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ABSTRACT

Hybrid data assimilation combines a conventional 3-D or 4-D variational system with background error covariance
(BEC)  generated  from  ensemble  forecast  systems.  In  order  to  achieve  better  BEC,  three  perturbation  schemes,
namely,  the  random  combination  of  multiple  physical  paramterization  schemes  (referred  to  as  MP),  the  MP  plus
stochastical perturbation on physical process tendencies (MP-SPPT), and the unified perturbation of stochastic phys-
ics with bias correction (UPSB, proposed by the authors of this paper in a previous work), were first used in a regio-
nal  ensemble  model,  i.e.,  the  Global  and Regional  Assimilation  and Prediction  System-Regional  Ensemble  Predic-
tion System (GRAPES-REPS), and the BECs thus obtained were compared for 7-day ensemble forecasts. The results
show that UPSB, which is in fact an MP-SPPT but with the systematic model bias removed, has a better consistency,
i.e.,  the  ratio  between  root-mean-square  error  (RMSE)  and  ensemble  spread  is  much closer  to  1,  especially  at  low
model levels, compared to the other two schemes. Moreover, the BEC derived from UPSB captured more reasonable
distributions of forecast errors.

Second, performance of a hybrid data assimilation system (the GRAPES-MESO hybrid En-3DVar) was evaluated
by using the BECs from the three perturbation schemes for 7-day hybrid data assimilation forecasts, and thus disclos-
ing the effect of the model bias correction (assuming that the random stocastical features are in general offset in the
three perturbation schemes) on the hybrid system forecasts. A covariance weight of 0.8 was prescribed, and this value
was determined through sensitivity experiments. The forecast results from the hybrid data assimilation system show
that UPSB reduced the false correlation between distant points.  The quality of analysis fields of the UPSB scheme
shows visible improvement, i.e., the analysis fields produced by UPSB have much smaller RMSEs than those of the
other two schemes, at all vertical model levels. The quality of the hybrid data assimilation forecast fields was also im-
proved by this scheme. Furthermore, the improvement was much greater in the early stage of the assimilation cycle
than  in  the  late  stage.  Generally,  the  quality  of  the  hybrid  data  assimilation  of  GRAPES-MESO hybrid  En-3DVar
could be efficiently improved by the model bias correction in the UPSB scheme.
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1.    Introduction

Data  assimilation  is  a  method  typically  used  to  seek
the  optimal  combination  of  background  (usually  in  the
form of numerical model results) and newly received ob-
servations.  It  offers  updated  and  accurate  initial  condi-

tions  for  a  numerical  model  to  make  better  forecasts.  A
new  trend  in  the  development  of  data  assimilation
schemes in recent years is the so-called hybrid approach,
which  attempts  to  achieve  more  accurate  and  flow-de-
pendent ensemble estimates of the background error cov-
ariance  (BEC),  and  which  can  then  be  combined  with
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statistical estimates of static BEC (Buehner, 2005; Wang,
2011). Hybrid data assimilation combines a conventional
3-D or 4-D variational system with BEC generated from
ensemble  forecast  systems. Hamill  and  Snyder  (2000)
used a  linear  method to  introduce  ensemble  background
error statistics to a 3DVar (three-dimensional variational)
algorithm  to  build  a  hybrid  scheme,  and  then  they  pre-
liminary tested it in a simple model. Lorenc (2003) intro-
duced  an  ensemble-estimated  BEC matrix  to  the  3DVar
system via the Extending Control Variable (ECV) method
and proved its advantages. It was also confirmed that the
linear  combination  method  is  equivalent  to  the  ECV
method (Wang et al., 2008a). Wang et al. (2008a, b) de-
veloped  an  ETKF-3DVar  hybrid  data  assimilation  ap-
proach  (ETKF;  ensemble  transform  Kalman  filter)  by
putting  the  ETKF  into  the  3DVar  system,  and  then  ap-
plied it to the Weather Research and Forecasting (WRF)
data  assimilation  system.  In  addition,  many  scientists
have  conducted  extensive  research  and  experiments  on
hybrid data assimilation schemes based on different mod-
els  (Liu  et  al.,  2009; Zhang et  al.,  2009; Buehner  et  al.,
2010a, b; Wang et al., 2013; Ma et al., 2014; Chen et al.,
2015; Zhang  et  al.,  2015).  It  can  be  concluded  that  hy-
brid  data  assimilation  schemes  perform  very  well  in
global  and  regional  numerical  weather  prediction  sys-
tems,  especially  for  model  levels  in  the troposphere and
in  areas  with  relatively  poorer  observational  coverage
(Wang, 2011; Liu and Xiao, 2013; Xia et al., 2018).

