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ABSTRACT

A deep learning objective forecasting solution for severe convective weather (SCW) including short-duration heavy
rain (HR),  hail,  convective gusts  (CG),  and thunderstorms based on numerical  weather prediction (NWP) data was
developed. We first established the training datasets as follows. Five years of severe weather observations were util-
ized to label the NCEP final (FNL) analysis data. A large number of labeled samples for each type of weather were
then selected for model training. The local temperature, pressure, humidity, and winds from 1000 to 200 hPa, as well
as dozens of convective physical parameters, were taken as predictors in our model. A six-layer convolutional neural
network (CNN) model was then built and trained to obtain optimal model weights. After that, the trained model was
used  to  predict  SCW based  on  the  Global  Forecast  System (GFS)  forecast  data  as  input.  The  performances  of  the
CNN model and other traditional methods were compared. The results show that the deep learning algorithm had a
higher classification accuracy on HR and hail than support vector machine, random forests, and other traditional ma-
chine learning algorithms. The objective forecasts by use of the deep learning algorithm also showed better forecast-
ing skills than the subjective forecasts by the forecasters. The threat scores (TSs) of thunderstorm, HR, hail, and CG
were increased by 16.1%, 33.2%, 178%, and 55.7%, respectively. The deep learning forecast model is currently used
in the National Meteorological Center of China to provide guidance for the operational SCW forecasting over China.
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1.    Introduction

Severe  convective  weather  (SCW),  which  includes
thunderstorms  and/or  lightning,  hail,  convective  gusts
(CG),  short-duration  heavy  rain  (HR),  and  tornadoes,
poses a serious threat to life and property in most areas of
the world. Due to the rapid evolution of small scale con-
vective  systems  and  their  complicated  interaction  with
environmental  features,  forecasting  SCW  is  still  a  chal-
lenging  issue  in  operational  meteorology  today  (Ray,
1986; Stensrud et al., 2009).

At present, the National Meteorological Center (NMC)
of  the  China  Meteorological  Administration  issues  sub-
jective  SCW  forecasts  using  the  ingredients-based  (IB)

method,  which  was  first  proposed  by Doswell  III  et  al.
(1996) and then further developed in China (Zhang et al.,
2010; Yu, 2011). The IB method determines the basic in-
gredients  of  SCW events,  which generally include relat-
ively  independent  meteorological  variables  or  paramet-
ers,  such  as  potential  instability,  atmospheric  moisture,
lifting  indices,  vertical  wind  shear,  etc.  (Doswell  III  et
al.,  1996).  Different  synoptic  situations  require  different
thermodynamic and dynamic parameters of the convect-
ive  environment,  which  are  subjectively  determined  by
the  meteorologists  based  on  their  experience  and  know-
ledge of SCW. These ingredients can provide a clear idea
of weather conditions for forecasters/meteorologists. The
evaluation  of  subjective  forecasts  shows  that  the  IB
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method is quite effective (Zhang et al., 2010; Yu, 2011).
However, there are still some limitations in applying this
method. First, due to vast extent and extremely complex
terrains of  China,  climatological  features in different  re-
gions  appear  to  be  significantly  different.  As  a  result,  a
variety  of  synoptic  conditions,  such  as  cold  fronts  and
easterly  waves,  can  lead  to  convective  storms  (Meng  et
al., 2013; Xia et al., 2015; Yang et al., 2017). Therefore,
it is difficult to achieve accurate forecasts of strong con-
vection  in  different  regions  of  China  using  uniform
thresholds of different ingredient variables. Second, with
the  rapid  development  of  numerical  weather  prediction
(NWP)  and  meteorological  observation  networks,  the
amount of available meteorological information has been
exploding  during  recent  years.  It  is  almost  beyond  the
capability  of  meteorologists  to  discover  and  synthesize
useful  and  valuable  information  from  the  massive
amount  of  data  available  without  computer  support.  In
addition, implementation of the IB method requires many
meteorologists  to  reinforce  their  scientific  understand-
ings of  convective systems,  because meteorologists  who
lack  sufficient  knowledge  and  fail  to  keep  up  with  new
scientific developments may not be able to fully capture
the valuable information for  making optimal  SCW fore-
casts.

Compared to the fact  that  the subjective extraction of
physical  features  is  often  limited  by  the  meteorologists’
understanding  about  SCW,  the  machine  learning  (ML)
method  is  less  dependent  on  the  experience  and  know-
ledge  of  users.  Many  attempts  have  already  been  made
using traditional ML algorithms, such as artificial neural
network  (ANN),  support  vector  machine  (SVM),  and
random forest (RF), for weather forecasting (Gardner and
Dorling,  1998). Manzato  (2005, 2007) and Chaudhuri
(2010) used  indices  derived  from  atmospheric  sounding
data  to  develop  a  short-term  thunderstorm  and  rainfall
forecasting tool based on ANN that can be applied to dif-
ferent  regions.  Their  results  showed  that  ANN can  be  a
powerful statistical method for performing a multivariate
data analysis. ML has also been applied to hail forecast-
ing  (Manzato,  2013; Gagne  II  et  al.,  2015, 2017),  tor-
nado  prediction  and  detection  (Marzban  and  Stumpf,
1996; Lakshmanan et al., 2005), damaging winds predic-
tion  (Marzban  and  Stumpf,  1998; Lagerquist  et  al.,
2017), extreme precipitation forecasting (Gagne II et al.,
2014; Herman  and  Schumacher,  2018),  and  thunder-
storms nowcasting (Han et  al.,  2017),  and the results  all
seem encouraging.

