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Abstract Hybrids derived from wheat (Triticum
aestivum L.) × rye (Secale cereale L.) have been widely
studied because of their important roles in wheat culti-
var improvement. Repetitive sequences pAs1, pSc119.2,
pTa-535, pTa71, CCS1, and pAWRC.1 are usually used
as probes in fluorescence in situ hybridization (FISH)
analysis of wheat, rye, and hybrids derived from wheat
× rye. Usually, some of these repetitive sequences for
FISH analysis were needed to be amplified from a
bacterial plasmid, extracted from bacterial cells, and
labeled by nick translation. Therefore, the conventional
procedure of probe preparation using these repetitive
sequences is time-consuming and labor-intensive. In this
study, some appropriate oligonucleotide probes have
been developed which can replace the roles of repetitive
sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and
pAWRC.1 in FISH analysis of wheat, rye, and hybrids
derived from wheat × rye. These oligonucleotides can
be synthesized easily and cheaply. Therefore, FISH
analysis of wheat and hybrids derived from wheat ×
rye using these oligonucleotide probes becomes easier
and more economical.
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Allopolyploids or hybrids derived from wheat (Triticum
aestivum L.) × rye (Secale cereale L.), especially wheat–
rye 1BL.1RS translocation lines, have been widely stud-
ied because of their important roles in wheat cultivar
improvement (Badaeva et al. 1986; Ko et al. 2002; Ma
et al. 2004; Tang et al. 2008, 2009; Ren et al. 2009; Fu
et al. 2010; Hao et al. 2013). Fluorescence in situ hy-
bridization (FISH) is widely used to detect alterations of
wheat and rye chromosomes in wheat–rye hybrids
(Alkhimova et al. 1999; Fu et al. 2013a, b, c). FISH
analysis is also used to characterize B chromosomes and
minichromosomes in plants (Jones et al. 2008).
Repetitive sequences pAs1, pSc119.2, and pTa71 are
usually used as probes in FISH analysis to distinguish
wheat A-, B-, and D-genome chromosomes and rye
chromosomes (Cuadrado et al. 1997; Pedersen and
Langridge 1997; Ribeiro-Carvalho et al . 2001;
Cuadrado and Jouve 2002; Schneider et al. 2003;
Schwarzacher 2003; Contento et al. 2005; Sepsi et al.
2008; Fu et al. 2013a, b; Fradkin et al. 2013; Hao et al.
2013). pTa71 was also used in research on the morphol-
ogy and organization of chromosomes of Luzula elegans
(Heckmann et al. 2013). Recently, some new tandemly
repeated sequences, such as pTa-535, pTa-713, and pTa-
86, were also obtained and used as FISH probes to
identify wheat A-, B-, and D-genome chromosomes
(Komuro et al. 2013). In addition, cereal centromere-
specific repetitive sequence CCS1 (Aragón-Alcaide
et al. 1996) and rye centromere-specific repetitive se-
quence pAWRC.1 (Francki 2001) were obtained. These
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centromeric repetitive sequences were used to investigate
the neocentric activity of 5RL chromosome in wheat
(Manzanero et al. 2000, 2002), the centromeric structure
of wheat–rye 1BL.1RS translocation lines (Francki et al.
2002; Tang et al. 2009), and the meiotic behavior of
chromosomes in wheat–rye hybrids (Lukaszewski 2008;
Valenzuela et al. 2013). In these previous studies, these
centromeric repetitive sequences for FISH analysis usu-
ally needed to be amplified from a bacterial plasmid,
extracted from bacterial cells, and labeled by nick trans-
lation. Therefore, the procedure of the preparation of
these probes is time-consuming. Synthetic oligonucleo-
tides carrying a fluorescent label can also be used as a
probe for FISH analysis (Cuadrado and Schwarzacher
1998; Cuadrado and Jouve 2002). It is convenient to
use this kind of probe for FISH analysis because oligo-
nucleotides labeled with fluorochrome can be purchased
directly from commercial sources. Additionally, FISH
probes can be generated by polymerase chain reaction
(PCR) and it is also convenient (Ijdo et al. 1991; Houben
et al. 1996). FISH probes pTa794, pSc119.2, and pAs1
can also be labeled by the method of PCR (Molnár-Láng

et al. 2010; Molnár et al. 2011; Kwiatek et al. 2013).
The appropriate pools of pTa-535, pTa71, CCS1, and
pAWRC.1 for PCR amplification have not been devel-
oped. In fact, oligonucleotides, which were developed
from pAs1 and pTa71, have already been used to distin-
guish wheat chromosomes (Danilova et al. 2012).
However, the oligonucleotides that can replace the roles
of pSc119.2, pTa535, CCS1, and pAWRC.1 have not
been reported.

