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ABSTRACT

A strategy for  evaluating a global  shallow water  model  based on aspects  of  kinetic  energy spectra  and nonlinear
vorticity  dynamics  is  proposed  in  this  study.  The  kinetic  energy  spectra  and  nonlinear  vorticity  dynamics  of  a  re-
cently developed global shallow water model on an unstructured mesh are evaluated in comparison with the bench-
mark solutions from a global high-resolution spectral model. The results show that the kinetic energy spectra, the ro-
tational and divergent components, the stationary and transient components, and the nonlinear spectral fluxes of the
developed shallow water model agree well with those generated by the reference model. In addition, the influence of
different  flux  operators  for  transporting  the  potential  vorticity  (PV)  is  assessed  specifically.  It  is  indicated  that  the
second-order flux operator leads to a spurious increase in the kinetic energy at the tail of the spectrum, whereas the
upwind third-order flux operator does not support this behavior owing to implicit numerical diffusion. Moreover, the
nonlinear vorticity dynamics is studied by using colliding modons. It is found that the grid-point model maintains the
symmetrical pattern of vortices, and generates similar kinetic energy spectra and nonlinear spectral fluxes to the ref-
erence model. The evaluation provides a reference for assessing the shallow water model in terms of nonlinear dy-
namics, and the developed global shallow water model presents a good example.
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1.    Introduction

The kinetic energy spectra reflect the essential statist-
ical characteristics of atmospheric motion, showing a k−3

power law at large scales and a k−5/3 power law at meso-
scales between the kinetic energy and wavenumbers (Boer
and  Shepherd,  1983; Nastrom  et  al.,  1984; Lindborg,
1999). The k−3 power law can be explained by the theory
of two-dimensional turbulence and quasi-geostrophic tur-
bulence (Charney, 1971; Boer and Shepherd, 1983; Gage
and  Nastrom,  1986; Lindborg,  1999),  whereas  the k−5/3

power law has two different explanations: upscale kinetic
energy  cascade  based  on  the  theory  of  two-dimensional

turbulence (Lilly, 1983; Falkovich, 1992) and downscale
kinetic  energy  cascade  based  on  the  theory  of  three-di-
mensional  turbulence  (Kolmogorov,  1991; Lindborg,
2006).  Nonlinear  spectral  fluxes  reflect  the  energy  cas-
cade  and  can  be  used  to  evaluate  the  performance  of
models  on  establishing  the  transfer  of  energy  between
motions  at  different  scale.  Since  the  characteristics  of
kinetic  energy  spectra  vary  little  with  the  latitudes,  alti-
tudes, and seasons, it has been treated as a metric to eval-
uate the performance of the models.

Many studies have been conducted to evaluate numer-
ical  models  in  terms  of  the  statistical  characteristics  of
the  atmospheric  kinetic  energy  spectra. Shutts  (2005),
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Palmer  (2001),  and Palmer  et  al.  (2005) evaluated  the
kinetic  energy  spectra  of  the  ECMWF  global  forecast
models. Koshyk  and  Hamilton  (2001) found  that  the
high-resolution  SKYHI  general  circulation  model  from
the Geophysical Fluid Dynamics Laboratory (GFDL) can
reproduce  the  characteristics  of  the  kinetic  energy  spec-
tra for k−3 power law at large scales and k−5/3 power law
at  mesoscales. Skamarock  (2004) evaluated  the  kinetic
energy  spectra  of  the  weather  research  and  Forecasting
limited-area model, and analyzed its response to the spin-
up time and dissipation.

The  kinetic  energy  spectra  are  typically  decomposed
into rotational and divergent components to study the ro-
tational  and  divergent  flow  (Koshyk  et  al.,  1999).  It  is
generally  believed  that  the  magnitude  of  the  divergent
motion in the real  atmosphere is  much smaller  than that
of the rotational motion for the large-scale balanced flow
(Saujani  and  Shepherd,  2006).  The  divergent  motion  is
comparable  to,  or  greater  than,  the  rotational  motion  in
the  mesoscale  unbalanced  motion  (Trenberth  and  So-
lomon,  1993).  The  inflection  point  of  the  slope  of  the
kinetic  energy spectrum is  affected by the  proportion of
the divergent component in the total kinetic energy. For a
reasonable  model,  an  accurate  simulation  of  the  diver-
gent  and  rotational  components  is  a  basis  of  simulating
the total kinetic energy spectrum and its transition.

The kinetic  energy also consists  of  the stationary and
transient  components  (Koshyk  et  al.,  1999).  In  the  real
atmosphere, the stationary flow is generally attributed to
topographic  and  heat  forcing,  and  the  transient  flow  is
treated as a result of the baroclinic instability. According
to the theory of two-dimensional turbulence, the station-
ary  component  dominates  large-scale  motion  and  the
transient component does smaller scale motion (Boer and
Shepherd, 1983).  Simulations of the stationary and tran-
sient  energies  are  useful  metrics  to  examine  whether  a
model  can  accurately  reproduce  the  energy  cycle  of  the
atmosphere.

The  nonlinear  vorticity  occurs  in  various  types  of
weather  events,  such  as  tornadoes,  hurricanes,  and  ex-
tratropical  cyclones.  The  vorticity  dynamics  is  some-
times  used  to  describe  the  strongly  nonlinear  motions.
Simulation  of  nonlinear  vorticity  dynamics  is  a  basic
ability of a reasonable model to simulate the weather and
climate. Lin  et  al.  (2017) proposed  colliding  modons  to
show  how  two  counter-rotating  fluid  vortices  interact
with  each  other  in  three-dimensional  dynamical  cores,
and  how  well  a  model  maintains  nonlinear  vorticity
transport.  This test can be used to examine the perform-
ance of models on nonlinear vorticity dynamics.

Numerical modeling of the atmosphere has made sig-
nificant  progress  in  recent  years  with  the  theoretical  de-

velopment of atmospheric sciences and advances in com-
puter technology.  As a major horizontal  abstraction of a
three-dimensional  dry-adiabatic  and  frictionless  atmo-
sphere,  the  shallow water  equations  are  usually  adopted
as  a  prototype  for  developing  a  full-fledged  general  cir-
culation  model.  A  suite  of  standard  test  cases  proposed
by Williamson et  al.  (1992) is  widely used to verify the
rationality  and  stability  of  shallow  water  models.  These
tests are usually used to demonstrate the stability and ac-
curacy  of  the  developed  model.  To  more  rigorously  as-
sess the performance of a model, the kinetic energy spec-
tra and nonlinear vorticity dynamics also require careful
examination.  In  addition,  many  earlier  studies  have  dis-
cussed the kinetic energy spectra and nonlinear vorticity
dynamics  of  three-dimensional  models,  whereas  seldom
studies  show  them  in  shallow  water  environment  (e.g.,
Rípodas et al., 2009).

One purpose of this study is to examine the properties
of kinetic energy spectra and nonlinear vorticity dynam-
ics  in  a  shallow-water  environment.  These  performance
metrics  may  be  used  as  a  more  stringent  evaluation  for
the  shallow water  model.  Meanwhile,  the  other  purpose
is to evaluate a newly developed shallow water model on
an unstructured mesh. By first providing the characterist-
ics  of  the  kinetic  energy  spectra  and  nonlinear  vorticity
dynamics  from  the  NCAR  Spectral  Transform  Shallow
Water Model (STSWM; Hack and Jakob, 1992) as a ref-
erence,  we  then  evaluate  the  unstructured-mesh  model
against the reference model. Moreover, the effects of the
resolution and the potential vorticity (PV) flux operators
on  the  solutions  are  further  explored.  All  the  numerical
tests  of  the  unstructured-mesh  model  are  performed  us-
ing  a  parallelized  model  version,  which  facilitates  high-
resolution  modeling  and also  has  a  practical  implication
for  examining  the  correctness  of  technical  implementa-
tion.

