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ABSTRACT

Minimization algorithms are singular components in four-dimensional variational data assimilation (4DVar). In this
paper, the convergence and application of the conjugate gradient algorithm (CGA), which is based on the Lanczos it-
erative  algorithm  and  the  Hessian  matrix  derived  from  tangent  linear  and  adjoint  models  using  a  non-hydrostatic
framework, are investigated in the 4DVar minimization. First, the influence of the Gram-Schmidt orthogonalization
of the Lanczos vector on the convergence of the Lanczos algorithm is studied. The results show that the Lanczos al-
gorithm without orthogonalization fails to converge after the ninth iteration in the 4DVar minimization, while the or-
thogonalized Lanczos algorithm converges stably. Second, the convergence and computational efficiency of the CGA
and  quasi-Newton  method  in  batch  cycling  assimilation  experiments  are  compared  on  the  4DVar  platform  of  the
Global/Regional  Assimilation and Prediction System (GRAPES).  The CGA is  40% more computationally  efficient
than the quasi-Newton method, although the equivalent analysis results can be obtained by using either the CGA or
the  quasi-Newton method.  Thus,  the  CGA based  on  Lanczos  iterations  is  better  for  solving  the  optimization  prob-
lems in the GRAPES 4DVar system.
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1.    Introduction

The  application  of  high-resolution  data  assimilation
constitutes  a  mainstream  technology  for  improving  nu-
merical  weather  prediction  (NWP)  models.  Variational
data  assimilation,  which  is  used  to  solve  analysis  prob-
lems by minimizing a given cost function, is the best way
to  estimate  model  initial  conditions  by  accurately  com-
bining observation and background fields (Rabier, 2005;
Bannister,  2017).  Three-dimensional  variational  data  as-
similation (3DVar) was widely used in NWP centers dur-
ing the twentieth century (Courtier et al., 1998; Rabier et
al.,  1998; Lorenc  et  al.,  2000).  However,  3DVar  erro-
neously  assumes  that  observations  acquired  at  different
times are  taken at  the  same time within  the  assimilation
window. To overcome the shortcomings of 3DVar, four-
dimensional  variational  data  assimilation  (4DVar)  seeks
an  optimal  balance  between  observations  scattered  thr-

ough  time  and  space  over  a  finite  4D  analysis  volume
with  priori  information;  consequently,  4DVar  is  able  to
closely fit both observations and a priori initial estimates
to generate the optimal initial conditions for NWP mod-
els (Thépaut et al, 1993; Courtier et al., 1994). For more
than a decade, 4DVar has been the most successful data
assimilation method for global NWP models; it has been
used by many of  the  main global  NWP centers,  such as
the  ECMWF  (Rabier  et  al.,  2000),  the  French  national
meteorological  service  Météo-France  (Janisková  et  al.,
1999),  the  Met  Office  (Rawlins  et  al.,  2007),  and  the
meteorological service of Canada (Laroche et al.,  2007).
In  recent  years,  some  new  4DVar  methods  for  global
NWP  models  have  emerged,  including  the  ensemble-
based 4DVar technique (Liu and Xiao, 2013) and hybrid
4DVar that adds flow-dependent ensemble covariance to
traditional  incremental  4DVar,  for  example,  the  en-
semble  data  assimilations  at  ECMWF  (Isaksen  et  al.,
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2010)  and  the  hybrid-4DVar  method  employed  at  the
Met Office (Clayton et al. 2013；Lorenc et al., 2015).

Variational  data  assimilation  is  a  solution  to  large-
scale  unconstrained  optimization  problems.  The  cost
function  measuring  the  misfit  between  the  background
and the observations is first defined, and the optimal val-
ues are then determined by using various large-scale un-
constrained minimization algorithms. Variational data as-
similation  techniques,  especially  4DVar  approaches
based on the tangent linear model and adjoint model, are
computationally  expensive;  thus,  the  development  of  a
robust  and  efficient  minimization  algorithm  is  crucial
(Fisher, 1998; Gürol et al., 2014). Two common minim-
ization algorithms used in 4DVar systems are the conjug-
ate  gradient  algorithm  (CGA; Fisher,  1998)  and  quasi-
Newton  methods,  including  the  limited-memory  quasi-
Newton  method  (i.e.,  the  limited-memory  Broyden–
Fletcher–Goldfarb–Shanno,  L-BFGS; Liu  and  Nocedal,
1989)  and  the  truncated  Newton  method  (Nash,  1984).
Just  as  the  L-BFGS  method  attempts  to  combine  the
modest storage and computational requirements of CGA
methods  with  the  convergence  properties  of  standard
quasi-Newton  methods,  truncated  Newton  methods  at-
tempt to retain the rapid (quadratic) convergence rate of
classic  Newton  methods  while  making  the  storage  and
computational  requirements  feasible  for  large  sparse
matrices  (Zou  et  al.,  1993). Zou  et  al.  (1993) compared
the  L-BFGS  method  with  two  truncated  Newton  meth-
ods on several test problems, including problems in met-
eorology and  oceanography;  their  results  confirmed that
the L-BFGS seems to be the most efficient approach and
is  a  particularly  robust  and  user-friendly  technique.
Navon and  Legler  (1987) compared  a  number  of  differ-
ent  CGA and L-BFGS approaches  for  problems in  met-
eorology and concluded that the L-BFGS is the most ad-
equate  for  large-scale  unconstrained  minimization  al-
gorithms  in  meteorology.  Furthermore, Fisher  (1998)
compared different CGA and truncated Newton methods
in  the  ECMWF,  and  they  concluded  that  the  CGA  was
the most adequate for their 4DVar system. Therefore, the
preconditioned  CGA  is  used  in  the  operational  4DVar
system of ECMWF (Trémolet, 2007).

