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Abstract Meeting the food demands and ensuring nutritional
security of the ever increasing global population in the face of
degrading natural resource base and impending climate
change is the biggest challenge of the twenty first century.
The consequences of mineral/micronutrient deficiencies or
the hidden hunger in the developing world are indeed
alarming and need urgent attention. In addressing the prob-
lems associated with mineral/micronutrient deficiency, grain
legumes as an integral component of the farming systems in
the developing world have to play a crucial role. For resource-
poor populations, a strategy based on selecting and/or devel-
oping grain legume cultivars with grains denser in
micronutrients, by biofortification, seems the most appropriate
and attractive approach to address the problem. This is evident
from the on-going global research efforts on biofortification to
provide nutrient-dense grains for use by the poorest of the
poor in the developing countries. Towards this end, rapidly
growing genomics technologies hold promise to hasten the
progress of breeding nutritious legume crops. In conjunction
with the myriad of expansions in genomics, advances in other
‘omics’ technologies particularly plant ionomics or ionome

profiling open up novel opportunities to comprehensively ex-
amine the elemental composition and mineral networks of an
organism in a rapid and cost-effective manner. These emerg-
ing technologies would effectively guide the scientific com-
munity to enrich the edible parts of grain legumes with bio-
available minerals and enhancers/promoters. We believe that
the application of these new-generation tools in turn would
provide crop-based solutions to hidden hunger worldwide
for achieving global nutritional security.
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Background

The world population is increasing at an alarming rate. The
current global population of over seven billion is estimated to
cross nine billion by 2050 (Evans 2009; Godfray et al. 2010).
The current global population has already reached a point
generally considered as the sustainable level (http://www.
worldpopulationbalance.org/3_times_sustainable). The
distressingly increasing population growth would likely lead
towards a remarkably enhanced proportion of people that
suffer from protein-calorie undernourishment and nutrient
scarcity, more particularly the micronutrient deficiencies
(MNDs). The minerals that are indispensable to human health
include a wide range of macronutrients [sodium (Na), potas-
sium (K), calcium (Ca), magnesium (Mg), sulfur (S), phos-
phorus (P) and chlorine (Cl)] and micro-nutrients or trace
elements [iron (Fe), zinc (Zn), copper (Cu), manganese (Mn),
iodine (I), fluorine (F), selenium (Se), molybdenum (Mo), co-
balt (Co) and boron (B)] (see Bouis and Welch 2010). In rela-
tion to human-health, other terms like micro-nutrient
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malnutrition (MNM) or hidden hunger are also used frequently
to indicate the intensity of these dietary deficiencies. Currently,
more than half of the world population encounters the critical
problem ofMNM (Bouis 1999, 2000;WHO 2000; Nestel et al.
2006; http://www.fao.org/docrep/x0245e/x0245e01.htm). In
particular, the severity is noteworthy in the case of infants,
kindergarten children and pregnant women (WHO 2000;
Graham et al. 2001; Tulchinsky 2010).

In addition to exerting profound pressure on human health,
MNM is likely to have reflective repercussions in the world’s
economy (Graham et al. 2001; Dwivedi et al. 2012). More
importantly, the poorest regions in the developing world are
likely to be hit most hard by the burgeoning prevalence of
MNM. Even at the present time, a large fraction of the under-
nourished population inhabits the most disadvantageous re-
gions of the world, especially Southeast Asia and sub-
Saharan Africa (Ramakrishnan 2002). For example, the aver-
age intake of Ca by the population in the developing world is
less than half of that by the populations in the developed
nations (Nordin 2000). Apart from vitamin A, I, Fe and Zn
deficiencies, which are noted as serious health concerns
worldwide in world health report (2000), the deficiencies of
other nutrients like folate are also placing global human health
at stake (Ramakrishnan 2002; Mayer et al. 2008).

According to Tulchinsky (2010), it is estimated that over
30 % of the global population suffers from Fe deficiency which
renders them vulnerable to a range of infectious diseases includ-
ing malaria (http://www.who.int/nutrition/topics/ida/en/).
Similarly, nearly two billion are afflicted with inadequate
iodine nutrition. The global scenario describing the proportions
of people deficient in other micronutrients also indicates
increasing trends towards worldwide occurrence of infectious
diseases (http://www.wcs-heal.org/global-challenges/public-
health-issues-and-costs/malnutrition/micronutrient-deficiency).
Concerning the optimum requirements of essential elements, the
recommended dietary allowances (RDAs) pertaining to various
proteins/amino acids, vitamins, minerals and trace elements
were reviewed comprehensively in the 10th edition (http://
www.nap.edu/catalog/1349.html) by the National Research
Council (NRC) and Food and Nutrition Board of the United
States (see Grusak and Cakmak 2005).