The  remainder  of  this  paper  is  organized  as  follows.
Section 2 describes the reference spectral model, the un-
structured-mesh  shallow  water  model,  the  experimental
configuration,  and  analysis  methods.  Section  3  presents
kinetic  energy  spectra,  nonlinear  vorticity  dynamics  of
the reference spectral model, and the evaluation of icosa-
hedral  model.  Section  4  provides  the  summary  and  dis-
cussion.

2.    Model, experiments, and methods

2.1    NCAR STSWM

The STSWM is  a  shallow water  model  developed by
NCAR.  It  combines  a  conventional  spectral  transform
technique  with  a  semi-implicit  time  scheme  (Hack  and
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Jakob, 1992; Jakob-Chien et al., 1995). The resolution of
STSWM in this study is truncated at T511 (~25 km). The
prognostic  variables  are  absolute  vorticity,  divergence,
and  geopotential.  For  a  grid-point  model  based  on  the
vorticity–divergence  momentum  equation,  the  model
possesses  excellent  linear  dispersion  properties  regard-
less of the resolution (Randall, 1994). While for numeric-
ally solving a vorticity–divergence momentum equation,
the  spectral  method  is  conventionally  a  more  popular
choice. The STSWM utilizes computational fourth-order
horizontal  diffusion  terms  for  all  prognostic  variables.
These  numerical  viscous-like  terms  are  important  in
maintaining the solution quality: to provide a way for re-
moving energy accumulated  at  the  truncation  limit;  oth-
erwise,  the  model  may  simulate  a  kinetic  energy  spec-
trum  with  a  problematic  high  tail  due  to  the  spectral
blocking  problem.  Recent  study  has  also  suggested  that
the treatment of the diffusion procedures (low or high or-
der)  in the conventional  unstaggered A-grid may have a
significant impact on the wave propagation (Chen et al.,
2018). The horizontal diffusion coefficients are set to 8 ×
1012 m4 s−1 for test case 5 and colliding modons, and 5 ×
1012 m4 s−1 for test case 6. The Asselin filter coefficient is
set  to 0.05.  The spectral  coefficients of the vorticity,  di-
vergence, and height are used for analysis.

2.2    The unstructured-mesh shallow water model

The  construction  of  the  model  and  related  computa-
tional  algorithms  has  been  described  in Zhang  (2018).
The  modeling  framework  is  based  on  an  unstructured
Voronoi–Delaunay grid, and can be used for both quasi-
uniform and  variable-resolution  modeling  (cf., Zhang  et
al.,  2019).  For  the  quasi-uniform  applications  studied
here,  an  icosahedron–bisection  approach  (e.g., Heikes
and Randall, 1995) is used to generate grid points on the
sphere,  and  the  model  is  simply  referred  to  as  an  icosa-
hedral model or a grid-point model. Bisecting each trian-
gular edge of the icosahedron and projecting the points to
the  sphere  leads  to  one-level  finer  grids.  The  resolution
after n-round  bisection  is  referred  to  as  grid  level n or
simply  Gn.  The  Voronoi  style  hexagonal  grid  is  chosen
as  the  primal  cell,  and  the  Delaunay  triangular  mesh  is

used as the dual cell. The numbers of the grid points and
the  equivalent  resolution  in  kilometers  for  grid  level/Gn
are listed in Table 1. Moreover, the Spherical Centroidal
Voronoi  Tessellation  (SCVT)  technique  based  on  the
Lloyd’s  method  (e.g., Ringler  et  al.,  2008; Jacobsen  et
al., 2013) is used to optimize the grid point location. No
explicit  diffusion  term  is  used  for  the  grid-point  model,
but implicit diffusion is supported.

The  continuous  vector-invariant  form  shallow  water
equations may be written as follows:

∂h
∂t
= −∇ · (hV) , (1)

∂V
∂t
= −ζp k×hV−∇ (

gh+gb+K
)
, (2)

∇
∂

∂t

where h is  the  fluid  thickness, V is  the  horizontal  velo-
city vector, ζp = ζa/h is the shallow-water PV, ζa is the ab-
solute vorticity, k is a unit vector along the local vertical
direction, b is the topographic height, K is the horizontal
kinetic energy,  is the horizontal gradient operator (also

referred to as the nabla/del operator),  and  is  the local
time derivative.

Based on the hexagonal C-grid staggering, three types
of  geometric  locations  are  constructed  as  follows  (Fig.
1):  (1)  the mass point  is  defined at  the vertex of  the tri-
angle, referred to as primal cell i; (2) the velocity point is
defined as the crossing point  of  a pair  of  hexagonal and
triangular edges, referred to as edge point e; (3) the vorti-
city point is defined at the circumcenter of the Delaunay
triangle, referred to as dual cell v; but note that some al-
ternative  definitions  are  also  available  in  the  literature
(e.g., Gassmann, 2011). A summary of the major compu-
tational  procedures  and  discussions  related  to  the  shal-
low  water  model  are  presented  in  the  Appendix  of  this
paper.

2.3    Experimental configuration

The  pivotal  test  cases  5  and  6  in Williamson  et  al.
(1992) and colliding modons are conducted for analysis.
Test case 5 consists of a zonal flow impinging on an isol-
ated  conical  mountain  located  at λc = π/2  and θc= π/6.

Table 1.   Numbers of points, edges, triangles, and average interval for grid level/Gn from 3 to 9 with a bisected icosahedron after the SCVT op-
timization. Note that only grid level/Gn from 4 to 8 is used in this study
Grid level/Gn Point (Ni) Edge (Ne) Triangle (Nt) Average interval between points (km)
3         642       1920       1280 960.2
4       2562       7680       5120 480.5
5     10,242     30,720     20,480 240.3
6     40,962   122,880     81,920 120.1
7   163,842   491,520   327,680   60.1
8   655,362 1,966,080 1,310,720   30.0
9 2,621,422 7,864,320 5,242,880   15.0
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The height of the mountain is given by:
hs = hs0 (1− r/R) , (3)

r2 =min[R2, (λ−λc)2+

(θ− θc)2]
where hs0 = 2000 m, R = π/9,  and 

.  Test  case  6  consists  of  a  large-scale  rotating
fluid,  and  the  detailed  descriptions  about  the  test  case  6
can be found in Williamson et al. (1992). The initial state
is a Rossby–Haurwitz wave of wavenumber 4 as sugges-
ted  by Hoskins  (1973).  The  examination  of  results  fol-
lows  the  standard  practice  (two  weeks)  of Jakob–Chien
et  al.  (1995),  while  a  longer  duration  is  supported  (e.g.,
30 days). The tests are run at the resolution of G4–G8 to
evaluate  the  performance  of  the  icosahedral  model  at
multiple resolutions.

The  test  case  of  colliding  modons  is  designed  to  test
whether  a  dynamic  core  can  maintain  the  symmetrical
pattern of the modons (Lin et al., 2017). This test is pro-
posed  to  compensate  for  the  weakness  of  the  Rossby–
Haurwitz  wave  test,  which  is  not  stable  over  long  dura-
tion  due  to  weak  perturbations  and  mesh  irregularity
(Thuburn and Li, 2000). The colliding modons test is not
affected  by  the  initial  field  and  is  stable.  The  modon  is
defined by the zonal wind perturbation:

Mi = U0e
[
−(ri/r0)2

]
, (4)

(π/2,0) (3π/2,0)

where U0 = 40 m s−1, r0 = 500 km, and r1 and r2 are the
great circle distances from the center of each modon. The
modons are initially located at  and . The
two  initial  opposite  zonal  wind  perturbations  are  given
by:

u′ (λ,θ) = M1−M2, (5)

where λ and θ are  longitude  and  latitude,  respectively.