A  deep  neural  network  (DNN)  is  an  ANN with  mul-
tiple  hidden  layers  between  the  input  and  output  layers

(Bengio, 2009; Schmidhuber, 2015). Similar to traditional
machine  learning  algorithms  like  ANN  and  SVM,  the
DNN can  model  complex  nonlinear  systems.  Moreover,
compared  to  the  traditional  algorithms,  DNN  has  been
shown to  perform better  at  extracting  advanced  features
by using deeper layers. DNN has a wide range of applic-
ations in computer vision (Kubat et al., 1998; Beijbom et
al., 2012; Simonyan and Zisserman, 2015), face recogni-
tion (Matsugu et al.,  2003), and medical diagnosis (Mac
Namee et al., 2002; Grzymala-Busse et al., 2004). It can
yield results comparable to and in some cases superior to
those  produced  by  human  experts  (Krizhevsky  et  al.,
2012; Ciregan et al., 2012).

There  have  been  some  preliminary  applications  of
deep learning to meteorology. For example, a deep learn-
ing  algorithm  was  employed  to  capture  spatiotemporal
correlations  from  the  radar  echo  spatiotemporal  se-
quences to obtain the extrapolation vectors, and then fur-
ther  used  to  predict  the  development  and  movement  of
the  radar  echoes.  In  particular, Klein  et  al.  (2015) cre-
ated a dynamic convolutional layer, Shi et al. (2015) cre-
ated  a  convolutional  long  short-term  memory  (ConvL-
STM) network, and Wang et al. (2017) created a predict-
ive  recurrent  neural  network  (PredRNN).  Evaluation  of
the predictions indicates that  the deep learning solutions
can provide better predictions than traditional algorithms
such  as  the  optical  flow  method. Zhang  et  al.  (2017)
showed that convective storm initiation, growth, and ad-
vection  can  be  simultaneously  better  predicted  with  a
deep  learning  framework  when  multi-source  meteorolo-
gical  data  are  available.  In  their  study,  a  five-layer  con-
volutional neural network (CNN) was constructed to ex-
tract  features  from  radar  and  reanalysis  data  created  by
variational  Doppler  radar  analysis  system  (VDRAS).
Their  experimental  results  showed  that  deep  learning
methods  achieve  better  performance  than  traditional  ex-
trapolation  methods. Gope  et  al.  (2016) created  a  storm
forecasting model based on historical climatological data
with  stacked  automatic  encoder  (SAE).  This  model  is  a
type  of  DNN  model,  and  has  successfully  forecasted
heavy  rainfall  6–48  h  in  advance  in  Mumbai  and  Cal-
cutta, with less false alarms than conventional methods.

Complex physical processes and dynamic characterist-
ics are often involved in convective systems at small spa-
tial and temporal scales (Doswell III, 2001). Thus, in or-
der  to  improve  the  prediction  for  SCW,  it  is  critical  to
understand the mechanism of their occurrence and devel-
opment  under  various  conditions,  to  fully  extract  con-
vective characteristics automatically for various types of
SCW, and to  comprehensively  consider  its  geographical
environments  and  climatological  background.  Deep
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learning provides a practical tool that can effectively im-
prove the forecasts of SCW.

In this study, a deep CNN was constructed and trained
for thunderstorms, HR, hail, and CG forecasting based on
the  data  from  Global  Forecast  System  (GFS)  of  NCEP.
This  is  essentially  a  variation  of  the  perfect-prognosis
method  (Klein  et  al.,  1959),  which  now is  improved  by
replacing its trainer with more powerful deep learning al-
gorithms.  Our  proposed  forecast  postprocessing  method
can be applied to provide real-time objective probabilistic
forecasts over the entire China.

2.    Data

2.1    NWP data

The data used for  establishing different  deep learning
models are extracted from the global 1° × 1° NCEP final
(FNL) analysis data during the period 2010–14. All data
are  available  4  times  a  day  (0000,  0600,  1200,  1800
UTC),  providing  global  scenarios  of  weather.  After  the
deep  learning  model  is  established,  the  1°  ×  1°  forecast
data from GFS are used for forecasting SCW.

In  order  to  accelerate  the  training  process  and  im-
prove  the  predictive  accuracy  of  the  deep  network,  we
first  select  a  set  of  predictors  among all  variables  in  the
FNL analysis  data.  The  predictors  contain  all  major  en-
vironmental  conditions  that  are  favorable  for  SCW
events,  which  include  basic  meteorological  elements
such  as  pressure,  temperature,  geopotential  height,  hu-
midity,  and  wind,  as  well  as  a  number  of  convective
physical  parameters  that  can  reflect  water  vapor,  atmo-
sphere  instability,  and  uplift  conditions  (Tian  et  al.,
2015).  For  example,  most  unstable  convective  available
potential  energy  (MUCAPE),  precipitable  water
(PWAT),  convective inhibition (CIN),  convergence,  and
wind shear are such physical parameters. To account for
the geographical differences between various regions, we
also  use  elevation,  longitude,  and  latitude  in  our  model.
In total, 144 predictors were selected to describe environ-
mental  characteristics  of  SCW  (Table  1)  and  all  those
predictors were extracted from the FNL analysis data.