As mentioned above, the hybrid method applies flow-
dependent,  ensemble-based  estimates  of  BEC  to  the
3DVar/4DVar system, which allows the improvement of
the ensemble perturbation schemes to benefit the data as-
similation  skill.  Therefore,  a  choice  of  perturbation
scheme is crucial for a better ensemble BEC, which may
have positive effects on ensemble estimates of BEC. Cur-
rently,  there  are  many  ensemble  perturbation  schemes,
such as  the  initial  perturbation methods of  singular  vec-
tor  schemes  (Buizza  and  Palmer,  1995; Molteni  et  al.,
1996),  ETKF  (Bishop  et  al.,  2001; Wang  and  Bishop,
2003; Wei et  al.,  2006; Ma et  al.,  2008),  random Monte
Carlo  perturbations  (Hollingsworth,  1980; Mullen  and
Baumhefner,  1994),  and the  breeding method (Toth  and
Kalnay,  1993, 1997),  as  well  as  the  model  perturbation
methods  of  Stochastically  Perturbed  Parameterization
Tendencies  (SPPT),  which  can  also  be  interpreted  as
stochastical  perturbation  on  physical  process  tendencies
(SPPT),  and  Stochastic  Kinetic  Energy  Backscatter
(Shutts, 2005). At present, SPPT is one of the most popu-
lar  approaches,  and  has  been  successfully  applied  in
global  and  regional  hybrid  assimilation  system  experi-
ments. The basis of the SPPT scheme is to randomly per-
turb  the  tendencies  from  the  physical  parameterization

schemes, which aims to represent uncertainties in the ef-
fects  of  the  sub-grid  physics  processes  that  the  atmo-
spheric physics parameterization schemes are designed to
describe. Berner et al. (2009), Charron et al. (2009), Ten-
nant et al. (2010), and Yuan et al. (2016) showed that the
ensemble  perturbation  schemes  can  increase  the  en-
semble  spread  and  reduce  the  impact  of  systematic  er-
rors of the model to some extent.

Toth  et  al.  (2003) and Wang  et  al.  (2018) found  that
systematic errors can induce an inaccurate ensemble dis-
tribution, which renders the ensemble BEC unable to ac-
curately  represent  the  forecast  error.  This  may  negat-
ively impact the quality of hybrid data assimilation. The
main approach to dealing with systematic errors is statist-
ical  post-processing,  via  methods  such  as  Ensemble
Model  Output  Statistics  (EMOS; Gneiting  et  al.,  2005),
Analog Bias Correction (Ren and Chou, 2005), Bayesian
Model Averaging (BMA; Raftery et al.,  2005; Hamill et
al.,  2011), Kalman filter predictor bias correction (Mon-
ache et al., 2006), the trade-off in bias correction method
(Cui  et  al.,  2006; Du,  2007),  statistical  downscaling
(Wilby and Wigley, 1997; Wang and Zhi, 2015), and so
on.  These  methods  are  effective  at  minimizing  the  im-
pact of systematic errors on the ensemble predictions, but
cannot deal with random errors. Considering these model
shortcomings, Chen et al. (2019) introduced a method to
remove the systematic bias of each ensemble member in
the model integration process. With this in mind, might it
be possible to consider the impact of the model systematic
errors together with stochastic errors in SPPT scheme to
optimize  the  performance  of  the  ensemble  forecast  sys-
tem and improve the quality of BEC estimation in the hy-
brid assimilation cycle? This idea is worthy of investiga-
tion.

In  this  study,  we  tested  this  hybrid  implementation
idea  by  using  unified  perturbation  of  stochastic  physics
with bias correction (UPSB, or Exp3 in Table 1; also see
Xia  et  al.,  2019)  with  the  GRAPES-REPS  (Global  and
Regional Assimilation and Prediction Enhanced System-
Regional  Ensemble  Prediction  System)  and  GRAPES-
MESO  hybrid  En-3DVar-TD-HLS  (Ensemble  three-di-
mensional  hybrid  data  assimilation  for  GRAPES  with
Topographic  Dependent  Horizontal  Localization  Scale
scheme),  and  compared  the  results  with  the  traditional
multi-physical  process  scheme  and  multi-physical  pro-
cess  with  SPPT-only  methods.  We  adopted  these  three
ensemble  perturbation  schemes  to  obtain  background
statistics  coupled  with  the  static  background  covariance
to investigate the impact of model bias correction on our
hybrid  data  assimilation  system.  In  Section  2,  the
GRAPES-REPS system, the GRAPES-MESO hybrid En-
3DVar-TD-HLS  system,  and  the  design  of  our  experi-
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ments are briefly introduced. The results are presented in
Section  3,  and  then  a  summary  and  discussion  are
provided in Section 4.