The  test  for  the  icosahedral  model  is  performed  at  the
resolution  of  G7 and  integrated  for  100  days  to  analyze
the propagation of the modons.

2.4    Analysis methods

The  kinetic  energy  spectrum  represents  the  relation-
ship  between  the  kinetic  energy  and  wavenumbers.  It  is
calculated  using  vorticity  and  divergence  in  this  study.
The spectral  coefficients  of  the  vorticity  and divergence
are obtained by spherical  harmonic expansion first,  then
the  kinetic  energy  spectrum  is  calculated  as  in Jakob-
Chien et al. (1995):

KEn =
a2

4n (n+1)

[
ζ0

n

(
ζ0

n

)∗
+δ0n

(
δ0n

)∗
+2

∑n

m=1
ζm

n
(
ζm

n
)∗
+2

∑n

m=1
δmn

(
δmn

)∗], (6)

ζm
n δmn

where a is the radius of the earth, n is the total wavenum-
ber,  is the spectral coefficient of the vorticity,  is the
spectral  coefficient  of  the  divergence, m is  the  zonal
wavenumber, and ()* represents the complex conjugate.

The rotational and divergent kinetic energy spectra are
calculated by only using the spectral coefficient of vorti-
city  and  divergence,  respectively.  They  follow  the  Eqs.
(7) and (8):

KErot
n =

a2

4n (n+1)

[
ζ0

n

(
ζ0

n

)∗
+2

∑n

m=1
ζm

n
(
ζm

n
)∗] , (7)

KEdiv
n =

a2

4n (n+1)

[
δ0n

(
δ0n

)∗
+2

∑n

m=1
δmn

(
δmn

)∗] . (8)

The stationary and transient kinetic energy spectra are
calculated  by  using  Eqs.  (9)  and  (10)  (Koshyk  et  al.,
1999), respectively.

KEsta
n =

a2

4n (n+1)

∑n

m=−n

(∣∣∣∣ζm
n

∣∣∣∣2+ ∣∣∣∣δmn ∣∣∣∣2) , (9)

KEtra
n =

a2

4n (n+1)

∑n

m=−n

(∣∣∣ζm′
n

∣∣∣2+ ∣∣∣δm′n
∣∣∣2) , (10)

where the overbar denotes the time mean, and the prime
denotes the deviation from the mean.

The  kinetic  energy  spectra  of  the  STSWM  is  calcu-
lated directly using the spectral coefficients. For the grid-
point  model  that  does not  have spectral  coefficients,  the
divergence  and  vorticity  are  first  interpolated  to  the
Gaussian grid with 40, 80, 160, 320, and 640 latitudinal
grid  points  for  the  G4–G8  tests  (ensuring  that  the  hori-
zontal  intervals  are  close  to  each  other  before  and  after
the interpolation).  The Inverse Distance Weighted Inter-
polation method is applied here, which reads

Vorticity

Velocity

Mass

 
Fig.  1.   Hexagonal  C-grid  staggering  of  variables  in  the  Voronoi–
Delaunay  grid.  Mass  is  defined  at  blue  points;  velocity  is  defined  at
green points; and vorticity is defined at red points.
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zg =

∑n

i=1

 zi

D2
i


∑n

i=1

 1
D2

i

 , (11)

Di =

√(
xg− xi

)2
+

(
yg− yi

)2
, (12)

(
xg,yg

)
(xi,yi)

where zg is the estimated value, zi is the value on original
grid,  and  are  the  horizonal  position  of  the
estimated  grid  and  the  original  grid,  and Di is  the  dis-
tance  between  them.  The  spectral  coefficients  of  the  di-
vergence and vorticity from the scalar spherical harmonic
transforming process are then used to calculate the kinetic
energy spectra of the icosahedral model.

The  nonlinear  spectral  fluxes  are  calculated  to  exam-
ine the energy cascade: the energy transfers from large to
small scale or vice versa at a fixed wavelength. The non-
linear interaction of rotational flow conserves kinetic en-
ergy and enstrophy. The enstrophy spectrum can be cal-
culate by:

Gn =
n (n+1)

a2 KErot
n . (13)

The  kinetic  energy  and  enstrophy  fluxes  are  calcu-
lated  following Burgess  et  al.  (2013).  The  interaction
terms  should  be  calculated  first,  which  means  that  the
flow  at  wavenumber n gains  or  loses  energy.  The  en-
strophy interaction term is calculated by:

Jn = −
1
4

∑n

m=−n

[
ζm

n
∗ (v · ∇ζ)m

n + ζ
m
n (v · ∇ζ) m

n
∗] , (14)

()m
n ()m∗

n
v · ∇ζ

where ζ is the vorticity, v is the rotational velocity vector,
 represents the spectral coefficient, and  represents

the  complex  conjugate.  In  this  equation, ζ and 
should be calculated at  each grid for each day, and then
decomposed  into  spherical  harmonics.  The  kinetic  en-
ergy interaction term is calculated by:

In =
a2

n (n+1)
Jn, (15)

where a is the earth radius and n is the total wavenumber.
As  the  physical  meaning  of  the  nonlinear  spectral

fluxes,  the  enstrophy  and  kinetic  energy  flux  should  be
sum of all the interaction terms of wavenumbers less than
the fixed wavenumber n. The enstrophy flux of wavenum-
ber n + 1 is given by:

Hn+1 = −
∑n

l=0
Jl, (16)

and  the  kinetic  energy  flux  of  wavenumber n +  1  is
presented by:

Fn+1 = −
∑n

l=0
Il. (17)

3.    Results

This  section  discusses  the  kinetic  energy  spectra  and
nonlinear  spectral  fluxes  of  the  shallow  water  model  in
three test  cases and examines the characteristics  of  non-
linear  vorticity  transport  using  colliding  modons.  The
results from the STSWM are firstly shown and the grid-
point model is then evaluated.

3.1    Zonal flow over an isolated mountain

The  predicted  variables,  height  and  velocity  of  zonal
flow  in  the  test  case  5  after  16  days  derived  from  the
STSWM  and  the  icosahedral  model  at  the  resolution  of
G4–G8,  are  firstly  shown  in Fig.  2.  There  is  a  good
agreement  in  the  height  fields  between  the  grid-point
model and STSWM solutions when the resolution is en-
hanced  to  G6.  The  difference  in  the  velocity  field
between  the  two  models  decreases  with  the  improve-
ment of resolution, and the improvement of velocity sim-
ulation  is  especially  evident  when  the  resolution  im-
proved from G4 to G6.

Figure  3 shows  the  kinetic  energy  spectra  of  the  nu-
merical simulations from the STSWM and the icosahed-
ral model at the resolution of G4–G8. The kinetic energy
spectrum  of  the  STSWM  has  two  inflection  points  at
wavenumbers 2 and 7. The kinetic energy decreases from
wavenumbers 1 to 2, increases until wavenumber 7, then
drops  off  with  the  increase  of  wavenumbers,  which
means  that  the  large  scale  motion  is  mainly  contributed
by wavenumbers  1  and 7.  The kinetic  energy spectra  of
the  grid-point  model  are  in  good  agreement  with  the
spectra of the STSWM. At higher model resolutions, the
smaller wavelength of the spectrum lies closer to that of
the  STSWM.  The  kinetic  energy  spectrum of  the  icosa-
hedral  model  extends  to  smaller  scales  as  the  resolution
increases.