The  3DVar  operational  assimilation  system  is  em-
ployed  in  the  Global/Regional  Assimilation  and  Predic-
tion  System  (GRAPES; Shen  et  al.,  2017)  with  the  L-
BFGS  minimization  algorithm  (Xue  et  al.,  2008).  The
GRAPES  dynamical  core  uses  a  non-hydrostatic  frame-

work  with  two-time-layer  semi-implicit  and  semi-Lag-
rangian  discretization  and  employs  a  latitude–longitude
grid  with  the  staggered  Arakawa  C  grid  for  spatial  dis-
cretization.  A  4DVar  system  has  been  developed  in  the
GRAPES to improve its operational prediction quality by
using the non-hydrostatic tangent linear and adjoint mod-
els,  which  were  developed for  the  GRAPES global  data
assimilation  system  (Liu  et  al.,  2017).  The  L-BFGS
method is currently applied to the GRAPES 4DVar sys-
tem, but its low convergence rate leads to a low computa-
tional efficiency (Zhang and Liu, 2017). In this paper, to
select  a  robust  and  efficient  minimization  algorithm  for
the  GRAPES  4DVar  system,  the  convergence  of  the
CGA is thoroughly examined, and the CGA is compared
with the L-BFGS method in the GRAPES 4DVar scheme.

This paper is organized as follows. The data and meth-
ods are described in Section 2. Section 3 investigates the
convergence of the CGA, and some results of the CGA in
the GRAPES 4DVar system based on the numerical  ex-
periments  are  presented  in  Section  4.  The  conclusions
and outlook are presented in Section 5.

2.    Data and methods

2.1    Incremental 4DVar

Incremental  formulation  is  commonly  used  in  vari-
ational  data  assimilation  systems  (Courtier  et  al.,  1994;
Trémolet,  2007).  The  incremental  scheme  offers  two
main advantages: 1) the tangent linear model and adjoint
model can be used with a reduced resolution during min-
imization,  largely  reducing  the  computational  cost  of
4DVar;  2)  the  cost  function  becomes  strictly  quadratic,
and  thus,  the  convergence  rate  of  the  minimization  can
be greatly improved (Fisher, 1998). The incremental for-
mulation  scheme  includes  two  components,  namely,  the
inner loop and the outer loop. The outer loop utilizes the
initial estimate of the atmospheric state as the initial con-
dition  of  the  forecast  model  and  obtains  the  model  tra-
jectory within the assimilation time windows; this traject-
ory  is  then  used  to  calculate  the  observational  incre-
ments  within  the  time  windows.  The  purpose  of  the  in-
ner loop is to solve the minimization problem by an iter-
ative algorithm for the variational data assimilation.

J
δx

In  the  4DVar  incremental  formulation,  the  first-order
approximation  of  the  cost  function  is  written  as  the
control  variable  (Courtier  et  al.,  1994; Fisher,  1998;
Trémolet, 2007):

J (δx) =
1
2
δxTB−1δx+

1
2

∑n

i=0
(HiL0→iδx− di)TR−1

i (HiL0→iδx− di)

=
1
2
δxT

(
B−1+

∑n

i=0
LT

i→0HT
i R−1

i HiL0→i

)
δx−δxT

∑n

i=0
LT
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i di+
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dT
i R−1

i di, (1)
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δx
(δx = x− xb) x

xb

Ri

Hi = ∂Hi/∂x
Hi L0→i =

∂M0→i/∂x
M0→i LT

i→0
L0→i

di = oi−Hi∂M0→i(xb)
oi

where  is  the  departure  from  the  background
,  which  will  be  the  analysis  increment;  is

the  model  state  at  time t0;  is  the  background  state  at
time t0; B is the background error covariance matrix; 
is  the  observational  error  covariance  matrix  at  time ti;

 is the linearized observation operator of the
nonlinear  observation  operator  at  time ti; 

 is  the  tangent  linear  model  of  the  nonlinear
model  integrated from time t0 to time ti;  and 
is the corresponding adjoint operator of  that consti-
tutes  backward  integration  from  time ti to  time t0;

 represents the observational incre-
ment at time ti;  is the observation at time ti. The solu-
tion of the adjoint operator can be coded from the corres-
ponding  tangent  linear  model  code,  and  it  does  not  re-
quire  deriving  the  adjoint  equations  analytically  (Talag-
rand and Courtier, 1987).

