genome of wheat. Under P-deficient condi-

tions, Chr. 2D, 3D, 4D, 5D, and 6D have been reported to
harbor QTL for numerous traits related to P utilization effi-
ciency, including biomass yield per plant, 1,000-grain weight,
grain number per ear, P accumulated in the shoot per plant,
and shoot dry weight (Su et al. 2006, 2009). Additionally, Chr.
4D, 5D, 6D, and 7DL harbored QTL for seedling root traits
(length, number, and dry matter; Huiru et al. 2007), whereas
Chr. 6D also contained QTL for shoot height (Guo et al.
2012). In the present study, three of the seven RDM QTL
detected in PD were mapped in the D genome, and
comparison of their genetic locations with those of
previously reported RDM QTL indicated that they were
novel. Liu et al. (2015) reported a highly relevant RDM-P-
deficiency tolerance index QTL on Chr. 7DS in A. tauschii,
however, it was not in the same loci as the QTL we detected

Table 2 Quantitative trait loci (QTL) for root diameter identified in the SHW-L1/Chuanmai 32 recombinant inbred line (RIL) population under

phosphorus sufficient (PS) and phosphorus deficient (PD) conditions

Conditions QTL Detected condition Chromosome Position Nearest flanking Maximum % Expl.  Source
(cM) marker LOD
PS QRDM.sicau-1A R1,R2, BLUP 1AL 699.05 AX-110526116 2.78-4.7 8.7-14.3 SHW-L1
QRDM.sicau-2A R1, R2, BLUP 2AL 1105.25 AX-110657915 2.55-4.34 8-13.3 SHW-LI1
QRDMsicau-2B.1  R1, R2, BLUP 2BS 186.87 AX-109051532 2.85-3.78 8.9-11.7 SHW-L1
QRDM:sicau-2B.2  R1, R2, BLUP 2BS 324.49 AX-111493073 3.17-4.42 9.9-13.5 SHW-LI
QRDM:sicau-2B.3  R1, R2, BLUP 2BS 534.07 AX-108954344 2.88-4.79 9-14.6 SHW-L1
QRDM:sicau-2B.4  R1,R2,R3,BLUP 2BL 828.74 AX-109146404 2.13-3.73 6.8-11.5 SHW-LI
QRDM:sicau-2D.1  R1, R2, BLUP 2DS 577.01 AX-95231094 3.17-4.42 9.9-13.5 SHW-LI
QRDMsicau-2D.2  R1, R2, BLUP 2DL 668.45 AX-94569337 2.62-4.33 8.2-13.3 SHW-L1
QRDMsicau-4A.1  R2, BLUP 4AL 503.38 AX-110933586 3.04-3.16 9599 SHW-LI
PD QRDM.sicau-1A R1,R2,R3,BLUP 1AL 699.05 AX-110526116 2.36-3.64 7.5-11.3 SHW-L1
*QRDM.sicau-1B.1 R1,R2,R3,BLUP 1BL 97.92 AX-109617323 3.81-4.85 11.8-14.7 SHW-L1
*QRDM.sicau-1B.2 R1,R2,R3,BLUP 1BL 165.48 AX-110081455 2.28-3.59 7.2-11.1 SHW-L1
*QRDM.sicau-1D  R1,R2,R3,BLUP 1DL 425.65 AX-110519839 2.43-3.56 7.7-11  SHW-L1
QRDM.sicau-2B.3  R1,R2,R3, BLUP 2BS 534.07 AX-108954344 2.04-4.59 6.7-14.2 SHW-L1
*QRDM.sicau-2B.5 R1,R2,R3,BLUP 2BL 849.73 AX-109973342 2.46-5.36 8-16.2 SHW-LI1
*QRDM.sicau-3B  R1,R2,R3,BLUP 3BL 1389.31 AX-109867431 25137 7.9-11.5 SHW-LI
*QRDM.sicau-3D  R1,R2,R3,BLUP 3DL 136.37 AX-109849604 2.51-3.7 7.9-11.5 SHW-L1
*QRDM.sicau-7D  R1,R2,R3,BLUP 7DS 293.93 AX-109170088 2.27-3.89 7.2-12.4 SHW-L1