2.2    SCW observations

The SCW events,  in  particular  the  HR,  hail,  and CG,
are very rare. On average, the maximum number of days

Table 1.   Selected predictors for SCW forecasting with the deep learning model
Feature Level (hPa)

Multi-level variable T (temperature)
H (geopotential height)

1000, 925, 850,
  700, 600, 500,
  400, 300, 200

WS (wind speed)
WD (wind direction)
W (vertical wind speed)
TDD (temperature dew point difference)
Q (specific humidity)
VAPFLUXDIV (water vapor flux divergence)
PV (potential vorticity)
TMPADV (temperature advection)
SITASE (potential pseudo-equivalent temperature)
DIV (divergence)
VOR (vorticity)
VORADV (vorticity advection)

Single-level convective parameter MUCAPE (most unstable convective available potential energy)
BLI (best lift index)
CIN (convective inhibition)
DCAPE (downdraft convective available potential energy)
K (K-index)
LI (lift index)
Z0 (altitude of 0°C)
Z20 (altitude of 20°C)
PWAT (precipitable water)
SHIP (significant hail parameter)
SHEAR1 (0–1-km wind shear)
SHEAR3 (0–3-km wind shear)
SHEAR6 (0–6-km wind shear)
SI (Showalter index)
TT (total index)

Others Elevation
Longitude
Latitude
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per year with thunderstorm, HR, hail, and CG is less than
110,  13,  5,  and  13,  respectively.  Thunderstorm  and  HR
seem  to  share  somewhat  similar  spatial  pattern.  They
both  occur  most  frequently  in  South  China.  However,
only  thunderstorm  while  no  HR  is  observed  in  West
China. The spatial pattern of hail and CG also appears to
be similar with hot-spots of both types of events concen-
trated in Tibet (Sun et al., 2014).

Observations  of  thunderstorms,  HR,  hail,  and  CG,
which  were  used  to  label  the  predictors,  were  obtained
from  the  severe  weather  observation  dataset  of  NMC
(Zheng et al., 2013). The thunderstorm observations con-
sist  of  lightning  location  data  collected  by  the  National
Lightning  Location  Network  (NLLN)  of  China.  It  has
been  installed  with  ground-based  advanced  time  of  ar-
rival  and  direction  system  of  cloud-to-ground  lightning
detection  sensors,  reaching  394  in  operation  in  2016,
covering  most  of  China.  According  to  relevant  studies
(Xia  et  al.,  2015; Yang et  al.,  2015),  the  lightning loca-
tion accuracy of the whole network is approximately 300
m, the detection rate is larger than 80%, and the average
detected  radius  of  a  sensor  is  approximately  300  km.  A
thunderstorm is recorded if at least one lightning strike is
observed by the NLLN. The HR data consist of observa-
tions  of  hourly  rainfall  no  less  than  20  mm.  Rainfall  is
measured by automatic rain gauges at 2420 national-level
weather stations (NWSs) and more than 20,000 automat-
ic  weather  stations.  The  hail  and  CG  observations  are
from observer reports, and are available 24 h a day at the
2420 NWSs in mainland China.

3.    Deep learning method

The  deep  learning  algorithm  for  SCW  forecasting
(Fig. 1) includes three major steps. First, the training and
testing  datasets  are  collected.  Second,  a  deep  learning
network  is  constructed,  trained,  and  tested.  Third,  the
trained network is implemented for forecasting.

3.1    Training/testing sets

The weather forecasting can be regarded as a two-cat-
egory  classification  problem,  i.e.,  0  indicates  that  the

event will not happen, and 1 indicates that it will happen.
To feed the deep learning network with sufficient spatial
information of climate variables, our model input is set to
be  144  observed  climate  variables  over  a  square  patch
with dimension L × L centered at each SCW event grid.
These L × L × 144 data arrays are labeled by either 1 or 0
depending  on  whether  SCW occurs  at  its  center  grid  or
not. These labeled data arrays form either the training or
testing  samples.  The  choice  of L serves  as  a  balance  of
tradeoff  between  computational  efficiency  and  model
performance.  Some  preliminary  experiments  suggested
that L = 7 is an optimal choice for this purpose.

Since  the  NWP  system  yields  gridded  fields  and  the
SCW  observations  are  site-based  data,  the  observations
need  to  be  remapped  to  the  NWP  grids  first.  If  an  ob-
served  SCW  event  occurred  within  a  radius, R,  of  the
grid point,  the grid point is marked by 1, indicating that
the event occurred at this grid point. Otherwise, the grid
point is marked by 0. Considering that the SCW often oc-
curs on a meso-γ scale, R is set to be 20 km in this study.
Note  that  if R is  set  too  small,  there  will  be  too  many
missing  forecasts;  while  if R is  too  large,  there  will  be
too many false alarms.

Compared  to  non-SCW  events,  the  SCW  is  a  high-
impact  and  low-probability  event.  Therefore,  positive
samples (marked as “with SCW”) are far fewer than neg-
ative samples (marked as “without SCW”). This reflects
a  typical  sample  set  imbalance  (Krawczyk,  2016).  To
remedy this issue, positive samples are replicated to bal-
ance  the  positive  and  negative  samples  in  the  training
sets.  This  process  is  called  over-sampling  (Buda  et  al.,
2018). Over-sampling is unnecessary for test sets though,
as the test sets are mainly used to assess the performance
of the trained models. We therefore constructed test sets
without  over-sampling  to  assess  the  performance  of  our
trained  models  under  the  real  positive–negative  sample
ratio.