In the present study, the oligonucleotides that can replace
the roles of repetitive sequences pAs1, pSc119.2, pTa71,
pTa535, CCS1, and pAWRC.1 to distinguish wheat and rye
chromosomes, and to investigate centromeric structure, were
developed. These oligonucleotides were developed according to
the repeat sequences available in public databases (Table 1).
Oligonucleotide probes were synthesized by Shanghai
Invitrogen Biotechnology Co. Ltd. (Shanghai, China). The syn-
thetic oligonucleotides were 5′ end-labelled with 6-
carboxyfluorescein (6-FAM) or 6-carboxytetramethylrhodamine
(Tamra) (Table 1). Common wheat T. aestivum L.
Mianyang11, T. aestivum L. Chinese Spring, and octo-
ploid triticales from crossing between Mianyang11 and

Table 1 Oligonucleotide probes for fluorescence in situ hybridization (FISH) analysis

Name of probe Sequence and fluorochrome label Amount applied to FISH
analysis (ng/slide)

Sequence used to develop probes
(GenBank accession no.)

Oligo-pAs1-1 Tamra-5′CCTTT CTGAC TTCAT
TTGTTATTTT TCATG CATTT
ACTAATTATT TTGAG CTATA
AGAC3′

5.9 Aegilops squarrosa repetitive DNA
sequence (D30736.1)

Oligo-pAs1-2 Tamra-5′CATTT CATCC ACATA
GCATG TGCAA GAAAT TTGAG
AGGGT TACGG CAAAA ACTGG
AT3′

5.4 Aegilops squarrosa repetitive DNA
sequence (D30736.1)

Oligo-pSc119.2-1 6-FAM-5′CCGTT TTGTG GACTA
TTACT CACCG CTTTG GGGTC
CCATA GCTAT3′

6.1 Secale cereal tandem repeat
sequence (KF719093)

Oligo-pSc119.2-2 6-FAM-5′TTCCA CGATT GACGA
TTCCG GGGGT GCGTT
TACGT GTCCG TCGTC3′

6.2 Secale cereal tandem repeat
sequence (KF719093)

Oligo-pTa71-2 Tamra-5′GGGCA AAACC ACGTA
CGTGG CACAC GCCGC GTA3′

5.8 Wheat rDNA 25S-18S intergenic
region EcoRI-BamHI fragment
(X07841.1)

Oligo-pTa535-1 Tamra-5′AAAAA CTTGA CGCAC
GTCAC GTACA AATTG GACAA
ACTCT TTCGG AGTAT CAGGG
TTTC3′

5.6 Triticum aestivum clone pTa-535
FISH-positive repetitive sequence
(KC290894.1)

Oligo-pTa535-2 Tamra-5′GACGA GAACT CATCT
GTTAC ATGGG CACTT CAATG
TTTTT TAAAC TTATT TGAAC
TCCA3′

5.7 Triticum aestivum clone pTa-535
FISH-positive repetitive sequence
(KC290894.1)

Oligo-pAWRC.1 Tamra -5′ CGTAG GCGCC GATCT
TGAAA GAGAC TTGCA CGGTG
TGCTC GACTC GAAGA ATTCC
GGCGT 3′

58 Rye centromeric repeat sequence
(AF245032)

Oligo-CCS1 6-FAM-5′CCGTT TGATA GAGGC
AAAGG TGTCC CGTCT TTTGA
TGAGA3′

58 Brachypodium sylvaticum stem-loop
sequence Hi-10 region (U52217)

314 J Appl Genetics (2014) 55:313–318



S. cereale L. Kustro were used to test these oligonucle-
otide probes. These synthesized probes were diluted by
using 1×TE solution and the amount applied to each
slide is listed in Table 1. In addition, the genomic DNA
of rye Kustro was also used as a probe for genomic in
situ hybridization (GISH) analysis and was labeled with
Texas Red-5-dUTP (Invitrogen) or Alexa Fluor 488-5-
dUTP (Invitrogen). Probe labeling and in situ hybridization
were operated according to Han et al. (2006). The

chromosome spreads of materials were also prepared through
the methods described by Han et al. (2006).