2.    Introduction to the GRAPES hybrid data
assimilation system

The GRAPES-MESO hybrid En-3DVar-TD-HLS sys-
tem includes the GRAPES-MESO 3DVar data  assimila-
tion  system  and  the  GRAPES-REPS  regional  ensemble
forecast  system. The GRAPES-REPS system has 15 en-
semble  members,  which includes  14 ensemble  perturba-
tion  forecasts  and  1  control  forecast.  The  horizontal
resolution  is  0.15°  ×  0.15°,  with  502  ×  332  grids  on  49
vertical  model  levels.  The  domain  of  the  system  is
15°–64.35°N,  70°–145.15°E,  which  covers  contermin-
ous  China.  Forecasts  are  made  available  every  6  hours.
The valid forecast time is 72 h, with an integration time
of  60  s.  The  background  and  boundary  conditions  are
provided by the Numerical Weather Prediction Center of
the China Meteorological Administration. The horizontal
resolution of the data assimilation system is the same as
the  ensemble  forecast  system.  The hybrid  data  assimila-
tion  combines  the  ensemble  BEC with  the  3DVar  static
BEC via  ECV.  The  cost  function  of  the  hybrid  data  as-
similation system is as follows:

J(x′)=
1
2

(x′)T(β2
c Bc+β

2
e Be)−1(x′)+

1
2

(Hx′+d)TR−1(Hx′+d),
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2
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where x is the analysis increment,  is the weight of the
climatological and statistical BEC,  is the ensemble es-
timated BEC, and . In our study,  is 0.2 and

 is  0.8  (based  on  previous  research  on  the  GRAPES-
MESO hybrid En-3DVar-TD-HLS system). H is the ob-
servational  operator, R is  the observational  error  covari-
ance matrix, and T represents the matrix transpose.

The  ensemble  BEC  matrix  of  GRAPES-MESO  hy-
brid  En-3DVar-TD-HLS  is  composed  of  the  12-h  fore-
casts  of  GRAPES-REPS  with  ensemble  perturbations.
The method is as follows:
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Here, K=14,  which  indicates  the  total  number  of  en-
semble members,  is the ensemble mean of those mem-
bers, xk is the forecast of K members, and  denotes the
ensemble BEC matrix with flow-dependence.
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e
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e

In Eq. (2), the estimated BEC matrix is not a full rank
matrix,  which  brings  about  large  sampling  errors  of  es-
timated  covariance.  Thus,  it  is  necessary  to  use  a  local-
ized correlation matrix C to resolve this problem, and C
and  must  have  the  same  dimension  size.  Then,  the
localization  of  can  be  done  by  multiplying  them  to-
gether:

Be = Pe
f ◦C, (4)

◦where the symbol “ ” is the Schur product. In this paper,
the horizontal localization scale of the static BEC matrix
is 500 km (default value of the GRAPES-MESO 3DVar
data assimilation system), while the ensemble BEC mat-
rix adopts the Topography Dependent Horizontal  Local-
ization (TDHL) scale scheme (the horizontal localization
only changes with the horizontal  direction) [refer to Xia
et  al.  (2019)]. Figure  1 is  the  horizontal  distribution  of
the  TDHL  scale  scheme  over  different  terrain  heights,
from  which  we  can  see  that  the  horizontal  localization
scale of the BEC is proportional to the terrain height. In
other  words,  the  higher  the  terrain,  the  larger  the  hori-
zontal localization scale. The maximum horizontal local-
ization scale of the system is 1500 km. The vertical local-
ization scale of both the static and ensemble BEC is 5 km
(default value of the system). Besides, the BEC informa-
tion on the humidity is completely static in the GRAPES-
MESO En-3DVar hybrid assimilation system, due to the
high  uncertainty  of  water  vapor  in  the  GRAPES-REPS
system.

3.    Method and experimental design

3.1    Method

The  GRAPES-REPS  regional  ensemble  prediction
system uses  the  downscaling initial  perturbation method
and  model  perturbation  method  of  the  MP scheme.  The
latter includes two planetary boundary layer (PBL) para-
meterization schemes and four cumulus convective (CC)

Table 1.   Design of the three ensemble perturbation experiments
Experiment Model perturbation Boundary condition Initial perturbation
Exp1 Random combination of multiple physical paramterization

schemes (MP)
Dynamically downscaled

(T639-GEPS)
Dynamically downscaled

(T639-GEPS)
Exp2 MP + stochastical perturbation on physical process tenden-

cies (SPPT)
As above As above

Exp3 MP + unified perturbation of stochastic physics with bias
correction (UPSB)

As above As above
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parameterization  schemes.  Then,  it  randomly  combines
two  of  them  (Table  2).  The  PBL  parameterization
schemes  we  used  were  the  MRF (Medium Range  Fore-
cast)  scheme  (Hong  and  Pan,  1996)  and  YSU  (Yonsei
University) scheme (Hong et al., 2006). The CC paramet-
erization  schemes  were  the  shallow  convection
Kain–Fritsch–Eta scheme (Kain and Fritsch, 1993; Kain,
2004), Betts–Miller–Janjic scheme (Betts, 1986), simpli-
fied Arakawa–Schubert scheme (Pan and Wu, 1995), and
original Kain–Fritsch scheme (Kain and Fritsch, 1990).