To evaluate the effect of various PV transport schemes
(see Appendix) on the kinetic energy spectra at the resol-
ution of G5–G8, the second- and third-order flux operat-
ors  for  PV  transport  (PV2  and  PV3,  respectively)  are
evaluated. Figure  4 shows  the  averaged  kinetic  energy
spectra  of  the  icosahedral  model  with  two different  flux
operators.  The  kinetic  energy  in  the  PV2  run  is  larger
than  that  in  the  PV3 run  at  the  tail  of  the  spectrum;  the
difference  is  smallest  at  G8,  implying  that  high  resolu-
tion is helpful to reduce the errors associated with the PV
schemes.  The  differences  in  the  kinetic  energy  between
the PV2 and PV3 tests are a result of the fact that no im-
plicit diffusion is supported by PV2, which precludes the
transfer of potential enstrophy to the sub-grid scale. PV3
has  an  implicit  diffusion  term  (see  Appendix),  which
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helps  to  remove  grid-scale  oscillations  and  smooth  the
short wavelength signal.  The lack of a diffusion proced-
ure leads to a spurious increase in energy at small scales.
The  remaining  discussion  of  the  icosahedral  model  is
based on the results using PV3.

Figure 5 demonstrates the total kinetic energy spectra,
and  the  rotational  and  divergent  components  from  the
STSWM  and  the  icosahedral  model  at  the  resolution  of
G4–G8.  As  shown  in Fig.  5a,  the  rotational  kinetic  en-
ergy contributes to most of the total kinetic energy, and is
much  larger  than  the  divergent  kinetic  energy  at  large
scales  (wavenumbers  less  than  80).  The  divergent  com-
ponent fluctuates with an amplitude of about one order of
magnitude at wavenumbers 10–80, and is almost equival-
ent  to  the  rotational  component  at  wavenumbers  larger
than  80.  At  the  scale  of  wavenumbers  larger  than  200,
the rotational component reduces rapidly with the wave-

number, and the divergent component dominates the total
kinetic  energy.  The  rotational  components  simulated  by
the icosahedral model at five resolutions (Figs. 5b–f) are
consistent  with  the  solutions  of  the  STSWM.  Neverthe-
less,  the  rotational  components  are  still  slightly  larger
than  the  divergent  components  at  wavenumbers  larger
than  200  in  two  high-resolution  tests  (G7  and  G8).  The
icosahedral model simulates the fluctuation of the diver-
gent  component,  but  the  divergent  kinetic  energy  does
not  show evident  reduction in  the  spectrum tail  as  com-
pared to the STSWM, probably due to the different diffu-
sion strength of the two models.

As the rotational component dominates the total kinetic
energy at large scales, more emphasis is laid on this com-
ponent.  The  nonlinear  flux  represents  the  spectral  trans-
fer  of  energy  due  to  nonlinear  interactions,  in  which  a
negative  flux  represents  an  upscale  transmission  and  a
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Fig. 2.   (a) The NCAR STSWM T511 (STSWM) height (shading; m) and velocity (vectors; m s−1) fields after 16 simulation days; (b–f) the ico-
sahedral-model height fields (shading; m), the STSWM reference height fields (black contour lines), and the difference of velocity fields (vec-
tors; m s−1) between the icosahedral model and the STSWM after 16 days. The icosahedral model is configured at (b–f) G4–G8, respectively. The
reference vector (m s−1) of velocity is indicated on the top right of each panel.
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positive  flux  represents  a  downscale  transmission.
Figure 6a shows that there is an evident upscale transmis-
sion  of  kinetic  energy  flux  at  wavenumbers  5,  6,  and  7
and  a  downscale  transmission  of  kinetic  energy  flux
when the wavenumber is 4 or greater than 8. This means
that  wavenumber  4  gains  kinetic  energy  and  wavenum-
ber 7 loses kinetic energy. A slight upscale transmission
of kinetic energy exists at wavenumber 3, indicating that
wavenumber 2 gains kinetic energy from smaller scales.
The  kinetic  energy  budget  of  wavenumbers  2  and  7  is
consistent with the inflection of these wavenumbers seen
in Fig.  3.  The  downscale  kinetic  energy  fluxes  are  less
than  one-half  of  the  upscale  kinetic  energy  fluxes.  The
enstrophy flux is 12 orders of magnitude smaller than the
kinetic energy flux (Fig. 6b). The signs of the enstrophy
flux are same as those of the kinetic energy flux, and the
downscale fluxes are roughly the same magnitude as the
upscale  fluxes.  Compared  with  the  STSWM,  the  icosa-
hedral  model  generates  consistent  solutions  from  G5  to
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Fig. 3.   Kinetic energy spectra averaged from Days 5 to 16 in the test
case 5 from the NCAR STSWM T511 (STSWM; ~25 km) and the ico-
sahedral model configured at G4 (~480 km)–G8 (~30 km).
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Fig. 4.   Kinetic energy spectra of the icosahedral model with the second-order (PV2; blue color) and the third-order (PV3; red color) flux operat-
ors averaged from Days 5 to 16 in the test case 5. The icosahedral model is configured at (a) G5, (b) G6, (c) G7, and (d) G8, respectively.
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G8. The G4 resolution is too coarse to produce a reason-
able result as the reference model does.

To  evaluate  the  contribution  of  stationary  and  transi-
ent  flows to atmospheric motion at  various scales in the
shallow  water  model,  the  total  kinetic  energy  is  further
decomposed  into  stationary  and  transient  components

(Fig. 7). Figure 7a exhibits the results obtained from the
STSWM. The total kinetic energy spectrum at wavenum-
bers smaller than 8 is largely contributed by the station-
ary component,  except  for  wavenumber 3.  The transient
kinetic  energy  is  higher  than  the  stationary  component
until  wavenumber  150,  then  drops  off  rapidly  with  in-
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Fig. 5.   Total kinetic energy (KE) spectra (black color), and the rotational (red color) and divergent (blue color) components averaged from Days
5 to 16 in the test case 5 from (a) the STSWM and (b–f) the icosahedral model configured at G4–G8, respectively.
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creases  in  the  wavenumber  at  the  tail  of  the  spectrum.
Figures  7b–f show  that  the  solutions  of  the  icosahedral
model at multiple resolutions have similar characteristics
in that the stationary component dominates the total kin-
etic energy at large scales. The transient component dom-
inates  at  smaller  scales,  but  again  becomes  smaller  than
the stationary kinetic energy at the spectrum tail. With an
increase  of  resolution,  the  dominance  of  the  transient
component is able to extend to smaller scales. Neverthe-
less, the transient energy at the spectral tail at G7 and G8
is still larger than that in the reference model.

3.2    Rossby–Haurwitz wave

This  section  examines  the  solutions  of  the  Rossby–
Haurwitz  wave in  test  case 6 from the STSWM and the
icosahedral  model.  The  height  and  velocity  fields  of  a
Rossby–Haurwitz  wave  of  wavenumber  4  after  14  days
derived  from the  STSWM and  the  icosahedral  model  at
the resolution of G4–G8 are shown in Fig. 8. The height
fields simulated by the icosahedral model are highly con-
sistent  with  that  of  the  STSWM  after  the  mesh  refine-
ment to G6. The differences of the velocity between the
icosahedral  model  simulation  and  the  reference  solution
decrease from more than 10 m s–1 at G4 to less than 1 m
s–1 at  G8.  Together  with Fig.  2,  results  demonstrate  that
the numerical errors at G6 (~100 km) is small enough as
compared  to  the  reference  model,  suggesting  that  G6
might  be  the  choice  of  the  coarsest  operational  resolu-
tion for practical modeling.