Oligo-pAs1-1 and Oligo-pAs1-2 mainly hybridized to
D-genome chromosomes of common wheat Mianyang11
and Chinese Spring (Fig. 1a, b, e, f). The Oligo-pAs1-1
and Oligo-pAs1-2 signals to D-genome chromosomes are
agreement with the pAs1 signals to D-genome chromo-
somes (Schneider et al. 2003). Oligo-pAs1-1 and Oligo-
pAs1-2 also gave apparent signals to 1A, 2A, 3A, 4A,

Fig. 1 Fluorescence in situ hybridization (FISH) analysis using Oligo-
pAs1-1 (red), Oligo-pAs1-2 (red), Oligo-pTa535-1 (red), Oligo-pTa535-2
(red), Oligo-pSc119.2-1 (green), and Oligo-pSc119.2-2 (green) as probes

on root tip metaphase chromosomes of Chinese Spring (a, b, c, d) and
Mianyang11 (e, f, g, h). Chromosomes were counterstained with DAPI
(blue)
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6A, 7A, 3B, 6B, and 7B chromosomes of Mianyang11
and Chinese Spring (Fig. 1a, b, e, f). In addition, Oligo-
pAs1-1 and Oligo-pAs1-2 can produce signals on 5AL
arms of Chinese Spring (Fig. 1a, b). The FISH signal
patterns of Oligo-pTa535-1 and Oligo-pTa535-2 on
wheat chromosomes are similar to those of probes
Oligo-pAs1-1 and Oligo-pAs1-2 (Fig. 1). The FISH

signals on A-genome chromosomes produced by Oligo-
pTa535-1 and Oligo-pTa535-2 are stronger than those
generated by Oligo-pAs1-1 and Oligo-pAs1-2 (Fig. 1).
Oligo-pSc119.2-1 and Oligo-pSc119.2-2 have the same
signal pattern and they especially hybridize to wheat B-
genome chromosomes and rye chromosomes (Figs. 1 and
2a, b, d). The Oligo-pSc119.2-1 and Oligo-pSc119.2-2

Fig. 2 a FISH and genomic in
situ hybridization (GISH)
analyses using Oligo-pSc119.2-1
(green), Oligo-pTa535-1 (red),
and rye genomic DNA (red) as
probes on root tip metaphase
chromosomes of triticale. b FISH
and GISH analyses using Oligo-
pSc119.2-2 (green), Oligo-
pTa535-1 (red), and rye genomic
DNA (red) as probes on root tip
metaphase chromosomes of
triticale. c FISH analysis using
Oligo-pTa71-2 as a probe on root
tip metaphase chromosomes of
triticale. d FISH and GISH
analyses using Oligo-pSc119.2-1
(green), Oligo-pTa535-1 (red),
and rye genomic DNA (red) as
probes on the same cell as in c.
Each rye chromosome can be
discriminated byOligo-pSc119.2-
1 or Oligo-pSc119.2-2 signals.
Chromosomes were
counterstained with DAPI (blue)

Fig. 3 a FISH and GISH
analyses using Oligo-pAWRC.1
(red) and rye genomic DNA
(green) as probes on root tip
metaphase chromosomes of
triticale. b FISH and GISH
analyses using Oligo-CCS1
(green) and rye genomic DNA
(red) as probes on root tip
metaphase chromosomes of
triticale. Chromosomes were
counterstained with DAPI (blue)
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signals are in agreement with the pSc119.2 signals to B-
genome chromosomes and rye chromosomes (Schneider
et al. 2003; Contento et al. 2005). Oligo-pSc119.2-1 and
Oligo-pSc119.2-2 also generated obvious signals on 4A,
5A, 2D, 3D, and 4D chromosomes of common wheat
(Figs. 1 and 2a, b, d). Oligo-pSc119.2-1 or Oligo-
pSc119.2-2 combined with Oligo-pAs1-1, Oligo-pAs1-2,
Oligo-pTa535-1, or Oligo-pTa535-2 can successfully dis-
criminate the whole set of 42 common wheat chromo-
somes (Figs. 1 and 2a, b, d).