The integration formula in the GRAPES-REPS regional
ensemble prediction model is

Sj(t) =
w t

t0

{
A(Sj, t)+P(Sj, t)

}
dt, (5)

S j (t)
j = 0,1,2,3 . . . ,14

where  is  the  integration  result  of  the jth  ensemble
member  from t0 to t,  where ; t0 is  the
start time, and t is the integration duration from t0; j = 0
represents the control forecast; A is the integration tend-
ency term for the dynamical process; and P describes the
physical process.

The  SPPT  scheme  was  incorporated  into  the
GRAPES-REPS system based on Exp1 (Table 2), and its
integration formula is:

S j (t) =
w t

t0

{
A(S j, t)+P(S j, t)×R j (λ,ϕ, t)

}
dt, (6)

R j (λ,ϕ, t)

R j (λ,ϕ, t)

where  represents  the  random  perturbation  of
the jth  ensemble  member.  The  other  variables  carry  the
same meaning as in Eq.  (5).  For the jth ensemble mem-
ber, the expression of  can be obtained by:

R j (λ,ϕ, t) = r̄+
∑L

l=1

∑l

m=−l
αl,m (t)Yl,m (λ,ϕ) , (7)

R j (λ,ϕ, t)
r̄

αl,m (t)
Yl,m (λ,ϕ)

where  is  the  random  perturbation  with  no
boundary;  is  the  mean  value  of  the  random  perturba-
tions;  is  the  spectral  coefficient,  which  changes
with time t; λ and ϕ are longitude and latitude; 
is  the  spherical  harmonics,  where l and m respectively
stand for the horizontal  total  wave number and the latit-
udinal  wave  number;  and L denotes  the  horizontal  trun-
cation of the random perturbations.

αl,m (t)The  evolution  of  is  based  on  a  Markov  chain,
which is shown in Eq. (8):

αl,m (t+∆t) = e−∆t/ταl,m (t)+

√
4πσ2 (

1− e−2∆t/τ)
L (L+2)

rl,m (t),

(8)

∆twhere  is the specified time interval (in this study, 60 s
corresponds  to  the  integration  length  of  the  GRAPES-
REPS system), τ is the timescale of the scalar product for

 

Table 2.   Configuration of the MP scheme
Ensemble
member

PBL
scheme

CC
scheme

Control MRF Shallow convection Kain–Fritsch–Eta
Member 1 MRF Original Kain–Fritsch
Member 2 MRF Betts–Miller–Janjic
Member 3 MRF Shallow convection Kain–Fritsch–Eta
Member 4 MRF Original Kain–Fritsch
Member 5 MRF Betts–Miller–Janjic
Member 6 MRF Shallow convection Kain–Fritsch–Eta
Member 7 MRF Original Kain–Fritsch
Member 8 YSU Simplified Arakawa–Schuber
Member 9 YSU Betts–Miller–Janjic
Member 10 YSU Original Kain–Fritsch
Member 11 YSU Simplified Arakawa–Schuber
Member 12 YSU Betts–Miller–Janjic
Member 13 YSU Original Kain–Fritsch
Member 14 YSU Simplified Arakawa–Schuber
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1000 2000 3000 3500 4000 4500 5000
 
Fig. 1.   Horizontal distribution of the TDHL scale scheme over different terrain heights. The shaded region highlights the terrain height and the
blue contours highlight the horizontal localization scales.
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rl,m (t)

R j (λ,ϕ, t)

the  random  field,  meets  a  Gaussian  distribution
with a variance of 1 and a mean value of 0, and σ is the
standard deviation of .

χ (R, r̄)
R′j (λ,ϕ, t)

Based on the random field defined by Eqs. (7) and (8),
a  stretching  function  is  introduced  to  generate  a

 that  can  set  the  range  of  variations  (given  the
upper  and  lower  boundaries)  and  can  change  the  PDF
distribution:

R
′
j(λ,ϕ, t) = r̄+χ

(
R j, r̄

) [
R j (λ,ϕ, t)− r̄

]
. (9)

χ (R, r̄)In  this  paper,  is  the  same  as  in Yuan  et  al.
(2016) :

χ(R j, r̄) = 2−
1− exp

[
β

(
R j−r̄

R′max−r̄

)2]
1− exp(β)

, (10)

r̄ =
(
R′max−R′min

)
R′max R′min

R′j (λ,ϕ, t)
where ,  in  which  and  are  the
upper and lower boundaries of .