Taking into account the current scenario of global nutritional
insecurity, here we attempt to underscore the prospective role of
grain legume crops in augmenting nutritional security to global
population together with an update on the emerging trends, and
scope of genetics- and genomics-based approaches for enriching
the grains of food legumes with an emphasis on micronutrients.

Strategies to combat global micronutrient deficiency

The increasing severity of micronutrient-related deficiencies
and their grave economic and health implications have

received attention from the scientific community worldwide.
Therefore, given the global significance of MNM, a millenni-
um summit of the United Nations was held in 2000 that led to
the establishment of eight specific goals popularly known as
millennium development goals (MDGs). All eight MDGs
were set to achieve the relevant specific targets by 2015. Of
the eight goals, three goals were exclusively related to MNM
that focus on reducing child mortality, eradicating extreme
poverty and hunger, and improving maternal health (http://
www.un.org/millenniumgoals/bkgd.shtml; see Mayer et al.
2008).

Several prospective remedies have been proposed in
order to address the issue of MNM. The potential op-
tions to gain a nutritionally-balanced food involve ex-
ploring dietary diversity, fortifying processed food, food
supplementation and medical food. Examples of the in-
dustrial fortification include fortification of common salt
with iodine, wheat flour with folates and vegetable oils
with vitamins A and D. Similarly, medical food is given
under the supervision of physicians, while supplementa-
tion of food involves a range of products that contain
dietary supplements like vitamins and minerals (Powell
2007; Mayer et al. 2008). However, the modified food
derived from the above-mentioned means often remains
out of reach of the resource poor and underprivileged as
they either lack easy access to the markets/governmental
agencies/NGOs or possess insufficient resources/limited
income to obtain industrially-processed food (Bouis and
Welch 2010; Dwivedi et al. 2012; Hoekenga 2014). In this
context, crop-based biofortification offers a more efficient,
cost-effective and sustainable means that relies on enriching
micronutrient-density in the edible parts of the crops. Conven-
tional breeding and genetic engineering approaches are being
applied to enhance the nutritional quality of important staple/
specialty crops in various biofortification schemes worldwide
(Hoekenga 2014). White and Broadley (2009) advocated that
attention should be directed towards not only to enrich the
plant parts with the bioavailable nutrients, but also to manage
the levels of various promoters and anti-nutritional factors.
The bioavailability of mineral/micronutrients is commonly
assessed using Caco-2 cells. Derived from the human colon
carcinoma, the astounding property ofCaco-2 cells to undergo
differentiation, offers a standard in vitro system to facilitate
the transport study of Fe and other mineral nutrients (Sanchez
et al. 1996; Ismail 1999; Glahn 2009). A recent study in lentil
showed significant potential for biofortification given the var-
iability of Fe concentration and relative bioavailability, as
demonstrated with Caco-2 bioassay (DellaValle et al. 2013).
Similarly, analysis of field pea low phytic acid (lpa) mutants
(1-150-81 and 1-2347-144) with Caco-2 cell culture method
revealed up to 1.9-fold increase in the Fe bioavailability of
mutants compared to the normal phytate genotypes (Liu
et al. 2014).
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Grain legumes for reducing MNM

Grain legumes, owing to their high protein and mineral/
micronutrient contents, play an increasingly important role
in alleviating MMN especially in the developing world where
the dietary needs of people are met principally by the cereal
based diets (Graham et al. 2001). The carbohydrate-rich diets
supply inadequate quantity of the nutritionally balanced food,
thus exacerbating nutritional insecurity (Carvalho and
Vasconcelos 2013). Further, legume crops contain a much
higher amount of micronutrients compared to cereals (White
and Broadley 2009). Therefore, given the enormous socio-
economic implications of legume crops in resource poor and
marginalized regions, grain legumes have emerged as the
most likely candidate crops for biofortification through
applying conventional or biotechnological interventions. The
remarkable nutritional value of grain legumes was
underscored by Iqbal et al. (2006) through exploring amino
acid profiles and elemental composition (macronutrients and
trace elements) in four major grain legumes viz. chickpea,
cowpea, lentil and green pea. The preference for biofortifying
legume crops stems from the anatomy of seed structure which
is comprised of a thick seed coat covering a well-developed
embryo and cotyledons, thereby providing a great scope for
“micronutrient sub-compartmentalization” (Blair et al. 2013).
This is in contrast to the cereals in which a less developed
embryo and endosperm are usually surrounded by a thin aleu-
rone layer. In addition, the milling process also takes bran out
of the cereals, thus further reducing their nutritional worth. In
line with the above-stated view, grain legume such as common
bean, which is generally consumed as a whole grain, offers
better prospects for implementing crop-biofortification (Islam
et al. 2002).