Oligo-pTa71-2 can produce strong signals on wheat
1B, 6B, and rye 1R chromosomes, and weak signals on
wheat 5D chromosomes (Fig. 2c, d). Therefore, Oligo-
pTa71-2 can replace the role of pTa71. Oligo-pAWRC.1
produces clear signals at centromeres of just rye chro-
mosomes (Fig. 3a) and Oligo-CCS1 can generate clear
signals at centromeres of both rye and wheat chromo-
somes (Fig. 3b). Therefore, Oligo-pAWRC.1 and Oligo-
CCS1 can replace the roles of pAWRC.1 and CCS1 to
investigate the centromeric structure of wheat and rye
chromosomes.

Although some synthetic oligonucleotides such as
(AAG)n, (AAC)n, and (GACA)n, which were end-
labeled with biotin-11-dUTP, have been used to distin-
guish wheat A-, B-, and D-genome chromosomes and
rye chromosomes (Cuadrado and Schwarzacher 1998),
repetitive sequences pAs1, pSc119.2, and pTa71 are
still widely used. The newly discovered repetitive se-
quence pTa-535 can also be used as a probe to distin-
guish wheat chromosomes (Komuro et al. 2013). In
previous studies, the procedures of the preparation
and labeling of some of these repetitive sequences were
time-consuming and labor-intensive. To use oligonucle-
otides as probes for FISH analysis is relatively

convenient. Although FISH probes can be prepared by
PCR amplification (Ijdo et al. 1991; Molnár-Láng et al.
2010), the appropriate pools of pTa-535, pTa71, CCS1,
and pAWRC.1 for PCR amplification have not been
developed. Therefore, in this case, it is convenient to
use synthetic oligonucleotide probes for FISH analysis
because oligonucleotides labeled with fluorochrome can
be purchased directly from commercial sources. The
oligonucleotides developed in this study provide an
easy path for FISH analysis of wheat and rye.
Furthermore, synthesized oligonucleotide probes are
cheap (Table 2).

The oligonucleotides developed from pAs1 and
pTa71 in this study are different from those reported
by Danilova et al. (2012) and the oligonucleotides in
the present study offer further options for researchers. It
is better to use Oligo-pTa535-1 and Oligo-pTa535-2 to
distinguish wheat A-genome chromosomes because their
signals were stronger and clearer than those of Oligo-
pAs1-1 and Oligo-pAs1-2 on A-genome chromosomes
(Fig. 1).

In conclusion, Oligo-pAs1-1, Oligo-pAs1-2, Oligo-
pTa535-1, Oligo-pTa535-2, Oligo-pSc119.2-1, Oligo-
pSc119.2-2, Oligo-pTa71-2, Oligo-pAWRC.1, and Oligo-
CCS1 can replace the roles of repetitive sequences pAs1,
pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH
analysis. Additionally, Oligo-pSc119.2-1 and Oligo-
pSc119.2-2 display the structural variation of 5A chromo-
somes because their signals appeared on 5AL arms in triticales
but did not appear on 5AL arms of parental wheat
Mianyang11 (Figs. 1e and 2a, b, d).
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Table 2 Costing of synthetic oli-
gonucleotide probes used in this
study

a The costing is valued at present
market prices in China

Name of probe Amount of synthetic
probe (μg)

Costing of synthetic
probe ($)a

Number of slides that can
be detected using the
synthetic probe (piece)

Oligo-pAs1-1 147.95 107.82 25,000.00

Oligo-pAs1-2 137.3 107.34 25,000.00

Oligo-pSc119.2-1 154.5 67.34 25,000.00

Oligo-pSc119.2-2 156.05 67.34 25,000.00

Oligo-pTa71-2 147.05 101.53 25,000.00

Oligo-pTa535-1 140.35 107.82 25,000.00

Oligo-pTa535-2 143.55 107.82 25,000.00

Oligo-pAWRC.1 145.90 107.82 2,500.00

Oligo-CCS1 145.90 66.13 2,500.00
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