A recent study showed that the performance and veri-
fication of the GRAPES-REPS ensemble is highly sensit-
ive  to  model  bias,  and Chen et  al.  (2019) and Xia  et  al.
(2019) introduced  a  new  method  to  remove  systematic
bias  of  each  ensemble  member  in  the  model  integration
process.  Based  on  SPPT  and  this  new  method,  a  UPSB
scheme was designed to correct  the linear tendency bias
(based  on  the  control  forecast  from GRAPES-REPS)  of
potential temperature in the procedure of tendency integ-
ration  for  each  ensemble  member.  The  integration  for-
mula is:

Sj (t) =
w t

t0

{
A(Sj, t)+

[
P(Sj, t)− B̂l(S j, t)

]
×R

′
j (λ,ϕ, t)

}
dt,

(11)

B̂l(Sj, t)where  is  the tendency of systematic bias at  each
grid in three dimensions for each integration length, and
can be obtained as follows:

B̂l(S j, t) =
B(S j, t+∆)−B(S j, t)

∆×3600
×δt, (12)

B(S j, t)
B(S j, t+∆)

where Δ is the valid forecast  time,  is  the bias of
the atmospheric state at time t, and  is the bias
at t +  Δ.  We  define  the  difference  between  the  forecast
and the “truth” as the model systematic bias, wherein the
analysis fields from the T639 global forecast  system are
used as the “truth” in this  paper.  Here, δt is  the integra-
tion length (60 s in this paper).

Through statistical  analysis  of  the  systematic  error  of
various variables of the control forecast in the GRAPES-
REPS  system,  it  is  found  that  the  wind  and  pressure
fields  have  nonsignificant  and  nonlinear  systematic  er-
rors.  The  magnitude  of  their  model  error  is  also  small.
The following is the integration formula of potential tem-

perature with linear tendency bias correction:

θ j (t) =
tw

t0

{
A(θ j, t)+

[
P(θ j, t)− B̂l(θ j,0)

]
×R

′
j (λ,ϕ, t)

}
dt,

(13)

B̂l
(
θ j,0

)
where  represents the linear tendency bias of the
control forecast.

In this paper, the linear tendency bias of the potential
temperature  has  the  same  value  for  each  integration
length  during  the  entire  valid  forecast  time.  For  a  de-
tailed  description  of  the  method,  such  as  how  to  calcu-
late  the  bias  tendency  and  how it  impacts  the  forecasts,
readers  are  referred  to Chen  et  al.  (2019) and Xia  et  al.
(2019).

3.2    Experimental design

Seven-day  ensemble  perturbation  experiments  of  the
three schemes were proposed to explore their  impact  on
the  hybrid  data  assimilation  cycle  with  the  dynamical-
downscaled  background  and  boundary  conditions  from
the  T639  global  ensemble  prediction  system.  The  en-
semble experiments were from 1200 UTC 5 July to 1200
UTC  11  July  2015,  with  72-h  forecasts  for  each  en-
semble forecast experiment,  and the 12-h forecasts were
used  to  calculate  the  spread,  ensemble  RMSE  (root-
mean-square  error),  ensemble  mean  forecast  error,  cor-
relation  coefficient  between  spread  and  ensemble  mean
forecast error, and the ensemble BEC. The design of the
ensemble experiments can be found in Table 1.  In addi-
tion,  sensitivity  experiments  with  varied  ensemble  cov-
ariance weight were conducted via the 7-day hybrid data
assimilation  experiments  (Table  3)  to  obtain  the  best
weight  to  be used in  BEC coupling.  Then,  7-day hybrid
data  assimilation  experiments  were  conducted  based  on
the ensemble BEC generated by the 7-day ensemble per-
turbation  experiments.  The  hybrid  data  assimilation  ex-
periments  were  conducted  from  0000  UTC  6  July  to
0000 UTC 12 July 2015, with 72-h forecasts for each ex-
periment.

Figure 2 illustrates the design of the experiments. For
example, if the experiment time of the hybrid data assim-
ilation  was  0000 UTC 12 July  2015,  we needed to  start
the ensemble experiments at  1200 UTC 11 July 2015 to
obtain  12-h  forecasts,  which  were  used  to  form  the  en-
semble BEC.

The  hybrid  data  assimilation  experiments  were  only
applied  to  conventional  observations  (Fig.  3).  The  vari-
ables U, V,  pressure,  and  relative  humidity  were  con-
tained in the surface observations at land stations (SYN-
OP),  radiosondes  from  land  and  ships  (TEMP),  aircraft
reports  (AIREP),  and  surface  observations  on  ships
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(SHIPS)  and  were  assimilated  by  the  GRAPES-MESO
hybrid En-3DVar system; only U and V were assimilated
by  surface  observations  at  land  stations  (SATOB).  The
analysis fields from the T639 global forecast system (res-
olution:  0.2815  ×  0.2815)  were  interpolated  to  the  re-
gional  study  area  with  a  resolution  of  0.15  ×  0.15.  This
could be used to evaluate the bias of the control forecast
(72  h)  of  GRAPES-REPS,  the  result  of  the  ensemble
mean RMSE, and the results produced by the hybrid data
assimilation system. The model bias was estimated from
the difference between the control forecasts and the T639
global  analysis  field.  For  example,  if  we  want  to  estim-
ate the model bias at around 1200 UTC 11 July 2015, 10-
day forecasts from 1200 UTC 28 June 2015 to 1200 UTC
8 July  2015 were  conducted to  estimate  the  model  bias,
and then we calculate the average model bias of these 10
days.