Scientific approaches to resolve the issue of MNM

Enhancing mineral/micronutrient density in the edible por-
tions of food crops could be facilitated by various means.
Some of these potential ways are discussed here:

Exploiting the genetic diversity

Accessing the exploitable natural variation available in the
crop gene pool for the mineral/micronutrient-of-interest is
the simplest way to discover the genotypes that might act as
potential donors in the downstream breeding schemes
(Dwivedi et al. 2012). Extensive examination of genetic var-
iability was carried out in grain legumes to determine the
extent of exploitable range of mineral contents. For example,
Beebe et al. (2000) investigated the mineral contents (B, Ca,
Cu, Fe, K, Mg, Mn, Na, P, S and Zn) in a comprehensive
collection, composed of 1150 accessions (119 wild and 1031

cultivated), and documented the presence of substantial genet-
ic variability for the minerals including micronutrients stud-
ied. The Fe content ranged from 34 to 89 ppm (mg/kg grain) in
the cultivated collection, while the Zn content varied from 21
to 54 ppm (Beebe et al. 2000). In addition, the associations
among important mineral traits like significant positive corre-
lations of S content with Fe and Zn contents open up new
avenues for simultaneous improvement of multiple mineral
traits. In a similar study, Islam et al. (2002) surveyed the com-
mon bean core-collection comprising 1072 accessions at the
International Center for Tropical Agriculture (CIAT)
genebank, and analysed the elemental composition relative
to five nutrient elements (Ca, P, S, Fe and Zn) using induc-
tively coupled plasma-atomic emission spectrometry (ICP-
AES). They reported a considerable range in Fe (34.6 to
91.9 mg/kg) and Zn (20.7 to 59.4 mg/kg) concentrations in
the germplasm studied. In a following study, Islam et al.
(2004) examined 426 accessions (mostly Andean-type) from
common bean core-collection; and they observed genetic var-
iation in Fe and Zn content in the introgressed (G1) as well as
non-introgressed (G2) groups. The G1 and G2 showed aver-
age Fe concentrations of 59.0 and 55.7 mg/kg, respectively;
while the average Zn contents were found to be 35.0 and
32.2 mg/kg, respectively. Ultimately, the above-stated studies
led to the identification of two promising genotypes, i.e.
G14519 and G21242 (http://www.biokemi.org/biozoom/
issues/525/articles/2397) with higher mineral/micronutrient
contents; and in subsequent research these genotypes were
used for further improvement through selection-
hybridization-selection scheme.

Substantial natural variation was observed in lentil collec-
tion from South-Eastern Turkey comprising 39 landraces and
seven cultivars (Karaköy et al. 2012). Similarly, Kumar et al.
(2014) observed a wide range of genetic variation for Fe (40–
61 mg/kg) and Zn (38–103 mg/kg) contents among 41 lentil
genotypes evaluated at three locations, indicating scope for
biofortification. A random amplified polymorphic DNA
(RAPD)-based diversity analysis was performed on 16
mungbean genotypes, which showed marked variation for
Fe and Zn contents (Taunk et al. 2012). Baloch et al. (2014)
analysed faba bean germplasm collection (129 landraces and
four cultivars) from Turkey, and based on the experimental
results, they reported the existence of noticeable variation
for seed mineral contents in the sample studied. According
to Nair et al. (2013), a reasonable amount of genetic variabil-
ity for mineral concentrations (0.03–0.06 g kg−1 for Fe, and
0.02–0.04 g kg −1 for Zn) in mungbean expands the scope of
mineral enrichment through efficiently capturing the existing
variation. Evaluation of elemental composition was also per-
formed across cowpea cultivars and some other under-
researched orphan legume crops including pigeonpea, lima
bean grown in Nigeria (Aletor and Aladetimi 1989). A recent
study analysed the protein and mineral composition in cowpea