LOD, logarithm of odds; %Exp., percentage of explained phenotypic variation; *, QTL identified only in PD
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Fig. 2 Chromosomal locations of quantitative trait loci for root diameter
(QRDM) and associated markers in the SHW-L1/Chuanmai 32
recombinant inbred line (RIL) population under phosphorus sufficient

on Chr. 7DS. Thus, the presence of these three novel RDM
QTL detected in the D genome indicated that some unknown
genes for P-deficiency tolerance might be introduced to SHW
from A. tauschii. Our results along with those reported previ-
ously indicated that the D genome could play a key role in P-
deficiency tolerance. Undoubtedly, numerous important genes
were lost during the domestication of common wheat. For
instance, Ma et al. (2016) suggested that during the formation
of hexaploid wheat, genes that are upregulated in the root are
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QTLs identified only in PS, only in PD, and in both of them, respectively

prone to extinction. Thus, integrating genes from A. fauschii
into common wheat by artificially synthesizing could be an
efficient strategy for wheat improvement (Yang et al. 2016).

Comparison of newly and previously detected QTL
for P-deficiency tolerance

Since no other RDM QTL for P deficiency have been previ-
ously reported, we compared our results with QTL for other

@ Springer



442

J Appl Genetics (2017) 58:437-447

Chrom. 1D
0.74 — T\ AX-94520263
AX-109363557

571
0.73 "~ AX-111730189
3527] ] = AX-110953800
208 AX-111773615
37 AX-111606680
36 AX-110901127
AX-111821585
\
ik AX-111537000
3.20 AX-108941899
1.53 7 44 ”
v ? AX-94823333
75~ 5
4447 )| = AX-94618943 a
- AX-94546925 5
456 B
076 —F AX-110519839 | @
477 — AX-109557212 é
L AX-95247427 g
3.98
1.12—H~_ AX-110042022
AX-86162453
9.68
AX-109947694
\
9.15—
0.36 ~FEN AX-111159672

1.1 AX-111528688
777/ 0 AX-109369787
2.73 AX-109817070
AX-110580116

N

Fig. 2 continued.

root traits that control P deficiency tolerance in wheat. Under
low P conditions, QTL for root potassium (K) content per
plant, shoot K content per plant, total K content per plant, root
P utilization efficiency (Guo et al. 2012), and grain number

@ Springer

Chrom. 2A

a

wPt-6687
6.12

0.36 AX-94670912
.37 AX-108759591
.36 AX-109067160

AX-110730297

sl
6.16 —
AX-110561592
6.28
AX-109027107
445 —
AX-110111194
437 —
AX-94772101
761 —
<C
AX-111537422 o
567 —— 3
AX-110657915 @
3.91 — ﬂg
- AX-110941677 2
3.49 S

‘a7 AX-94484528
AX-110070552

8.86
AX-111734045

485 ——
AX-110372604

493 —
AX-86179755

539 —
- AX-94925795

3.08

. AX-95114379
37 AX-94626799
307 ~~ AX-94995596
37 7 AX-94888275
3.51 /_"__\_ AX-95204493
274 7 TN AX-110932356
157 /‘;:_\ AX-109873381
115 f—X AX-109334468
113 AX-108781659
112 /' _\ AX-109859751
7.62 7~ AX-94810909
H AX-95230506
ffg f"% AX-109097784

AX-94467050
AX-108862179
37 AX-108809900
154 / | AX-95006740

_\ AX-111109601

AX-109826391

17.68 —

112 —= AX-108762538
38 7 AX-95075508
363 77T\ AX111104261
36 AX-110912977

AX-94898545

per ear (Su et al. 2009) have been identified on Chr. 1BL; five
QTL for tiller number per plant, ear number per plant, grain
yield, and biomass yield have been identified on Chr. 2BL (Su
etal. 2009); and nine QTL for P accumulation in the shoot per
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Fig. 2 continued.

plant, biomass yield per plant, ear number per plant, grain
yield, and shoot dry weight have been identified on Chr. 3B
(Su et al. 2009). Moreover, Guo et al. (2012) reported the
existence of two QTL clusters for P deficiency on Chr. 1BL
and 3B. In our study, four of the seven RDM QTL for P
deficiency were also identified on Chr. 1B, 2B, and 3B, indi-
cating that these chromosomes might contain important genes
for P absorption in wheat.