4.    Results

4.1    Ensemble spread and RMSE

The  ensemble  spread  and  ensemble  mean  RMSE  are

important  indicators  to  evaluate  the  performance  of  the
ensemble  prediction  system.  The  best  match  between
them is when their ratio (consistency) becomes 1.

Figure 4 shows the vertical  profile  of  the consistency
between  ensemble  spread  and  mean  RMSE  over  12-h
forecasts.  It  can  be  seen  that  Exp1  had  worse  consist-
ency than Exp2 and Exp3 for U at  all  levels.  Also,  it  is
clear that Exp3 performed best in the match of ensemble
spread and mean RMSE from model  levels  1 to 20.  For
other  levels,  there  was  only  a  small  difference  between
Exp2 and Exp3, and Exp3 was slightly better than Exp2.
The consistency of V had similar vertical structures as U.
The advantages of Exp3 for pressure (PI) were visible at
model levels 1–22. On the whole, Exp3 had the best con-
sistency  between  ensemble  spread  and  mean  RMSE
among the three perturbation ensemble experiments.

4.2    Correlation between spread and forecast error

The  ensemble  estimates  of  the  BEC  matrix  were
coupled with the static BEC matrix in the hybrid data as-
similation cycle. The coupled BEC matrix can be used to
map the forecast error with respect to the relevant atmo-
spheric state, meaning that it should be flow-dependence.
Thus, it  is necessary to examine the correlation between
the ensemble spread and the forecast error.
4.2.1    Vertical profile of the correlation

Figure  5 shows  vertical  profiles  of  the  correlation
coefficient  between  the  ensemble  spread  and  the  en-
semble  mean  forecast  error  for  12-h  ensemble  forecasts
(the mean of 7-day experiments) with the three ensemble

 

Table 3.   Design of the ensemble covariance weight sensitivity exper-
iments

Test name Weight of ensemble
estimated BEC

Weight of 3DVar
statistical BEC

Eps_0.0 0.0 1.0
Eps_0.2 0.2 0.8
Eps_0.5 0.5 0.5
Eps_0.8 0.8 0.2
Eps_1.0 1.0 0.0

12-h forecast

12-h forecast

12-h forecast

12-h forecast

12-h forecast

run00

run01
Ensemble
forecast

perturbation
run02

runK

Combined by
ECV methodStatic

BEC 
Ensemble

BEC 

Observations

T639 12-h
forecast as
background

En-3DVAR hybrid
system

3-day forecast

…
…

 
Fig. 2.   Schematic diagram of the GRAPES-MESO hybrid En-3DVar analysis–forecast cycle.
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perturbation  schemes. Figure  5a shows  that  for U,  the
correlation  coefficient  of  Exp3  is  larger  than  Exp1  and
Exp2 at model levels 1–23 and 30–44, whereas the coef-
ficients  of  Exp1 and Exp2 are quite  close to each other.
At  other  levels,  there  is  not  a  big  difference  among  the
three experiments. From Fig. 5b, it can be seen that for V,
the coefficient of Exp3, significant at model levels 6–25,
is  larger  than that  in  the  other  two experiments,  and the
performance of Exp1 is slightly better than that of Exp2.
For  model  levels  26–49,  the  coefficients  of  these  three
experiments  are  roughly  the  same.  Also,  from Fig.  5c
(for  PI,  dimensionless  quantity),  the  coefficient  of  the
Exp3 scheme is much larger than that of Exp2 and Exp1
for model levels 1–22 and 35–49; Exp1 and Exp2 do not
differ that much, but at model levels 23–34, the results of
Exp3  are  smaller  than  those  of  Exp1  and  Exp2.  Essen-
tially,  Exp1  and  Exp2  are  approximately  equivalent  to
each  other  at  all  model  levels,  whereas  Exp3  generally

performs better than Exp1 and Exp2 at middle and lower
model levels, and is close to them at high levels.
4.2.2    Correlation between a single point and grid

points of 975 hPa
In  terms  of  current  computing  costs,  the  ensemble

BEC  can  only  be  estimated  with  a  limited  set  of  mem-
bers. This may result in a false correlation between long-
distance  grid  points,  thereby  overestimating  the  en-
semble  BEC  and  weakening  the  impact  of  observations
on  the  assimilation  system.  The  correlation  coefficients
of  ensemble  spread  between  a  single  point  (6th  layer,
34°N,  123°E)  and the  grid  points  of  the  6th  layer  for U
and V are shown in Fig. 6. The single point selected was
the  center  of  a  vortex.  The  correlation  coefficients  of
both U and V were relatively large near the vortex, basic-
ally  in  the  range  of  0.8–1.  Also,  its  distribution  was
closely  connected  to  that  of  the  vortex.  This  indicates
that the combination of the ensemble BEC with the static