Figure  9 shows  that  the  kinetic  spectrum  of  the
Rossby–Haurwitz  wave  test  from  the  STSWM  and  the
icosahedral model at the resolution of G4–G8 forms two
branches  because  the  kinetic  energy  at  odd  wavenum-
bers  is  several  orders  of  magnitude  higher  than  that  at

even wavenumbers.  Since the initial  field should ideally
have  zero  divergence,  the  kinetic  energy  is  mainly  con-
tributed  by  the  rotational  motion.  The  odd  wavenumber
kinetic energy spectrum of the STSWM shows a k–3 de-
pendence in the wavenumber range 20–160, which seems
to  preserve  certain  characteristics  of  the  kinetic  energy
spectra  of  the  motion  in  the  real  atmosphere.  The  de-
crease at wavenumbers larger than 160 may be related to
numerical diffusion. The kinetic energy at odd wavenum-
bers  simulated  by  the  icosahedral  model  is  consistent
with that  simulated by the STSWM, and the spectra  ex-
tend  to  smaller  scales  as  the  resolution  increases.  The
odd  wavenumber  kinetic  energy  at  G7  is  closest  to  the
STSWM.  At  the  highest  resolution  (G8),  the  results  of
the  icosahedral  model  are  even  closer  to  the k–3 slope
than  the  spectral  model,  indicating  that  the  icosahedral
model  may  have  certain  superiority  if  we  compare  res-
ults against the reference slope line. The kinetic energy at
even wavenumbers simulated by the icosahedral model is
larger  than  that  simulated  by  the  STSWM  when  the
wavenumber  is  larger  than  15,  suggesting  that  more  di-
vergence is generated. With an increase in the resolution,
the  kinetic  energy  at  even  wavenumbers  becomes  smal-
ler  at  the  spectrum  tail,  closer  to  that  in  the  reference
model.  This  reflects  the  fact  that  more  small-scale  mo-
tions are resolved reasonably by high-resolution modeling.

Figure  10 displays  the  influence  of  PV2  and  PV3  on
the simulated kinetic spectra from the icosahedral model
at the resolution of G4–G8. As a result of the lack of im-
plicit  diffusion  in  PV2,  the  kinetic  energy  at  the  spec-
trum  tail  in  the  PV2  run  is  larger  than  that  in  the  PV3
run. This can be more clearly observed at odd wavenum-
bers than at even wavenumbers, indicating that the impli-
cit diffusion in PV3 mainly affects the rotational motion.
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Fig. 6.   (a) Rotational kinetic energy fluxes and (b) enstrophy fluxes on Day 15 in the test case 5 from the STSWM and the icosahedral model
configured at G4–G8.
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The starting point for the spurious increase in kinetic en-
ergy spectra in the PV2 run moves toward smaller scales
as the resolution increases,  that  is,  the implicit  diffusion
in PV3 mainly affects the smallest resolvable scale.  The
following discussion focuses on the results from the PV3
tests.

We decompose the total kinetic energy into divergent
and rotational components. Figure 11 shows that, for the
STSWM, the rotational component contributes to the odd
wavenumber  energy,  whereas  the  divergent  component
contributes  to  the  even  wavenumber  energy,  further  ex-
plaining the two branches in Fig. 9. In the simulation of
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Fig. 7.   Total kinetic energy (KE) spectra (black color), and the stationary (red color) and transient (blue color) components averaged from Days
5 to 16 in the test case 5 from (a) the STSWM and (b–f) the icosahedral model configured at G4–G8, respectively.
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the  grid-point  model,  the  rotational  component  domin-
ates  the  odd  wavenumber  kinetic  energy,  and  the  diver-
gent component dominates the even wavenumber kinetic
energy, consistent with the reference model.

Figure  12 shows  the  kinetic  energy  and  enstrophy
fluxes from the STSWM and the icosahedral model at the
resolution of G4–G8 for investigating the spectral  trans-
fer  of  energy.  A downscale  kinetic  energy flux is  found
at wavenumbers 4 and 5, whereas an upscale kinetic en-
ergy  flux  is  found  at  wavenumbers  6  and  7,  indicating
that wavenumbers less than 7 overall gain kinetic energy
from  the  smaller  scales.  The  magnitude  of  the  upscale
enstrophy  fluxes  (Fig.  12b)  nearly  doubles  that  of  the
downscale fluxes, and the signs of the fluxes are consist-
ent with those of the kinetic energy fluxes. The icosahed-
ral  model  simulates  the  characteristics  of  the  nonlinear
spectral  fluxes,  except  that  the  G4  resolution  is  very
coarse and leads to an upscale transfer of kinetic energy
at  wavenumbers  2  and  3,  which  is  not  observed  in  the
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Fig. 8.   As in Fig. 2, but for the test case 6 after 14 days.
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Fig. 9.   Kinetic energy spectra averaged from Days 5 to 14 in the test
case  6  from  the  STSWM  and  the  icosahedral  model  configured  at
G4–G8.
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reference model.  The spectral  fluxes approach the refer-
ence simulations as the resolution increases.

Figure 13 presents the total kinetic energy, and the sta-
tionary and transient components from the STSWM and
the  icosahedral  model  at  the  resolution  of  G4–G8.  The
stationary  kinetic energy  dominates  the  total  kinetic  en-
ergy  at  wavenumbers  1,  3,  and  7,  whereas  the  transient
kinetic  energy  contributes  most  of  the  total  kinetic  en-
ergy at other wavenumbers. The stationary and transient
kinetic energies of the odd wavenumbers are larger than
those of the even wavenumbers. The kinetic energy spec-
tra  simulated  by  the  icosahedral  model  exhibit  compar-
able  characteristics  to  the  reference  model,  and  the  in-
crease of resolution helps to improve the performance of
this metric.

3.3    Colliding modons

The nonlinear vorticity dynamics of the shallow water
model is evaluated by using colliding modons. Figure 14

shows the vorticity values simulated by three models: the
STSWM and the icosahedral model with PV2 and PV3 at
the  resolution  of  G7.  Consistent  with Lin  et  al.  (2017),
the results of STSWM show that modons start to propag-
ate  toward  each  other  along  the  equator  on  Day  1,  then
collide  and  exchange  vortices  between  Days  20  and  30.
After  colliding,  the  new  modon  pairs  propagate  toward
the  poles,  reaching  the  poles  between  Days  40  and  50.
They  travel  across  the  poles  and  return  to  the  equator,
then  collide  and  exchange  vortices  for  the  second  time,
and  form  new  modon  pairs  around  Day  70.  The  new
modon  pairs  propagate  back  to  the  initial  position
between  Days  90  and  100  and  begin  a  new  cycle.  The
icosahedral  model  maintains  the  original  modon  pair  in
both the  PV2 and PV3 runs.  Note  that  for  this  case,  the
PV3 run is combined with NCTlocal while the PV2 run is
combined  with  NCTnon_local (see  Appendix),  to  be  con-
sistent  with  the  choice  in  a  3D  model.  The  PV3  test
slows the propagation speed of the modon pairs, and they
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Fig. 10.   Kinetic energy spectra of the icosahedral model with the second-order (PV2; blue color) and third-order (PV3; red color) flux operators
averaged from Days 5 to 14 in the test case 6. The icosahedral model is configured at (a) G5, (b) G6, (c) G7, and (d) G8, respectively.
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return  to  their  initial  location  on  Day  100,  five  days
slower than in the reference model. As studied in Zhang
et  al.  (2019),  this  slower  phase  is  actually  due  to  the
choice of the NCT term, rather than the PV flux operator.
For more details regarding the behaviors of modons in a
3D model, see Zhang et al. (2019).