J Appl Genetics (2015) 56:151–161 153

http://www.biokemi.org/biozoom/issues/525/articles/2397
http://www.biokemi.org/biozoom/issues/525/articles/2397


using advanced breeding lines (F6) from six different crosses
(Santos and Boiteux 2013). Likewise, while interrogating a
panel of 240 germplasm lines in pigeonpea, the best line ex-
hibited almost four times greater grain Zn density than that
observed in the line with lowest Zn content. Furthermore, the
genotypes with contrasting Zn content were selected to gen-
erate an F2 mapping population comprising 265 individuals
(Basavarajeshwari et al. 2014). More recently, Ray et al.
(2014) examined the range of variation in micronutrient con-
tent across different cultivars in four major pulse crops, i.e.
lentil (18), field pea (17), common bean (10) and chickpea (8);
and substantial genetic variability was reported for selected
micronutrients, indicating opportunity for enhancing nutrient
densities in crops through breeding. Similarly, a set of 94
chickpea accessions (23 desi and 71 kabuli types) was
screened for Fe and Zn concentrations at two different loca-
tions in Canada. Noticeably, the highest average values for Fe
(60.1 ppm) and Zn (48.3 ppm) concentrations were ob-
served for a kabuli genotype (CDC Verano) (Diapari et al.
2014).

In conjunction with the mineral contents, emphasis has also
been directed towards examining the natural variation relating
to inhibitors or promoters that control the absorption of im-
portant mineral/micronutrients by the human intestine (White
and Broadley 2009). Gupta et al. (2013) recently surveyed
folate concentrations across different lentil cultivars, and com-
pared their experimental findings with the results reported for
other pulse crops such as pea and chickpea.

Introducing these nutrient-rich novel genotypes to breeding
schemes for progressively recovering the superior segregants/
recombinants with enhanced nutritional value stands to be the
most preferred conventional approach for accelerated nutri-
tional enhancement (Hirschi 2009). The scientific and techno-
logical advances in the field of genomics have indeed revealed
impressive collections of genomics tools for leguminous crops
(Bohra et al. 2014a, b; Varshney et al. 2015). To this end, the
declining cost per data points and ever-increasing throughput
of next generation sequencing (NGS) platforms paved the way
for rapid and cost-effective development of whole genome
sequences in various crops. The biotechnological interven-
tions, in particular the omics tools, are an important part of
‘HarvestPlus’ (Andersson et al. 2014), a global initiative to
improve the nutritional status of people (http://www.
harvestplus.org/; see Pfeiffer and McClafferty 2007).

As a result of these constantly evolving sequencing sys-
tems, draft genome sequences have become available not only
for the model species likeMedicago, and Lotus but also for the
lesser researched grain legumes like pigeonpea, chickpea, lu-
pin, and more recently mung bean (see Bohra et al. 2014b).
Furthermore, the newly introduced NGS assays like
genotyping-by-sequencing (GBS) and whole genome re-
sequencing (WGRS) would assist breeders/biotechnologists
in the evaluation and exploitation of genome-scale genetic

diversity (Poland and Rife 2012). For instance, a genome-
wide analysis of the domestication patterns was performed
across 17 wild and 14 cultivated soybeans through
resequencing at approximately 5× depth (Lam et al. 2010).
As a result of genome-wide linkage disequilibrium (LD) anal-
ysis, the authors observed long LD blocks on chromosome 10
(associated with nutritional quality) with substantial dissimi-
larity in nucleotide variation between the wild and cultivated
pools. Based on the observation, they proposed the diverse
ways whereby selection operated between cultivated and wild
soybeans. The whole genome genotyping/sequencing assays
are of immense importance particularly relative to mining of
the beneficial alleles in a panel of diverse accessions.

Detection of QTLs controlling the mineral
concentration/content

As is evident from the continuous distribution pattern, the
quantitative nature of mineral content renders these traits ame-
nable to the molecular dissection using quantitative genetics
approaches. For instance, Beebe et al. (2000) reported normal
distribution patterns for segregation of Fe and Zn contents in a
recombinant inbred line (RIL) population derived from the
cross G21657×G21078. Likewise, continuous distribution
was also reported in common bean by Blair et al. (2009a)
while examining Fe and Zn concentrations in a RIL-based
population (DOR364×G19833). To locate the precise posi-
tion of important gene(s)/quantitative trait loci (QTL) in the
genome constitutes a sine qua non to genomics-assisted
biofortification program. A robust DNA marker tightly asso-
ciated with mineral content/concentration in the edible plant
parts will noticeably speed up the progress in developing
biofortified crops.