50N
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90E 120E
 
Fig.  3.   Distribution  of  conventional  observations  for  the  data  assimilation  experiment:  SYNOP (blue),  TEMP (red),  SHIPS  (black),  ARIEP
(green), and SATOB (purple).
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Fig. 4.   Vertical profiles of the ratio of ensemble spread to mean RMSE (consistency) over 12-h forecasts with the three ensemble perturbation
schemes, where the green line is for Exp1, blue for Exp2, red for Exp3, and gray is the “perfect” line, i.e., the optimal ratio for (a) U, (b) V, and
(c) pressure (dimensionless quantity, PI).
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BEC  can  make  the  hybrid  assimilation  system  have  an
obvious  flow-dependent  characteristic  in  the  study  area.
It  also  means  that  the  BEC  generated  by  the  three  en-
semble  perturbation  schemes  can  reasonably  represent
the  analysis  error  with  respect  to  the  weather  changes.
Although the distributions of the single point correlation
coefficients of the three experiments had similar patterns
near the vortex, the coefficients in the red box, which is
far  away  from  the  vortex,  had  some  differences.  Exp3
had relatively larger coefficients in the red box, and this
may  have  been  due  to  the  limited  ensemble  size.  Com-
pared  with  Exp1,  Exp2  and  Exp3  had  smaller  coeffi-
cients in this area. All the above results show that UPSB
can moderately reduce the false correlation.

4.3    Sensitivity  experiment  with  varied  ensemble  covari-
ance weight

Table  4 lists  the  results  of  the  ensemble  covariance
weight  (7-day  average)  sensitivity  experiments.  It  is
evident that, when the ensemble covariance weight is 0.8,
the U RMSE of the analysis, 6-, and 12-h forecast fields
is  smaller  than  the  other  ensemble  covariance  weights.
Besides, the V RMSE is smaller in the analysis and fore-
cast  fields  when  the  ensemble  covariance  weight  is  0.8.
Therefore,  we  defined  the  optimal  ensemble  covariance
weight as 0.8 in our hybrid data assimilation system and
used it in later experiments.

4.4    RMSE analysis

Figure  7 shows  vertical  profiles  of  the  analysis  field
RMSE (mean of 7-day experiments) from the hybrid data
assimilation  with  the  three  ensemble  perturbation
schemes. The wind and temperature RMSEs after the hy-
brid  assimilation  of  Exp3  were  much  smaller  than  in
Exp2  and  Exp1  at  all  model  levels.  This  suggests  that
Epx3  improved  the  quality  of  the  analysis  fields  pro-

duced by the hybrid assimilation system. The maximum
difference  for U between  Exp3  and  Exp1  (Exp2)  was
0.18  (0.2)  m s−1,  respectively.  The  maximum difference
for V,  meanwhile,  was  0.15  (0.17)  m  s−1,  respectively,
and  for  temperature,  it  was  0.08  (0.1)  K.  The  improve-
ment in the performance of  the UPSB scheme in hybrid
data assimilation was much better at  lower model levels
than at high levels.

The  vertical  distribution  of  the  RMSE  of  the  6-h
(mean of  7-day experiments)  forecast  fields  is  shown in
Fig.  8,  revealing  that  the  RMSE  of U from  Exp3  was
smaller  than  that  from  Exp1  and  Exp2  below  200  hPa,
but  similar  to  Exp1 and  Exp2 above  200  hPa.  Also,  the
UPSB  scheme  featured  less  improvement  for  the  6-h
wind forecasts when compared with the improvement for
the  analysis  field.  Above  500  hPa,  Exp3  had  a  smaller
RMSE  of  temperature,  while  below  this  level  the  per-
formances  of  Exp1,  Exp2,  and  Exp3  were  almost  the
same.

The vertical profiles of the RMSE of the 12-h forecast
fields (mean of 7-day experiments) were provided in Fig.
9. Below 400 hPa, Exp3 had a smaller RMSE of U, while
above  that  the  performances  of  Exp1,  Exp2,  and  Exp3
were  almost  the  same.  The  three  experiments  had  small
differences across the vertical model levels for temperat-
ure field.

In  order  to  check the improvement  of  Exp3,  the  ratio
of its RMSE to Exp1 and Exp2 is given in Fig. 10 (mean
of 7-day experiments). Also, the percentage is calculated
as:

Percent =
100%× [Exp2(u)−Exp1(u)]

Exp2(u)
, (14)

where u stands for U-wind.
The results show that Exp3 performed beneficially for

both  the  wind  and  the  temperature  fields  in  the  hybrid
data assimilation cycle. Also, improvement of the analysis
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Fig. 5.   Vertical profiles of the correlation coefficient between the ensemble BEC and the ensemble mean of the forecast error covariance. The
green, blue, and red lines represent Exp1, Exp2, and Exp3, respectively. (a) U, (b) V, and (c) pressure (dimensionless quantity, PI).
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fields  was  visible,  at  2.8%  and  4.4%  compared  with
Exp1 and Exp2, respectively, for U-wind, and 3.5% and
4.6%  for V-wind.  The  improvement  ratio  of  Exp3  for
temperature  reached  4.4%  and  5.3%  compared  to  Exp1
and  Exp2,  respectively.  However,  this  benefit  reduced
with the length of the valid forecast time.