Figure 15 shows the time series of the domain maximum

and  minimum vorticity  values  and  helps  to  evaluate  the
simulation of the amplitude. The amplitude of the modon
simulated  by  the  STSWM  decays  with  time,  and  the
maximum and minimum vorticities appear in pairs, with
the  absolute  values  roughly  equal  on the  same day.  The
amplitude of the modon decays in the PV3 run, whereas
it appears to develop over time in the PV2 run. The vor-

104 103 102

Wavelength (km)

104 103 102

Wavelength (km)

104

100

10−4

10−8

10−12

10−16

K
in

et
ic

 e
ne

rg
y 

(m
2  s

−2
)

104

100

10−4

10−8

10−12

10−16

K
in

et
ic

 e
ne

rg
y 

(m
2  s

−2
)

104

100

10−4

10−8

10−12

10−16

K
in

et
ic

 e
ne

rg
y 

(m
2  s

−2
)

100 101 102

Spherical wavenumber

100 101 102

Spherical wavenumber

(a) STSWM

(c) G5

(e) G7 (f) G8

(d) G6

(b) G4

Divergent KE
Rotational KE

Total KE

 
Fig.  11.   Total  kinetic energy (KE) spectra (black color),  and the rotational  (red color)  and divergent (blue color)  components averaged from
Days 5 to 14 in the test case 6 from (a) the STSWM and (b–f) the icosahedral model configured at G4–G8, respectively.
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tex  simulated  by  PV3  becomes  weaker  than  that  in  the
STSWM from Day 47.  The increase in the amplitude in
the PV2 run is expected because PV2 has no implicit dif-
fusion.  In  addition,  the  vorticity  oscillation  over  time in
the  icosahedral  model  is  slightly  more  evident  than  that
in the reference model. This is probably because that the
spectral  model  directly  prognoses  vorticity  and  adds  an
explicit  horizontal  diffusion  term to  the  vorticity,  so  the
vorticity magnitude may be more steadily maintained.

The kinetic energy spectra of the colliding modons are
shown  to  further  evaluate  the  simulation  of  nonlinear
vorticity  dynamics. Figure  16 shows  the  kinetic  energy
spectra of the STSWM and the icosahedral model at G7
using  PV2  and  PV3.  As  shown  in  STSWM,  the  kinetic
energy  increases  with  total  wavenumbers  less  than  20
(close  to  the  wavelength  of  the  vortex  motion)  and  de-
cays at wavenumbers larger than 20. The grid-point model
simulates the same characteristics of the total kinetic en-
ergy  as  the  reference  model,  but  the  values  are  larger.
The  kinetic  energy  spectra  using  PV2  are  larger  at  the
spectral  tail  than  those  using  PV3.  Both  PV3  and  PV2
runs  show  more  oscillated  solutions  than  the  reference
model, consistent with the results in Fig. 15.

Figure  17 gives  the  nonlinear  spectral  fluxes  of  the
kinetic energy and enstrophy on Day 71 for PV2 and the
STSWM  and  on  Day  74  for  PV3,  considering  that  the
modons in the PV3 run propagate slightly slower. There
is an upscale transition of the kinetic energy at wavenum-
bers  less  than  21  and  between  35  and  44,  and  a  down-
scale  transition  at  wavenumbers  between  21  and  35
(Fig. 17a). The icosahedral model generates more kinetic
energy  fluxes  than  the  reference  model.  The  enstrophy
fluxes  (Fig.  17b)  are  at  least  10  orders  of  magnitude

smaller  than  the  kinetic  energy  fluxes.  The  largest  up-
scale  transition  of  the  enstrophy  fluxes  is  in  the
wavenumber  range  19–33  and  is  nearly  double  the
largest  downscale  enstrophy  fluxes  in  the  wavenumber
range  33–44.  The  PV3  test  more  consistently  simulates
the enstrophy fluxes as the reference model, whereas the
PV2  test  simulates  slightly  larger  enstrophy  fluxes.  The
nonlinear  interaction  is  vigorous  at  wavenumbers  less
than 60.

4.    Summary and discussion

4.1    Summary

We have discussed the kinetic energy spectra and non-
linear  vorticity  dynamics  of  a  shallow  water  model
STSWM as a benchmark solution, and evaluated the per-
formance of a newly developed shallow water model on
an  unstructured  icosahedral  grid  using  idealized  experi-
ments. Our conclusions can be summarized as follows.

In the mountain test,  the rotational and divergent kin-
etic  energy  dominates  the  total  kinetic  energy  at  large
and  small  scales,  respectively.  An  upscale  transition  of
the  kinetic  energy  and  enstrophy  fluxes  is  present  at
small  wavenumbers  and  a  downscale  transition  appears
at larger wavenumbers. The stationary and transient com-
ponent  contributes  most  of  the  total  kinetic  energy  at
small and large wavenumbers, respectively.

In the Rossby–Haurwitz wave test,  the kinetic energy
spectrum forms two branches  with  the  kinetic  energy  at
odd wavenumbers larger than that at even wavenumbers.
The  rotational  kinetic  energy  contributes  to  most  of  the
odd wavenumber kinetic energy in the Rossby–Haurwitz
wave  test,  and  the  divergent  component  dominates  the
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Fig. 12.   (a) Rotational kinetic energy fluxes and (b) enstrophy fluxes on Day 12 in the test case 6 from the STSWM and the icosahedral model
configured at G4–G8.
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even  wavenumber  kinetic  energy.  A  downscale  trans-
ition of the kinetic energy and enstrophy flux appears at
small wavenumbers, and an upscale transition appears at
larger  wavenumbers.  The  transient  component  domin-
ates the total kinetic energy at most wavenumbers except
for wavenumbers 1, 3, and 7.

The colliding modons test shows that, in a shallow wa-
ter  model,  the  vortex  pairs  propagate  along  the  equator,
collide  and  propagate  across  poles,  collide  again  and
propagate  back  to  the  initial  position  in  100  days.  The
amplitude of vortex decays over time, and the maximum
and  minimum  vorticity  appear  in  pairs.  The  kinetic  en-
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Fig.  13.   Total  kinetic  energy (KE) spectra  (black color),  and the  stationary (red color)  and transient  (blue  color)  components  averaged from
Days 5 to 14 in the test case 6 from (a) the STSWM and (b–f) the icosahedral model configured at G4–G8, respectively.
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ergy  spectrum  indicates  that  a  slight  increase  occurs  at
wavenumbers  less  than  20,  and  then  the  energy  de-
creases  as  the  total  wavenumber  increases.  The  nonlin-
ear  spectral  fluxes,  including  the  kinetic  energy  and  en-
strophy fluxes, fluctuate between wavenumbers 3 and 60,
suggesting that there are both upscale and downscale en-

ergy transitions in motion within these scales.
The  features  of  kinetic  energy  spectra,  the  rotational

and  divergent  components,  the  stationary  and  transient
components, and the spectral fluxes simulated by the ico-
sahedral  model  and  examined  in  the  mountain  test  and
the Rossby–Haurwitz wave test agree well with those in
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Fig. 14.   Relative vorticity (shading) on Days 20, 40, 60, 80, and 100 and the trajectories of the vortices (denoted by black dots) in the test case
of colliding modons from (a) the STSWM and the icosahedral model with (b) PV2 and (c) PV3 configured at G7.
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the reference model. As the resolution increases, the sim-
ulated  kinetic  spectra  extend  to  smaller  wavenumbers,
closer to those in the reference model. The PV2 test tends

to  create  a  kinetic  energy  spectrum  tail  with  a  shallow
slope as a result of the lack of damping. The icosahedral
model  maintains  the  symmetrical  vorticity  pattern  and
well  simulates  the  propagation  of  the  modon  pairs.  The
modon  amplitude  decays  over  time  with  PV3  and  in-
creases  over  time  with  PV2.  The  kinetic  energy  spectra
and  the  nonlinear  spectral  fluxes  simulated  by  the  grid-
point  model  in  colliding  modons  are  roughly  consistent
with those simulated by the reference model.