Two  independent  datasets  were  constructed  based  on
SCW observations and NCEP FNL analysis data for the
period of March–October during 2010–14. One contains
a  sample  of  50  days  that  were  selected  by  randomly

NCEP FNL
data

7 × 7 × 144
predictors

Deep learning
model (CNN) 

Severe
weather

observations

Construction of training/testing sets Training Forecasting

Occurrence
of SCW
(0 or 1) Training sets

Testing sets
Forecasting

model

NCEP
forecast

data

SCW
probability

forecast

Train
Test

 
Fig. 1.   Flow chart of SCW forecasting with deep learning method.
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choosing one day in each month from March to October
of  2010–14,  and  is  considered  as  the  test  set.  The  other
constructed  dataset  contains  all  the  remaining  positive
and  negative  samples  (4,582,577  thunderstorm  samples,
3,609,185  HR  samples,  1,468,158  hail  samples,  and
1,488,531 CG samples) and is treated as the training set.

3.2    CNN

As mentioned above, the prediction of SCW can be re-
garded as  a  classification  task  with  binary  categories.  A
deep learning network for classification is therefore con-
structed  for  this  purpose.  Among  various  deep  learning
networks, CNN is a class of deep and feed-forward artifi-
cial  neural  networks,  which  has  been  successfully  ap-
plied to many fields, especially image and video recogni-
tion (LeCun and Bengio, 1995; Krizhevsky et al., 2012).
CNN  algorithm  can  effectively  extract  two-dimensional
(2D)  features,  reduce  the  number  of  model  parameters,
and  accelerate  the  training  speed  by  utilizing  receptive
fields  and  weights  sharing  (LeCun  and  Bengio,  1995).
We constructed  deep  2D CNN classification  models  for
binary classification and trained them to predict thunder-
storms, HR, hail, and CG.

Our  CNN  consists  of  convolution,  fully  connected
layer, and the Softmax classifier. The input of a 2D CNN
requires  a  data  array  with  a  format  of  height  ×  width  ×
channel (channel corresponds to predictors here). Due to
the 144 predictors selected for each patch, our input is a
three-dimensional  (3D)  array  with  dimensions  7  ×  7  ×
144.  As mentioned above,  these predictors  represent  the
environmental conditions favorable for SCW events.

The core of our processing was carried out by a feed-
forward  stack  of  five  convolutional  layers  (C1  to  C5),
followed by one fully connected layer  that  outputs  class
scores. Each channel of the five convolutional layers was
obtained  by  convolving  the  channels  of  the  previous
layer  with  a  bank  of  linear  2D filters  such  as  summing,
adding a  bias  term,  and applying a  pointwise  nonlinear-
ity, as follows：

Xl
n = ReLU

(
b(l)

n +
∑K

k=1
W(k,l)

n ∗X(k)
n−1

)
, l ∈ {1, · · · ,5} , (1)

W(k,l)
n

b(l)
n

Xl
n

where ReLU(x) = max(0, x) is the rectified linear unit ac-
tivation  function.  The  symbol  “*”  denotes  the  two-di-
mensional convolution operation. The matrices  rep-
resent  the  filters  of  layer n,  and  the  bias  for  feature
map l. Note that a feature map  is obtained by comput-
ing a sum of K convolutions of the feature maps from the
previous layer.

X5

X̄5 X̄5

The fifth layer was followed by a fully connected layer
with  128  neurons,  which  transformed  the  3D array  ( )
into  a  one-dimensional  (1D)  array  ( ).  Then  was
processed  by a  linear  and fully  connected  layer  to  com-
pute the class scores Sc with c = 0 or 1 as follows:

Sc =
∑128

i=1
X̄5

i ·W6
ci+b6

c . (2)

X0

Finally,  we applied  the  Softmax classifier  function  to
class  scores  to  obtain  a  properly  normalized  probability
distribution (p), which could be interpreted as a posterior
distribution of the two classes given the input  and the
network parameters W and b:

pc = P
(
class = c|X0,W, b

)
=

exp(Sc)
exp(X0)+ exp(X1)

,c = {0,1} ,
(3)

where W =  {W1,  ···, W6}  is  the  set  of  weights,  and b =
{b1, ···, b6} is the set of biases.

The structure of the deep CNN is shown in Fig. 2. The
input for the model was a 7 × 7 × 144 data array.  After
the  data  were  imported,  they  were  convolved  by  five
convolution layers that have 256, 256, 512, 256, and 128
filters, respectively. The convolution kernel size was 2 ×
2,  and  a  valid  mode  was  applied  to  every  convolutional
layer. Because the height and width of the input patch (7
× 7) were small,  no pooling layer was utilized. The out-
put was then passed through a fully connected layer with
128 neurons, and the 3D array was transformed into a 1D
output array. Finally, the classified probability was calcu-
lated  by  the  Softmax  classifier  function.  The  number  of
parameters used in this CNN model was 1,647,362.