Basically, two QTL mapping methods viz., family-based
linkage mapping and association analysis (also known as LD
mapping) are implemented to pinpoint the genomic location
of gene(s)/QTLs that have measurable effects on the pheno-
type (Mackay and Powell 2007; Mitchell-Olds 2010;
Würschum 2012; Bohra 2013). LD analysis offers procedural
advantages over family-based QTL mapping as the former
does not require a mapping population (Bergelson and Roux
2010; Korte and Farlow 2013).More importantly, LD analysis
enables to assign causative locus to an exceptionally narrow
genomic region, i.e. high-resolution mapping (Cavanagh et al.
2008; Rafalski 2010;Würschum 2012; Huang and Han 2014).
However, in contrast to linkage mapping, association analysis
generally lacks the power to detect rare alleles (Bergelson and
Roux 2010). To a large extent, both linkage and LD analyses
act in a complementary mode (Mitchell-Olds 2010; Huang
and Han 2014). Several attempts have been reported in le-
gumes that aimed to map the QTLs influencing the mineral/
micronutrient concentration/content (Table 1).
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QTL analysis was undertaken in two model legumes, i.e.
Medicago truncatula and Lotus japonicus to detect the QTLs
responsible for enhanced mineral concentrations in seeds. In
Medicago, a total of 46 significant QTLs influencing mineral
concentration were discovered in recombinant inbreds derived
from the cross Jemalong-6×DZA 315.16 (Sankaran et al.
2009). Likewise, more than 100 QTLs were recovered from
a RIL population (Miyakojima MG-20×Gifu B-129) in Lotus
(Klein and Grusak 2009). In the case of soybean, a joint link-
age map was constructed from three different RIL popula-
tions, viz. Williams 82×NKS19-90, Williams 82×DSR-173
and Williams 82×Vinton 81. This joint linkage map was further
used to find out the QTLs of interest. As a result, 40 QTLs were
declared significant that affected almost 18 different traits related
to seed mineral concentrations, total nitrogen: total sulfur (N: S)
ratio in seed, cysteine and methionine concentrations
(Ramamurthy et al. 2014). Earlier, significant QTLs controlling
Ca content in soybean seeds were identified from F2:3 and F2:4
families (Zhang et al. (2009). Individually, the four QTLs viz.
Ca1, Ca2, Ca3 and Ca4 contributed 10.7, 16.3, 14.9, and 9.7 %,
respectively to the observed phenotypic variance (PV) (Table 1).
The potential of these QTLs in MAS was further confirmed
through QTL mapping in two additional mapping populations.
Besides validating previously reported QTLs, Orazaly et al.
(2014) recently discovered novel QTLs for seed Ca accumula-
tion (designated as Ca5) on soybean chromosome 18.

In common bean, Guzmán-Maldonado et al. (2003) report-
ed QTLs for Fe, Zn and Ca contents in an F2 population
(Table 1). They discovered two QTLs for Ca content; two
QTLs for Fe content and one QTL for Zn content, accounting
up to 25, 25 and 15 %, respectively of the overall PV. Com-
mon clusters of QTLs for Fe/Zn concentrations were observed
on bean chromosome 6 and chromosome 11. It is important to
note that common bean has also served as an excellent system
to understand the inheritance of Fe concentration (Hoekenga
2014). Likewise, Cichy et al. (2009) analysed the variability
for seed Fe, Zn, P and phytic acid (PA) concentrations in a RIL
population, belonging to the Andean gene pool. Interestingly,
in addition to individual QTLs, co-localization of QTLs was
noticed for Fe and Zn contents in three linkage groups (LGs),
i.e. B1, B6 and B11, which collectively explained up to 40 %
PV. In parallel, major QTLs for P were also mapped on six
different LGs, accounting for 17–55 % of the total PV. In
common bean, Blair et al. (2009a) used a RIL population
(DOR 364×G 19833) for QTL discovery, and identified a
total of 26 QTLs associated with Fe and Zn content. They
employed ICP and atomic absorption spectrometry (AAS)
for the estimation of Fe and Zn concentration in common bean
seeds. Most of these QTLs were clustered on LG B11, which
explained up to 48 % of the total PV for Fe and Zn concen-
trations. Therefore, the above studies highlighted the potential
of this particular LG (B 11) in nutritional genomics of com-
mon bean.