The biological mechanism of RDM variation response
to P-deficiency

A previous study showed that different plant species can have
significantly different RDM variation and different response to P
deficiency (Hill et al. 2006). In PS, a relatively smaller root
diameter implies that a larger soil volume per surface area unit
delivers nutrients to the root, increasing the uptake rate (Fitter
1991), whereas in PD, seemingly relatively thinner roots might
be more effective in absorbing soil P. However, since thin roots
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tend to turnover more rapidly than coarse roots, the carbon cost
of producing thin roots may be higher as these are replaced more
frequently (Sattelmacher et al. 1994; Gahoonia and Nielsen
2004). Consequently, it remains unclear whether the root diam-
eter is increased or decreased to cope with P deficiency. In the
present study, SHW was adapted to P deficiency by increasing
the root diameter, probably because coarse roots tend to turnover
more slowly and reduce energy consumption. The survival abil-
ity of roots increases with the increasing root diameter (Qiu et al.
2013). The increase in root diameter also indicated that the extent
of xylem and phloem increased, which promoted the nutrient
uptake (Zhao et al. 2005). The predicted candidate genes in the
present study were closely related to RDM increase.
TRIAE CS42 IBL TGACvl 030534 AA0093380 was annotat-
ed as the A. thaliana gene MYB36, which is a critical positive
regulator of differentiation and a negative regulator of cell prolif-
eration (Liberman et al. 2015). MYB36 controls the expression of
the machinery required to locally polymerize lignin in a fine band
in the cell wall for the formation of the Casparian strip (Kamiya
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Fig. 2 continued.

et al. 2015), and outside the endodermis during the lateral root
primordia development regulates the proliferation/differentiation
transition in the root meristem (Fernandez-Marcos et al. 2016).
TRIAE _CS42 3DL TGACvI 251990 AA0886810 was annotat-
ed as the A. thaliana gene GCSI1, which encodes an alpha-
glucosidase I enzyme that catalyzes the first step in N-linked gly-
can processing during the epidermal development in Arabidopsis.
(Gillmor et al. 2002; Saint-Jore-Dupas et al. 2006; Furumizu and
Komeda 2008; Boulaflous et al. 2009).
TRIAE CS42 3B TGACvI 227160 AA0821780 that was iden-
tified by GO annotation can affect the composition of Golgi ap-
paratus. TRIAE_CS42 2BL_TGACvI 129475 AA0385390 and
TRIAE CS42 7DS TGACvl 621992 AA2030780 are associat-
ed with plant defense to environmental stress. The former was
annotated as the A. thaliana gene EHD2, which has an inhibitory
effect on endocytosis involved in the induction of plant defense
responses (Bar et al. 2008), whereas the latter was identified by
GO annotation to be involved in the cell energy supply and
defense response (Chang et al. 2009). Previous studies have
found three genes associated with phosphate transporter (PT):
TaPht2; 1, TaPhtl; 4, and TaPht2. (Guo et al. 2013, 2014; Liu
et al. 2013). All the five candidate genes identified in this study
were different from the above three genes. These novel putative
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functional genes, which play an important role in cell configura-
tions, energy supply, and nutrient absorption, provide a basis for
dissecting the genetic mechanism of P-deficiency tolerance in
wheat.

Conclusions

In this study, we identified seven RDM QTL for tolerance to P
deficiency that explained 11-14.7% of the phenotypic varia-
tion, as well as five putative candidate genes by GO annota-
tion and KEGG pathway enrichment analysis. Overall, our
data provided new insights into the genetic basis of RDM
under different P conditions, important information for clon-
ing genes related to P-deficiency tolerance, and a foundation
for developing stress-tolerant wheat cultivars.
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