4.2    Discussion

This study proposes a strategy to test the performance
of a shallow water model on simulating the basic charac-
teristics  of  atmospheric  motion  and  vorticity  dynamics.
The kinetic energy spectra can be directly used to exam-
ine the performance of a barotropic shallow water model.
The  rotational  and  divergent  components,  and  the  sta-
tionary  and  transient  components  could  be  used  to  fur-
ther  examine  the  kinetic  energy  spectra,  and  be  able  to
reveal  key  biases  of  kinetic  energy  spectra  in  terms  of
amplitude,  trend  or  transition.  The  spectral  fluxes  could
be  used  to  test  the  mechanism of  the  slope  characterist-
ics of the kinetic energy spectra. The amplitude, propaga-
tion,  collision,  and kinetic  energy characteristics  of  vor-
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Fig. 15.   (a) Maximum (max) and (b) minimum (min) values of vorticity from Days 0 to 100 in the domain from the STSWM (black line) and
the icosahedral model with PV2 (blue line) and PV3 (red line) configured at G7.
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Fig. 16.   Kinetic energy spectra averaged from Days 50 to 100 in the
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figured at G7.
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tices  could be  used to  comprehensively  test  the  model’s
performance  on  vorticity  dynamics.  Furthermore,  the
sensitivity of the model to different configurations (such
as  the  resolution  and  PV  flux  operators  as  examined  in
this  study)  can  also  be  revealed  based  on  the  kinetic
spectra  and  colliding  modons.  Such  sensitivity  high-
lights the usefulness of these performance metrics in the
context of a shallow water environment.

This study focuses on the shallow water environment.
A natural question is that whether the model behavior in
a shallow water environment has close relationship with
that  in the real  atmosphere.  For the kinetic energy spec-
trum shown in test case 6, the model exhibits a k–3 slope
of  the  odd  wavenumber,  similar  to  the  behavior  of  the
large-scale  motion  in  the  real  atmosphere.  This  feature
can be maintained until higher wavenumbers as the resol-
ution  increases.  This  implies  that  the  shallow  water  en-
vironment  possesses  certain  similarity  to  the  real  atmo-
spheric motions.

The  interpolation  from  the  unstructured  grid  to  the
Gaussian  grid  has  some  impacts  on  the  kinetic  energy
spectra. Rípodas et al. (2009) suggested that the interpol-
ation  process  limits  the  accuracy  of  spectra  to  ~10–8.  If
the unstructured mesh values are interpolated to a Gaus-
sian  grid  at  a  very  high  resolution,  the  kinetic  energy
spectra of the large wavenumbers exceeding the raw res-
olution will spuriously upwarp. Therefore, the resolution
should not differ greatly during the interpolation proced-
ure.  In  addition  to  the  Inverse  Distance  Weighted  Inter-
polation  method  used  in  this  study,  we  also  tested  the
nearest neighbor interpolation method. The differences in
the  kinetic  spectra  using  two  interpolation  methods  ex-
hibit only at the large wavenumbers that exceed the raw

resolution  of  the  unstructured  mesh,  which  does  not  af-
fect the conclusions in this paper.

The  kinetic  energy  spectrum  evaluation  method  used
in  this  study  naturally  applies  to  the  global  models  be-
cause that spherical harmonic expansion requires periodic
boundaries.  The k–3 and k–5/3 slope  reference  lines,  and
the kinetic energy spectrum derived from the Global At-
mospheric  Sampling  Program  (GASP)  aircraft  observa-
tions (Nastrom and Gage, 1985), and from the functional
fit to the Measurement of Ozone by Airbus in-service air-
craft (MOZAIC) observations (Lindborg, 1999) could be
used as the reference solution to evaluate the real  atmo-
sphere.  For  the  regional  models  that  cannot  use  this
method directly, a Fourier transform method after period-
izing  the  meteorological  fields  by  the  preprocess  of  re-
moving  the  tendency  (Errico,  1985)  or  Discrete  Cosine
Transform (Denis et al., 2002) could be used for spectral
decomposition  of  a  two-dimensional  field  in  a  limited
area case.

Acknowledgments. The  authors  are  grateful  to  the
three  anonymous  reviewers  for  their  constructive  com-
ments.

Appendix: Computational Procedures of the
Shallow Water Model

1.    Spatial discretization

From  a  mathematical  view,  the  shallow  water  equa-
tions contain the major horizontal operators of a three-di-
mensional  model.  The  model  may  be  separated  to  two
modes:  (1)  the  isolated  transport  mode,  which  can  be
used  to  examine  the  operators  specifically  associated
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Fig. 17.   (a) Rotational kinetic energy fluxes and (b) enstrophy fluxes in the test case of colliding modons from the STSWM on Day 71 (black
color), the icosahedral model with PV2 (blue color) on Day 71, and the icosahedral model with PV3 on Day 74 (red color).
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with  the  passive  transport  process;  (2)  the  wave  mode,
which is the major physical mode for the barotropic shal-
low-water wave dynamics and is the focus of this study.

Based on the continuous-form equations and the defin-
ition  of  geometric  location  in  the  main  text,  a  modified
equation  set  that  facilitates  the  numerical  discretization
may be written as follows:

∂hi

∂t
= −[∇ ·Fe]i, (A1)

∂ue

∂t
= Q⊥e −

[
∂

∂e
(
g(hi+bi)+Ki

)]
e
, (A2)

Q⊥e

∂

∂e

where hi is the thickness at the primal cell i, and ue is the
normal  velocity  at  the  edge  of  the  primal  cell. Fe is  the
normal thickness flux at the primal edge e;  is the non-
linear Coriolis term at the primal edge e. The superscript
⊥ denotes the direction perpendicular to the unit normal
vector of primal edge e (ne), and the direction follows −k ×
ne, where k is a unit vector along the local vertical direc-
tion.  The  variable bi is  the  topographic  height  at  primal

cell i, Ki is the kinetic energy, g is the gravity parameter,

and  denotes evaluating the gradient component along
the normal direction of the primal edge. A concise sum-
mary of the major computational procedures is presented
as follows, and a more comprehensive description of the
basic operators is given by Ringler et al. (2010).

The right hand side of Eq. (A1) is approximated by us-
ing the divergence theorem:

[∇ ·Fe]i =
1
Ai

∑
e ∈ EC(i)

ne,iFele, (A3)

e ∈ EC(i)
ne,i

Fe = ĥeue ĥe

where Ai is the area of primal cell at i, le is the length of
the primal edge. The spherical area of a polygon is evalu-
ated  by  summing  sub  triangles  that  form  it,  and  the
spherical  triangle  area  is  evaluated  based  on  the  L’
Huilier’s  Theorem  (http://mathworld.wolfram.com/LHui
liersTheorem.html).  The  variable  denotes  all
edges of primal cell i;  is a binary indicator depending
on the  direction of ne,  1  for  the  outward direction relat-
ive to primal  cell i and −1 for  the inward direction;  and

, where  is approximated by using the primal-
cell flux operator:

ĥe = Fluxi→e (hi) . (A4)

ĥe =

(∑
i ∈ CE(e)

hi

)
/2

i ∈ CE(e)

Fluxi→e is  a  generic  form,  and  its  specific  form  de-
pends  on  the  target  application.  For  the  shallow-water
wave-dynamics  considered  here, ,
where  denotes two neighboring primal cells that
share  edge e,  i.e.,  a  two-point  average  is  used,  which  is

crucial for an energy-conserving shallow-water discretiz-
ation. When Fe = ue, Eq. (A3) diagnoses the divergence.