Apart from the domesticated forms, enormous potential
(often under-estimated) of common bean wild relatives was
examined using advanced backcross (AB)-QTL approach.
Originally proposed by Tanksley and Nelson (1996), AB-
QTL scheme aims to extract the beneficial exotic QTLs, and
to incorporate these QTLs into the elite genetic background
within a single mapping scheme. Blair and Izquierdo (2012)
generated 138 BC2F3:5 individuals through crossing a wild
common bean genotype G10022 (higher Fe content) with an
elite cultivar Cerinza. The QTLs associated with Fe and Zn
contents were mapped on different chromosomes viz., b01,
b04 b06, b07, b08, b10 and b11. The QTLs for Fe concentra-
tion (Fe7.1) and Fe content (Fe_cont8.1) accounted for 8 and
12 % of the entire PV. On the other hand, the four QTLs were
found to be associated with Zn content, i.e. Zn_cont2.1,
Zn_cont5.1, Zn_cont5.2, Zn_cont7.1, which individually
governed 12, 13, 12 and 10 % variability, respectively. More
importantly, common bean AB-QTL population led to the
recovery of some introgression lines, which showed higher
mineral content (Blair and Izquierdo 2012). Blair et al.
(2013) have also reported recovery of nutritionally superior
Andean lines from the two backcross populations viz., CAL
96×G14519 and CAL 143×G14519.

As in the case of common bean, QTLs related to minerals
were also identified in other grain legumes. Sompong et al.
(2012) mapped QTLs having low to moderate effects on
levels of phytic acid P (PAP), total P (TP), and inorganic P
(IP) in F2 and F2:3 populations both developed from the cross
V1725BG×AusTRCF321925. Consequently, seven QTLs
were located on five LGs and the PVs were found in the range
of 3.43 to 11.24%. Earlier, Sompong et al. (2010) reported the
presence of significant variation for PA content in mungbean
seeds by analysing a set of 250 diverse accessions. Also, they
investigated the inheritance patterns that underlie the seed
phytate content in mungbean F2 population (V1658BBR×
V1141BG), and the results revealed two independent loci
interacting with each in a duplicate-type mode (9:7). Similarly,
the PAP locus was mapped to LG V in pea albeit in a qualita-
tive fashion, and more importantly, the PAP locus was placed
within the genomic region that also harboured a strong QTL
(PV=60 %) for Fe bioavailability and eight SNP makers. Co-
occurrence of the single nucleotide polymorphism (SNP)
markers with both PAP content and Fe bioavailability will
enable selection of nutritionally-superior pea genotypes with
low PAP content and high Fe bioavailability (Shunmugam
et al. 2014).

By applying QTL mapping to a RIL population, Ates et al.
(2014) mapped the genetic determinants within the lentil ge-
nome that influence the uptake of important micronutrients such
as Mn and Zn, and discovered a total of 121 QTLs controlling
the micronutrient uptake (Table 1). Apart from linkage analysis,
association mapping has also been undertaken in these grain
legumes to elucidate the genetic architecture of nutrient
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accumulation. A genome-wide association analysis was recently
performed in chickpea through scanning genomes of 94 diverse
accessions with 1129 single nucleotide polymorphism (SNP)
markers. Consequently, eight SNPs were found contributing
towards Fe and Zn accumulation with individual R2 or PV
values varying between 1 and 7 % (Diapari et al. 2014).