Height
T
H

RH
Wind

…

Convolution (2 × 2) Convolution (2 × 2) Convolution (2 × 2) Convolution (2 × 2) Flatten
fully connect

Softmax

SCW

No SCW

7 × 7 × 144

2

Convolution (2 × 2)

Layer1
6 × 6 × 256 Layer2

5 × 5 × 256 Layer3
4 × 4 × 512 Layer4

3 × 3 × 256
Layer5

2 × 2 × 128

Layer6
128

 
Fig. 2.   Structure of the deep CNN algorithm for SCW forecasting, including five convolutional layers, a fully connected layer, and the Softmax
classifier.
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We optimized the  network parameters  by  minimizing
an L2-regularized cross-entropy loss function. For optim-
ization, we used the ADAM algorithm (Kingma and Ba,
2015), an algorithm for first-order gradient-based optim-
ization of stochastic objective functions, which kept track
of  the  first-  and  second-order  moments  of  the  gradients
and was invariant to any diagonal rescaling of the gradi-
ents.  We  set  the  learning  rate  at  10−4 and  kept  all  other
parameters  to  their  default  values  recommended  by
Kingma (Perol et al., 2018).

3.3    SCW forecasting

After  the  optimal  forecasting  model  was  established,
we  now  make  forecast  based  on  the  144  predictors  ob-
tained  from GFS.  To accommodate  to  the  format  of  the
input  to  the  SCW forecasting  model,  the  144  predictors
were  normalized  and  transformed  into  an M ×  7  ×  7  ×
144 array (M is the number of forecast samples). Probab-
ilistic  forecasts  were  then  produced  again  by  the  Soft-
max  classifier.  Here,  probabilistic  forecasts  were  pre-
ferred mainly because the meso-γ scale SCW is difficult
to observe, especially for the hail and CG, and thus it  is
challenging to fully understand the phenomena (Cintineo
et al., 2014).

Deep  CNN  training  is  computationally  intensive.
Compared  to  the  usually  small  number  of  logical  CPUs
(central  processing  unit),  the  GPU  (graphics  processing
unit) used in CNN training is a huge computational mat-
rix  with  thousands  of  compute  cores.  GPUs  are  able  to
support  parallel  computing  which  is  crucial  for  deep
learning  because  it  greatly  accelerates  the  training  pro-
cess (Sanders  and Kandrot,  2010).  The NVIDIA CUDA
(Compute  Unified  Device  Architecture)  library  and
NVIDIA GeForce 1080 Ti graphics chip were utilized in
our training and forecasting processes. Tests showed that
0–72-h  forecasts  (at  6-h  intervals)  at  1°  ×  1°  resolution
over  mainland China can be  completed in  3  min,  which
makes the forecasts practical for operation.

4.    Results

4.1    Evaluation methods

We  chose  four  skill  scores  to  measure  the  perform-
ance  of  the  forecasts:  threat  score  (TS),  equitable  threat
score  (ETS),  probability  of  detection  (POD),  and  false
alarm rate (FAR), which are defined as follows:

POD =
h

h+m
, (4)

FAR =
f

h+ f
, (5)

TS =
h

h+m+ f
, (6)

ETS =
h−hrandom

h+m+ f −hrandom
,

hrandom = (h+ f )× (h+m)/ (h+m+ f + c) ,
(7)

where h is the number of hits, m is the number of miss-
ing forecasts, f is  the number of false forecasts,  and c is
the number of correct negatives.

Although the above scores are typically used for eval-
uating  the  deterministic  forecasts,  they  can  also  be  used
for evaluating the probabilistic forecasts by thresholding
the probabilistic forecasts and turning them into determ-
inistic forecasts. Thus, we used those four scores to eval-
uate  the  deep  CNN  forecasting  results.  After  exploring
different thresholds for each prediction, we found that the
most effective probabilistic threshold values for thunder-
storms, HR, hail, and CG were 0.5, 0.5, 0.9, and 0.9, re-
spectively.

4.2    Evaluation of different algorithms

In order to compare the performance of deep CNN to
that of traditional algorithms, we report the classification
performance  of  various  algorithms  in Table  2 using  the
HR  test  set  (592  positive  samples  and  14,049  negative
samples) as well as the hail test set (149 positive samples
and  14,492  negative  samples).  The  input  of  traditional
ML  algorithms  is  the  144  predictors  at  each  individual
SCW event  grid.  Note  that  the  logistic  regression  (LR),
RF, SVM, and multilayer perceptron (MP) algorithms are
from  the  scikit-learn  package  (Pedregosa  et  al.,  2011),
and we used GridSearchCV function to conduct exhaust-
ive search over specified parameter values for each clas-
sifier.

It  can  be  seen  from Table  2 that  different  algorithms
have  different  classification  skill.  The  performance  of
RF,  SVM,  and  MP  is  similar  in  terms  of  ETS  and  TS,
and is slightly better than that of LR.

Compared  to  traditional  algorithms,  the  deep  CNN
model has a deeper network architecture and more model
parameters.  Owing  to  the  increased  complexity,  deep
CNN’s  training  time  is  much  longer  than  simpler  al-
gorithms.  However,  the  added  complexity  can  take  into
account the spatial  features of  SCW occurrence,  leading
to  improved  forecasting  performance.  As  shown  in Ta-
ble  2,  deep  CNN  achieved  best  performance  among  all
the algorithms for HR and hail forecasting in terms of the
four  skill  scores.  Because  the  comparison  results  for
thunderstorm  and  CG  are  quite  similar  to  those  for  HR
and hail respectively, we omitted the results for thunder-
storm and CG in Table 2.
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In summary, the above results showed that deep CNN
algorithm  outperforms  traditional  machine  learning  al-
gorithms in SCW forecasting over China.