The nonlinear Coriolis term (NCT) is given by

Q⊥e = −
1
de

∑
e′ ∈ ECP(e)

[we,e′ le′Fe′ q̃e,e′ ], (A5)

e′ ∈ ECP(e)

we,e′

where de is  the length of  dual  edge,  denotes
all edges of two neighboring primal cells that share edge
e,  and  is  the  vector  remapping  weight  following
Thuburn et al. (2009):

we,e′ =

[(∑v=v2

v=v1

Aiv

Ai

)
−0.5

]
ne′ite,v2 , (A6)

te,v

∑v=v2

v=v1

Aiv

Ai
e′

we,e′

ne′ite,v2 e′ = e,
we,e′ = 0

where Aiv is a kite-shape intersecting area between primal
cell i and dual cell v;  is a binary indicator depending
on the direction of k × ne, 1 for the inward direction rel-
ative  to  dual  cell v and  –1  for  the  outward  direction;

 means a traversal sum from edge  to edge e,

the first dual cell encountered is v1, and the last dual cell
encountered  is v2:  sum Aiv/Ai associated  with  each  dual
cell from v1 to v2; and the final  is corrected with the
sign  corrector  to  obtain  a  correct  sign.  If 

.
q̃e,e′ q̃e,e′ = (q̃e+ q̃e′ )/2

q̃e,e′ = q̃e

e′

q̃e

The variable  is  evaluated  as  or
.  Following Zhang et  al.  (2019),  the  first  one  is

referred  to  as  NCTnon_local as  it  brings  PV  information
from  to e, while the second one is referred to as NCTlocal
because only local PV information at e is used. The vari-
able  is evaluated based on the dual-cell flux operator:

q̃e = Fluxv→e (qv) , (A7)

and  its  specific  form  is  given  later.  The  variable qv =
ηv/hv, ηv is the absolute vorticity defined at the dual cell,
and hv is the remapped fluid thickness at the dual cell:

ηv = f + k · (∇×V)v = f +
1
Av

∑
e ∈ EV(v)

te,vuede, (A8)

hv =
1
Av

∑
i ∈ CV(v)

Aivhi, (A9)

e ∈ EV(v)
i ∈ CV(v)

Ki =
1
Ai

∑
e ∈ EC(i)

lede

4
u2

e

∂

∂e
=

1
de

∑
i ∈ CE(e)

−ne,ihi

where f is  the  Coriolis  parameter, Av is  the  area  of  dual
cell v,  denotes  all  edges  of  dual  cell v,

 denotes  primal  cells  that  form  the  vertex  of
dual  cell v.  Finally,  the  kinetic  energy Ki is  given  by

,  and  the  gradient  component
along  the  normal  direction  of  primal  edge e reads

.
This  horizontal  discretization  has  many  desirable

properties for geophysical fluid modeling. A limitation is
that  the  basic  operators  (e.g.,  divergence,  gradient,  and
vector  reconstruction)  possess  a  low  order  of  accuracy,
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although  the  flux  operator  can  be  made  with  high-order
approximation. For example, the discrete divergence op-
erator  is  nominally  second-order  accurate  for  a  regular
hexagon.  For the isolated transport  solver,  in solid body
rotation transport of a continuous Gaussian hill [William-
son  et  al.  (1992)’s  test  case  1  but  with  a  continuous
Gaussian hill given by h = 1000 exp (–3π2r2), where r is
the  angular  distance  in  radians  from  the  hill  center  loc-
ated  at  the  equator],  several  flux  operators  in  the  model
exhibit  third-order convergence in unlimited and limited
tests,  except  that  the l∞ norm in the limited test  exhibits
second-order  convergence  (Fig.  A1).  For  deformational
flow transport  of  two  Gaussian  hills  that  may  challenge
the pentagon of the icosahedral  grid,  the solution exhib-
its  second-order  convergence  due  to  the  influence  of
mesh  irregularity  (cf., Zhang,  2018),  and  the  conver-
gence  rate  is  also  sensitive  to  the  Courant  number.  For
the  shallow  water  wave  mode  considered  in  this  study,

some  basic  operators  may  be  inconsistent  under  certain
mesh  configurations  (cf., Thuburn  et  al.,  2014; Peixoto,
2016),  but  the  SCVT  optimization  is  generally  helpful.
This issue has led to a non-convergence behavior of  the
l∞ error norm in the zonal balanced flow test (Ringler et
al., 2010; Zhang, 2018), a problem that was also found in
some other quasi-uniform grid models based on the stag-
gering  finite-volume  methods  (e.g., Harris  and  Lin,
2012).  For  more  complex  real-world  flow,  this  issue
seems to be less evident (e.g., Ji,  2016),  and its  realistic
implications remain explored. Also note that the l∞ norm
in  the  zonal  flow  test  will  exhibit  second-order  conver-
gence if one adopts the model-generated state (e.g., Day
1 or Day 2 solution) as the initial condition (Fig. A2).

2.    Time integrator

The  shallow  water  framework  contains  several  time
integrators. For results shown here, a three-stage third-or-
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Fig. A1.   Solid body rotation transport of a Gaussian hill: (a, b) l1, (c, d) l2, and (e, f) l∞ error norms (denoted by L1, L2, and Linf, respectively) at
grid levels G4–G7 from the (a, c, e) unlimited and (b, d, f) limited tests. Three flux operators are examined, including a nominal third-order oper-
ator with a dissipation coefficient 0.25 (O3-b025; black line), a nominal fifth-order operator with a dissipation coefficient 1 (O5; red line), and an
incremental remapping style flux-form semi-Lagrangian (FFSL; blue line) scheme. The upper and lower gray lines denote the ideal second-order
(−2) and third-order (−3) convergence lines, respectively. For more details regarding the numerical methods, see Zhang et al. (2019).
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der Runge–Kutta method (Wicker and Skamarock, 2002)
is used:

H∗ =Hn+
∆t
3

F
(Hn) ;

H∗∗ =Hn+
∆t
2

F
(H∗) ;

Hn+1 =Hn+∆tF
(H∗∗) , (A10)

H

F (H)

where  denotes a generic variable, n and n + 1 denote
two time levels, * and ** denote intermediate time levels,
and  denotes evaluating spatial tendency.

3.    PV flux operators

q̃e

The PV transport process is important for atmospheric
circulation (Hoskins et al.,  1985), and the representation
of  the  PV  transport  process  affects  the  behavior  of  the
model  (Sadourny  and  Basdevant,  1985; Lin  and  Rood,
1997; Weller,  2012).  The  PV  flux  operator  in  Eq.  (A7)
determines  how  is  evaluated  based  on qv.  In  the
present  work,  we  evaluate  two  choices.  The  first  one  is
simply a two-point average, and is referred to as PV2:

q̃e =
1
2

(
qv1 +qv2

)
, (A11)

where qv1 and qv2 are PV values associated with two dual
cells.  The  second  one  is  based  on  a  high-order  flux  re-
construction  (Skamarock  and  Gassmann,  2011; Zhang,
2018), and is referred to as PV3:

q̃e =
1
2

(
qv1 +qv2

)
− 1

12

(
δ2qv1 +δ

2qv2

)
+
β

12
ne,v1v2

(
δ2qv2 −δ2qv1

)
, (A12)

δ2qv = de
2
(
∂2q
∂e2

)
v

(
∂2q
∂e2

)
v

where ,  is  evaluated  at  the  dual

ne,v1v2

cell  based  on  a  quadratic  polynomial  reconstruction.
 is a binary indicator depending on the direction of

the  reconstructed  tangent  velocity  relative  to v1v2:  1  for
the same direction and −1 for the opposite direction. The
variable β ranges from 0 to 1 and controls the strength of
an implicit numerical diffusion term. If Eq. (A12) is used
in a symmetric way (e.g., flux difference), the β term will
lead to a fourth-order hyper-diffusion term with a hyper-
viscosity  proportional  to  the  Courant  number.  Mean-
while, because the purely upwind PV3 configuration (β =
1) is used, Eq. (A12) may be rewritten as:

q̃e =
1
2

(
qv1 +qv2

)
− 1

6
δ2qv_upwind. (A13)

∂2q
∂e2The implicit diffusion term  helps to smooth small-

scale  structures,  and  also  provides  a  more  accurate  flux
approximation.  PV3  does  not  increase  the  communica-
tion region of the model (2 halo layers are used).
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Fig. A2.   Solution errors of the thickness field against the number of
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