Engineering the relevant biosynthetic pathways using genetic
modification

When the sufficient genetic variation is not available or acces-
sible in the crop gene pool, scientists may resort to the tech-
nologies that introduce foreign gene(s) through applying a
suite of modern biotechnology techniques collectively termed
as genetic modification (GM) (Mayer et al. 2008). At the
International Crops Research Institute for the Semi-Arid Tro-
pics (ICRISAT), efforts were made to enhance the level of β-
carotene by introducing maize phytoene synthase 1 (psy1)
gene in groundnut (Bhatnagar et al. 2011). Similarly, trans-
genic events carrying Zea mays phytoene synthase (Zmpsy) 1
and Le lycopene β-cyclase (LCYB) were also developed. In
order to engineer the β-carotene biosynthesis pathway,
phytoene synthase (psy) gene from daffodil (Narcissus
pseudonarcissus) driven by the endosperm-specific promoter
was introduced into rice. In addition, carotene desaturase
(Crtl) gene from the bacterium Erwinia uredovora was trans-
ferred under the control of constitutive 35S promoter which
ultimately led to the development of first generation of golden
rice (GR 1) (Beyer et al. 2002; http://www.goldenrice.org/
Content2-How/how1_sci.php). Significant improvement has
been witnessed in the area of carotene biofortification that
aims to enrich vitamin A content in plants (Al-Babili and
Beyer 2005).

Understanding the genetic architecture and nutritional
physiology via mutation approach

Like linkage and LD analyses that associate the observed phe-
notypic variability to genetic polymorphisms, mutation anal-
ysis also intends to uncover the genetic determinants through
moving from phenotype (trait-of-interest) to genotype (causa-
tive locus) (Schneeber and Weigel 2011; Korte and Farlow
2013). From a nutritional physiology point of view, two mu-
tants viz., bronze (brz) and degenerated leaflets (dgl) were
developed in pea, which accumulated greater quantities of
Fe due to defective Fe uptake and hence, demonstrated altered
endogenous Fe homeostatic activity (see Wang et al. 2003).
Interestingly, the above mutants are serving as a model for
developing strategies for improving Fe content not only in
closely related legumes, but also in cereals (Grusak 2000).
Similarly, given the role of phytate in mineral bioavailability,
a recessive monogenic lpa mutant (lpa-280-10) was isolated
from ethyl methane sulfonate (EMS)-mutagenized population

derived from common bean line ‘905’. It is important to men-
tion that the lpa-280-10 showed almost 90 % reduction in the
PA content compared to the progenitor (Campion et al. 2009).
More importantly, as frequently observed in the case of other
lpa mutants, lpa-280-10 did not exert any harmful effect on
agronomic performance, and additionally this line also exhib-
ited reduced content of raffinosaccharides (up to 25 % reduc-
tion). EMS-mutagenesis also permitted the isolation of lpa
mutants in other grain legumes like field pea (Warkentin
et al. 2012) and soybean (Wilcox et al. 2000), and the isolated
mutants showed considerably reduced amount of the PA in
seeds (see Shunmugam et al. 2014).

Thus, these mutant stocks serve as a global genetic re-
source for gene discovery together with providing a robust
platform for community-oriented research. In recent years,
the advances in mutation-detection systems such as targeting
induced local lesions in genomes (TILLING) have enabled
assigning of molecular function to the candidate gene(s) in
large scale (Parry et al. 2009). Also, the multiplexing arrange-
ments using NGS have rendered this mutation-detection assay
(NGS-TILLING) more amenable to the users in terms of time,
throughput and cost-effectiveness (Marroni et al. 2011; Tsai
et al. 2011). The relevance of the rapidly evolving methods
particularly ionomics-based profiling that bestow the benefits
of fast detection of the mutants, are discussed briefly in the
following section.

Plant ionomics: emerging technology to enable
comprehensive understanding of mineral transport
and gene networks

The new generation phenomics platforms enable the acquisi-
tion of precise and accurate phenotyping data within a short
period of time, though these assays demand technical skills
and a consistent scaling-up in sophisticated analytical tools to
derive meaningful inferences from the multi-dimensional data
(Cobb et al. 2013). By nature, the new-generation phenomics
platforms are usually automated and reasonably less-strenu-
ous, thereby facilitating large-scale phenotypic screening with
remarkable accuracy.