4.3    Case evaluation

On  21  September  2017,  thunderstorms,  CG,  and  hail
occurred over a large area in northern China. Meanwhile,
a  large  area  in  southern  China  suffered  from  thunder-
storms and HR. The SCW observations and forecasts for
this case are shown in Fig. 3.

Figure  3 clearly  shows  that  the  deep  CNN  algorithm
has a  good forecasting skill  for  thunderstorms,  hail,  and
CG  in  northern  China.  Most  of  the  occurrences  in  the
forecasting  area  were  successfully  identified  based  on
our  forecasts.  Moreover,  the  deep  CNN  algorithm  also
appeared to be skillful on forecasting thunderstorms and
HR in southern China.

The  meteorologist’s  forecasts  seemed  quite  different
from  the  objective  forecasts.  We  can  see  that  with  the
meteorologist’s  forecasts  there  were  a  large  number  of
false  alarms  for  the  thunderstorm,  and  lots  of  missing
HR, hail, and CG events. The TSs of the deep CNN fore-
casts of thunderstorms, HR, hail, and CG are 0.48, 0.41,
0.13, and 0.46, respectively, while those of the meteoro-
logist’s forecasts are only 0.40, 0.25, 0.08, and 0.33, re-
spectively.

In  summary,  for  the  above  typical  SCW  case,  deep
CNN  forecasts  demonstrated  much  better  performance
than the forecasters’ forecasts.

4.4    False forecast case

The false forecast of SCW that occurred in northeast-
ern China on 2 August  2015 was selected to  investigate
the reason for false forecast. For this SCW, the forecasts
indicated  that  HR  would  occur  over  a  large  area  in  the
eastern Inner Mongolia, southwestern Heilongjiang, Jilin,
and  Liaoning  provinces.  However,  observations  showed
that  false  alarms  of  HR  were  issued  over  most  of  the
above regions except for eastern Inner Mongolia, central

Heilongjiang,  southern  Liaoning,  and  some  other  areas.
In order to identify the reason for the false forecasts, two
important parameters for HR forecasting, i.e., PWAT and
K-index, were selected to compare the forecasts and ob-
servations.

The  GFS  forecasts  at  1400  Beijing  Time  (BJT)  on  2
August 2015 (issued at 2000 BJT 1 August 2015) indic-
ated  that  PWAT  in  Heilongjiang,  Jilin,  and  Liaoning
provinces  would  exceed  50  mm and  the  K-index  would
exceed 40°C,  suggesting  good environmental  conditions
for  HR  events.  Meteorologists  also  predicted  the  occur-
rence of HR events in the same area and during the same
time period. Based on the GFS forecasts, an HR warning
was issued over the above regions.

However,  a  comparison  between  the  NWP  forecast
fields  and  the  analysis  fields  indicates  big  differences
between  the  NWP  predictions  and  observations. Figure
4a shows that the observed PWAT values were signific-
antly lower than the forecasted values, and the predicted
values of PWAT in central Jilin and Liaoning were about
8  mm  higher  than  the  observed  values.  In  addition,  the
predicted K-indices were also 3–7°C higher than the ob-
servations as seen in Fig. 4b.

The above results indicate that the water vapor condi-
tion  and  the  distribution  of  K-index  in  the  NWP  fore-
casts favored the occurrence of HR events. For this reas-
on,  a  false  alarm  of  SCW  was  issued.  Since  the  deep
CNN algorithm took  the  incorrect  NWP forecasts  as  its
input,  it  therefore  also  predicted  that  HR  events  would
occur over a large area in Northeast China.

4.5    Missed forecast case

During 0200–1400 BJT on 9 July 2015, the deep CNN
algorithm predicted that  HR events  would occur only in
central Sichuan Province and its surrounding areas, while
observations  indicate  that  HR  events  actually  occurred
over  a  much larger  area  in  eastern  Sichuan.  As a  result,
this was a case of missed forecasts.

Table 2.   Skill scores for different algorithms using an HR test set (592 positive samples and 14,049 negative samples) and a hail test set (149
positive  samples  and  14,492  negative  samples).  The  input  of  CNN  is  7  ×  7  ×  144  data  arrays  formed  by  144  predictors  over  7  ×  7  patches
centered at each SCW event grid, while the input of traditional ML algorithms is 144 predictors at each individual SCW grid
SCW Algorithm POD FAR ETS TS
Heavy rain (HR) LR 0.515 0.570 0.285 0.306

RF 0.499 0.531 0.300 0.319
SVM 0.509 0.543 0.297 0.317
MP 0.526 0.562 0.294 0.314

Deep CNN 0.536 0.504 0.328 0.347

Hail LR 0.178 0.933 0.044 0.051
RF 0.182 0.916 0.054 0.061

SVM 0.185 0.922 0.051 0.058
MP 0.192 0.925 0.050 0.057

Deep CNN 0.213 0.892 0.070 0.077
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In order to analyze the causes for the missed forecasts,
Fig.  5 shows  a  comparison  between  the  GFS  forecast
fields and observations. At 0800 BJT 9 July 2015, one of
the SCW conditions in Sichuan was reflected in PWAT,
which was about 50 mm, implying an adequate water va-
por  condition.  Meanwhile,  the  K-indices  were  30–35°C,
indicating  an  instability  in  the  atmosphere;  the  best  lift
index  (BLI)  was  within  −1  to  1,  and  the  energy  condi-
tion was relatively weak; and the vertical velocity at 500
hPa was from −20 to 10 × 10−2 Pa s−1, suggesting a weak
dynamic  lifting.  Overall,  the  GFS  forecasted  fields  sug-
gested that the SCW environmental conditions were only
favorable for the development of weak convection.