Overall,  compared  with  Exp2  and  Exp1,  Exp3  fea-
tured  smaller  RMSE,  especially  for  the  analysis  fields
and  in  the  early  forecast  in  the  hybrid  data  assimilation
cycle.

 

Table 4.   Total  RMSE of U and V in  the analysis,  6-,  12-,  and 24-h
forecast fields produced by the ensemble covariance weight sensitivity
experiments. The ensemble covariance weights were 0.0, 0.2, 0.5, 0.8,
and 1.0, and the bold number is the least RMSE of these five experi-
ments

Test U  V
00 h 06 h 12 h 24 h  00 h 06 h 12 h 24 h

Eps_0.0 2.22 2.75 3.27 3.81 2.14 2.73 3.30 3.92
Eps_0.2 2.19 2.73 3.26 3.81 2.09 2.71 3.28 3.92
Eps_0.5 2.14 3.72 3.25 3.81 2.05 2.69 3.27 3.92
Eps_0.8 2.07 2.70 3.24 3.80 1.99 2.67 3.25 3.91
Eps_1.0 2.14 2.80 3.29 3.77 2.10 2.79 3.34 3.95
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Fig.  6.   Correlation coefficients of ensemble spread (shading) between a single point  [6th layer of the model,  approximately 975 hPa,  (34°N,
123°E)] and the grid points of the 6th layer with 12-h ensemble forecasts at the starting time of 1200 UTC 11 July 2015 for (a, c, e) V and (b, d, f)
U from (a, b) Exp1, (c, d) Exp2, and (e, f) Exp3. Arrows denote winds (m s−1) at the 6th model layer.

408 Journal of Meteorological Research Volume 34



5.    Conclusions and discussion

Three  model  perturbation  methods,  which  are  unified
perturbation  of  stochastic-physics  with  model  bias  re-
moved (UPSB), random combination of multiple physical
parameterization  schemes  (referred  to  as  MP),  the  MP
plus stochastical perturbation on physical process tenden-

cies  (MP-SPPT),  were  used  in  GRAPES-REPS  and
GRAPES-MESO  hybrid  En-3DVar  system  to  investig-
ate the impact of ensemble model systematic bias on en-
semble  BEC  and  hybrid  data  assimilation  system  fore-
cast results. Seven-day ensemble forecasts (1200 UTC 5
July to 1200 UTC 11 July 2015) were conducted by us-
ing  the  above  three  perturbation  schemes  to  analyze  the
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Fig. 7.   Vertical profiles of the analysis field RMSE produced by the hybrid data assimilation, wherein the green, blue, and red lines represent
Exp1, Exp2, and Exp3, respectively, for (a) U, (b) V, and (c) temperature.
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Fig. 8.   As in Fig. 7, but for the 6-h forecast field RMSE from hybrid data assimilation.
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Fig. 9.   As in Fig. 7, but for the 12-h forecast field RMSE produced by hybrid data assimilation.
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characteristics of the ensemble BEC. The ensemble BEC
was coupled with static BEC via ECV for the GRAPES-
MESO hybrid En-3DVar system, and then, 7-day hybrid
data  assimilation  forecasts  (0000  UTC  6  July  to  0000
UTC 12  July  2015)  were  conducted.  The  results  can  be
summarized as follows.

(1)  The  correlation  between  the  BEC  constructed  by
the UPSB scheme and the ensemble forecast error of the
12-h  prediction  is  better  than  the  other  two  schemes  at
the middle and lower model levels for the wind field. The
correlation coefficients of the UPSB scheme for PI were
higher than those of the other two schemes at model level
1–35.

(2)  In  the  single  point  correlation  at  the  6th  layer  of
the  model,  all  the  ensemble  BEC matrices  generated  by
the  three  ensemble  perturbation  schemes  were  flow  de-
pendent and could accurately represent the weather states
near the vortex area. Nonetheless, the UPSB scheme and
SPPT scheme can reduce the possibility of false correla-
tions caused by small sample sizes.

(3)  UPSB  also  demonstrated  improvement  in  the  hy-
brid  data  assimilation  cycle  for  both  the  analysis  and
forecast  fields,  based  on  RMSE  evaluations.  However,
this  benefit  was reduced by the length of the valid fore-
cast time.

In general, the UPSB scheme can improve the quality
of ensemble perturbations, thereby enabling the construc-
tion of a more accurate ensemble BEC matrix that better
represents  the  characteristics  of  the  forecast  error,  and
thus  significantly  improving  the  quality  of  the  product
produced by the hybrid data assimilation system.
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Fig. 10.   Time series of improvement percentage of total RMSE of Exp3 relative to Exp1 (solid line) and Exp2 (dashed line): (a) U-wind, (b) V-
wind, and (c) temperature.
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