With regard to the examination of mineral/micronutrients
and their complex networks, ionomics or ionome profiling has
emerged as an attractive area that facilitates the genome-scale
understanding of dynamics of elemental accumulation in the
living systems (Baxter 2010). Salt et al. (2008) have defined
ionome as “The elemental composition of a living system con-
stituting the inorganic sector”. In the context to ionomics,
several techniques driven by the electronic or nuclear property
of the element are currently being used to investigate elemen-
tal composition in different organisms (Singh et al. 2013).
These techniques include AAS, ion beam analysis (IBA), X-
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ray fluorescence spectroscopy (XRF), ICP mass spectroscopy
(ICP-MS) and neutron activation analysis (NAA) among
others (Pfeiffer and McClafferty 2007; Djingove et al.
2013; Singh et al. 2013). Recently, the use of ICP-MS allowed
comprehensive profiling of ionome in several organisms (see
Baxter 2010). In order to better understand the mineral dy-
namics, Singh et al. (2013) advocated using the combination
of sophisticated techniques like laser capture micro-dissection
(LCM) and synchrotron-based X-ray fluorescence microsco-
py (SXRF). In the case of legumes, successful application of
ion profiling has been demonstrated in the characterization of
mutants in model legume species L. japonicus (Chen et al.
2009). By targeting 15 elements, Chen et al. (2009) screened
∼2000 EMS-mutagenized lines with ICP-MS, and recovered
31 mutants with elemental profiles significantly deviating
from the wild type (MG-20). The ionome datasets relating to
various organisms are available at http://www.ionomicshub.
org/home/PiiMS.

Perspectives

By virtue of their high protein and mineral contents, nutrition-
al breeding of legumes remains crucial to the improvement of
the nutritional status of resource-poor people. Several interna-
tional collaborative efforts are underway to enrich mineral
including micronutrient contents in the edible parts of grain
legume crops. Since the nutritional security of the global pop-
ulation depends on the bioavailability of the enhanced nutri-
ent, enriching the crops with mineral nutrients alone will not
serve the purpose. To understand the complex mineral net-
work, emphasis needs to be given on implementing a system
biology approach for detailed dissection of the biosynthetic
pathways that underlie nutrient synthesis, nutrient accumula-
tion and their subsequent transportation to the relevant plant
parts. Towards this end, newer technologies especially emerg-
ing in the area of ionomics and metabolomics would assist
greatly in enhancing knowledge on the mineral/metabolite
dynamics, and relevant gene networks (Salt et al. 2008; Baxter
2009, 2010; Fernie and Schauer 2009). Moreover, steadily
diminishing cost coupled with increasing access to the new-
generation sequencing and genotyping systems generate new
prospects to identify the novel genes/QTLs responsible for
enhanced mineral content/concentration. In particular, these
whole genome oriented strategies allow access to the immense
wealth of novel genetic variation that resides within the crop
gene pool (Glaszmann et al. 2010).

The GM and other technologies that collectively constitute
the reverse genetics approach are particularly suitable when
adequate variability does not exist either within the cross-
compatible gene pools or carried by such wild ancestors that
are reproductively isolated from the domesticated forms with
strong hybridization barriers. Further, the GM-based food

obtained by altering the mineral/micronutrient biosynthetic
pathways is likely to fall within the ambit of intellectual prop-
erty laws and regulatory/biosafety issues (Delmer 2005;
Hirschi 2009; Parry et al. 2009; Mba et al. 2012). Additional-
ly, the quantitative nature (polygenic control) of the majority
of the agriculturally important traits advocates the utilization
of natural variation over GM technologies (Huang and Han
2014). Therefore, as recommended by Hirschi (2009), the
optimization of experimental strategies is imperative ahead
of proceeding for the development of nutrient-rich crop
genotypes.

Primarily, focus must be on those improvement strategies
which rely on harnessing the natural variation available in
crop gene pools, and transgenic or GM-based strategy should
be adopted only when the improvement is beyond the reach of
breeding technologies (Hirschi 2009). The same point-of-
view was put forth by various other researchers, which espe-
cially concerns implementation of biotechnological interven-
tions in the developing world (Delmer 2005; Pfeiffer and
McClafferty 2007). In addition, Hirschi (2009) also suggested
taking into concern the concomitant alterations that are man-
ifested in a plant’s response to the various stresses while ge-
netically manipulating the anti-nutrient content in food crops.
For instance, during investigating the role of calcium oxalate
(an anti-nutrient) in model legumeM. truncatula, Korth et al.
(2006) noted an increased incidence of insects in particular the
chewing type (Spodoptera exigua Hübner) on calcium
oxalate-defective mutants (cod lines: cod5 and cod6).

In summary, the tremendous advances in plant nutritional
genomics offer readily accessible and cost-effective crop-
based solutions to the increasing problems of global nutrition-
al insecurity. We anticipate that these new-generation geno-
mics tools will supplement the conventional nutritional breed-
ing to a greater extent, which would be reflected in the faster
availability of the highly nutrient-dense cultivars of grain
legumes.
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