In general, there were obvious differences between the
FNL analysis fields and the forecast fields. According to
the  FNL  analysis  data,  at  0800  BJT  9  July  2015,  the
PWAT values exceeded the forecasted values by 2–8 mm
while  the  K-indices  exceeded  the  forecasted  values  by
1–6°C.  Although  the  forecast  missed  the  SCW,  surpris-
ingly other features of the forecasts demonstrated a more
favorable condition for the development of SCW. For ex-
ample,  BLI  values  were  less  than  −2,  the  convective
available potential energy (CAPE) values were more than
600  J  kg−1,  and  the  well-developed  dynamic  uplifting
was found at 500 hPa and even higher levels. Significant
differences  between  the  forecasts  and  analyses  are  dis-
played in Fig. 5, which shows that the analysis values of
PWAT and K-index are much larger than the forecasted
values  in  eastern  Sichuan  where  the  forecast  missed  the
HR event.

In summary, the GFS forecast fields suggested that the
environmental conditions were only favorable for the de-
velopment  of  weak convection.  In contrast,  the analyses
indicated that the true environmental conditions were ac-

tually  very  favorable  for  the  development  of  SCW.  The
meteorologists also failed to predict the HR events in the
eastern  part  of  Sichuan.  We  found  the  reason that  the
deep CNN algorithm missed forecasting the SCW event
was because the NWP forecasts as input were only favor-
able for weak convection.

4.6    Overall evaluation

In  order  to  overall  evaluate  the  performance  of  the
deep CNN algorithm, the forecasts of SCW from April to
September in 2015, 2016, and 2017 by both the CNN al-
gorithm and meteorologists were reported (Fig. 6).

Table  3 shows that  the deep CNN algorithm signific-
antly  improved  the  forecasts  of  all  kinds  of  SCW when
compared to forecaster’s forecasts.

The  average  TS  of  HR  forecasts  by  deep  CNN  al-
gorithm was 0.336, which showed an increase of 33.2%
over the TS of 0.252 for subjective forecasts. It is worth
mentioning  that  the  miss  rate  (1  −  POD)  of  forecaster’s
forecasts  was  larger  than  the  FAR,  which  means  that  a
large  number  of  heavy  rainfall  events  were  missed.  In
contrast,  the opposite  was true for  forecasts  by the deep
CNN  algorithm;  that  is,  fewer  missing  forecasts  were
made by CNN. Thus,  the deep CNN algorithm provides
valuable guidance for meteorologists in their operational
forecasts.

The  deep  CNN  algorithm  has  stable  performance  in
thunderstorm forecasting. The average TS of forecasts by
the algorithm exceeded 0.44 each year, which is on aver-
age 16.1% higher than the score of meteorologist’s fore-
casts.  The  deep  CNN  algorithm  had  a  higher  POD  and
lower FAR, implying more reliable forecasting.

The  performance  diagrams  are  given  in Fig.  6.  Fore-
casts of hail and CG were greatly improved by the deep
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Fig. 5.   As in Fig. 4, but over eastern Sichuan Province, China at 0800 BJT 9 July 2015.
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CNN  algorithm  in  comparison  to  meteorologist’s  fore-
casts. The average TS of hail and CG forecasts by the al-
gorithm were  0.064  and  0.081,  respectively.  This  indic-
ates 178% and 55.7% improvements to the meteorologist’s
forecast  scores  of  0.023  and  0.052.  The  deep  CNN  al-

gorithm also had better performance in terms of POD and
FAR.  Because  hail  and  CG  are  incompletely  observed
due to their local distribution, the forecasts from both the
algorithm and meteorologists had high FAR value.

In summary, deep CNN algorithm showed higher cap-

Table 3.   Evaluation of deep CNN (DL) forecasts and human forecasts (HF) from April to September of 2015, 2016, and 2017 (for 12-h fore-
casts initialized at 0800 BJT)
SCW Year POD(DL) POD(HF) FAR(DL) FAR(HF) TS(DL) TS(HF) ETS(DL) ETS(HF)
HR 2015 0.546 0.338 0.532 0.523 0.337 0.247 0.292 0.211

2016 0.513 0.318 0.515 0.481 0.332 0.246 0.289 0.212
2017 0.589 0.342 0.558 0.466 0.338 0.264 0.290 0.229

Thunderstorm 2015 0.771 0.758 0.480 0.581 0.451 0.370 0.372 0.277
2016 0.760 0.762 0.486 0.560 0.442 0.387 0.363 0.297
2017 0.763 0.731 0.491 0.545 0.440 0.390 0.360 0.303

Hail 2015 0.211 0.147 0.896 0.971 0.075 0.025 0.071 0.021
2016 0.245 0.176 0.913 0.968 0.069 0.028 0.065 0.023
2017 0.249 0.107 0.943 0.981 0.049 0.016 0.044 0.012

CG 2015 0.310 0.149 0.895 0.916 0.085 0.057 0.074 0.047
2016 0.289 0.121 0.892 0.916 0.085 0.052 0.075 0.044
2017 0.246 0.104 0.905 0.920 0.074 0.047 0.063 0.039
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Fig. 6.   Performance diagram of forecasts by the deep CNN algorithm and meteorologists from April to September of 2015, 2016, and 2017 for
(a) thunderstorm, (b) HR, (c) hail, and (d) CG. Dashed lines represent bias scores with labels on the outward extension of the line, while labeled
solid contours are TS. The red, green, and blue lines indicate the performance of CNN in 2015, 2016, and 2017, respectively. The red, green, and
blue triangles indicate the forecast performance by meteorologists in 2015, 2016, and 2017, respectively. The squares indicate the performance of
CNN with the determined probability thresholds, which were 0.5, 0.5, 0.9, and 0.9 for thunderstorms, HR, hail, and CG, respectively.
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ability in all four types of SCW forecasting. Compared to
the  forecaster’s  forecasts,  the  deep  CNN  forecasts
showed  notable  improvements  in  both  qualitative  and
quantitative  evaluations,  suggesting  that  the  algorithm
has much better overall performance. Nevertheless, there
are  still  inadequacies  in  the  algorithm  as  it  issues  too
many false alarms of hail and CG, a problem also found
in meteorologist’s forecasts. Thus, a key goal of improv-
ing the algorithm in the future will be reducing the FAR
of forecasts.

It is worth mentioning that we also pinned down to the
performance of deep learning at hot-spots, and we found
that the deep learning has better forecasting capability at
hot-spots than in other areas. For example, the TS of HR
is  0.30  in  North  China  in  2017,  while  0.39  in  South
China  where  hot-spots  are  observed.  Similar  pattern  is
also observed for other types of SCW events.

5.    Conclusions and discussion

Based  on  the  NCEP  global  FNL  analysis  and  GFS
forecast data and the SCW observations, we constructed
a  deep  CNN  algorithm  to  forecast  thunderstorms,  HR,
hail,  and  CG.  The  performance  of  the  deep  CNN  fore-
casts was evaluated for both three SCW cases and long-
run  SCW  forecasts  from  April  to  September  of  2015,
2016,  and 2017.  The major  conclusions are  summarized
as follows.

(1)  Compared  with  traditional  machine  learning  al-
gorithms, the deep CNN algorithm can automatically ex-
tract nonlinear features of SCW, and yield a better fore-
cast performance.

(2) Compared with meteorologist’s forecasts, the deep
CNN forecasts  of  SCW show significant  improvements.
The  TS  of  thunderstorm,  HR,  hail,  and  CG forecasts  of
the deep CNN algorithm were 16.1%, 33.2%, 178%, and
55.7% better than their respective scores from traditional
methods.

(3)  Incorrect  GFS  forecasts  led  to  false  or  missed
SCW  forecasts  by  the  deep  CNN  algorithm.  Correcting
NWP forecast errors or inadequacies is necessary prior to
applying  postprocessing  techniques  such  as  deep  CNN
algorithm since such techniques rely on reasonable input
data.

The  deep  CNN  algorithm  not  only  can  automatically
extract physical characteristics of SCW from the massive
historical  data,  but  also  can  consider  terrain  features  in
different  areas.  Therefore,  the  deep  CNN  takes  into  ac-
count  more  comprehensive  environmental  conditions  of
SCW such as the dynamical processes, water vapor con-
tents,  instability,  etc.  Our  results  have  demonstrated

overall  better  forecasting  skills  of  deep  CNN than  other
forecasting methods.

Despite  the  already  good  performance  of  deep  CNN
algorithm demonstrated here, there are still many ways to
improve  the  results.  For  example,  a  hyperparameter  op-
timization, deeper network architectures, and deep learn-
ing model ensembles would likely lead to improved per-
formance  of  the  deep  CNN  model.  Furthermore,  only
GFS  data  were  used  as  the  data  source  for  training  and
forecasting  in  this  study.  However,  to  extract  more  op-
timal  forecast  results,  we  may  design  a  new  deep  CNN
model with input data from several NWP models, such as
from  GFS,  ECMWF,  and  Global/Regional  Assimilation
and Prediction Enhanced System (GRAPES).

High FAR and low POD values for hail and CG fore-
casts  are  observed  in Table  3.  This  could  be  caused  by
two  main  reasons.  One  is  the  small  sample  size  of  hail
and  CG  observations  due  to  their  relatively  low  occur-
rence  frequency  compared  to  thunderstorms  and  HR  as
well  as  their  incomplete  record  for  omitting  the  events
with small spatial sizes. The other possible reason is the
limited  capability  of  the  current  global  NWP models  as
indicators of hail and CG events. Many studies (Gagne II
et al., 2015; Sheridan, 2018) have shown that high-resol-
ution NWP models possess greater capability of forecast-
ing  these  events,  and  thus  using  high-resolution  NWP
models  in  the  future  is  expected  to  further  improve  the
forecasts.

In summary,  the deep CNN algorithm can effectively
extract the characteristics of SCW and has demonstrated
great  forecasting  skills.  Results  from  the  algorithm  can
provide useful guidance for meteorologists in their opera-
tional weather forecasting.
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