To  solve  the  minimization  problem  of  Eq.  (1),  the
gradient of the control variable δx is  calculated with the
following equation (Courtier et al., 1994; Fisher, 1998):

∇J (δx) =
(
B−1+

∑n

i=0
LT

i→0HT
i R−1

i HiL0→i

)
δx

−
∑n

i=0
LT

i→0HT
i R−1

i di, (2)

J (δx)
J′′

where  the  minimization  of  the  cost  function  can  be  ob-
tained  by  minimization  algorithms  such  as  the  Newton
method or CGA. The second partial  derivative of ,
the Hessian matrix, is denoted  and is calculated as fol-
lows (Courtier et al., 1994; Fisher, 1998):

J′′ = B−1+
∑n

i=0
LT

i→0HT
i R−1

i HiL0→i. (3)

J′′δx = b b =
∑n

i=0
LT

i→0HT
i R−1

i HiL0→i

Thus, the solution of Eq. (2) is equal to the solution of
the system of linear equations , where 

.
Because B is  usually  a  large  sparse  matrix  and  is

nearly ill conditioned, it is difficult to solve the minimiz-
ation problem in Eq.  (1).  To achieve acceptable conver-
gence  rates,  it  is  necessary  to  perform  some  transforms
and preconditioning for B.

Π

δx = (δu, δv, δΠ)T

δxu = (δψ,δχu, δΠu)T

δx = Pδxu P

In the GRAPES 4DVar system, the basic atmospheric
state variables x are the two wind vectors (denoted by u
and v),  the relative humidity q,  and the non-dimensional
pressure  as  an  independent  variable  (denoted  by ),
which is  the analysis  variable that  represents  the quality
field,  instead  of  potential  temperature  (denoted  by θ).
Thus,  the  analysis  increment  is ,  which
can be transformed into a new vector ,

, where  is a physical balance transformation
operator (Xue et al., 2008).

Therefore,  the  background  error  covariance  matrix B

B = PBuP−1

(Bu)1/2

δx δx = Pδxu =

PΣuUw Bu = ΣuUUΣu

can  be  split  into  three  independent  blocked  matrices
,  thereby  reducing  the  scale  of  the  matrix

computation.  This  method  of  preconditioning  through  a
change  in  the  variable  is  currently  used  in  the
GRAPES 4DVar system. Introducing a new control vari-
able w in  the  cost  function,  the  preconditioning  trans-
form  of  the  variable  is  expressed  as 

,  where .  Therefore,  Eq.  (1)  can  be
expressed by using the control variable w:

J (w) =
1
2

wTw+
1
2

∑n

i=0
(HiL0→iPΣuUw− di)T

·R−1
i (HiL0→iPΣuUw− di) . (4)

2.2    The L-BFGS and CGA in GRAPES 4DVar

The L-BFGS algorithm (Appendix A) in the GRAPES
4DVar system uses the estimation to the inverse Hessian
matrix to guide its search through the variable space. For
the  L-BFGS  in  the  GRAPES  4DVar  scheme,  the  initial
Hessian matrix is the identity matrix, and the number of
iterations m insomuch that  the m previous  values sk and
zk are stored to compute the approximation of the inverse
Hessian matrix is 12.

The  CGA  based  on  the  Lanczos  iteration  (Appendix
B)  in  GRAPES  4DVar  is  mainly  applied  to  solve  large
sparse,  symmetric,  positive  definite  linear  equations
(Paige  and  Saunders,  1982).  With  this  combination,  the
orthogonalization  of  the  Lanczos  algorithm  can  suffi-
ciently overcome the instability of the CGA in providing
practical solutions to the above equations.

J′′The  Hessian  matrix  in  Eq.  (3)  is  a  sparse,  real,
symmetric, positive definite matrix that can be computed
by using B, R, H, L, and LT. The convergence efficiency
of  the  inner  loop  minimization  of  4DVar  is  largely  de-
termined  by  the  shape  of  the  Hessian  matrix,  and  the
computational  efficiency  largely  depends  on  that  of  the
tangent linear model L and the adjoint model LT as well
as  the  number  of  iterations  in  the  minimization.  There-
fore, this approach effectively improves the computational
efficiency of the 4DVar minimization by choosing an ef-
ficient iterative minimization algorithm.

2.3    Orthogonalization of the CGA

J′′

qk

Rounding  errors  greatly  affect  the  behavior  of  the
Lanczos  iteration  for  a  practical  minimization  problem
(Paige, 1970). For a 4DVar system in particular, there are
often some computational errors from the tangent model
and  adjoint  model  of  the  Hessian  matrix  as  well  as
rounding errors from the iterations. These errors lead to a
quick  loss  of  orthogonality  in  the  Lanczos  vectors  in
addition to the problem of “ghost” eigenvalues during the
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Tk

J′′

Lanczos  iterations.  Moreover,  there  are  multiple  eigen-
values of  that correspond to simple eigenvalues of the
Hessian  matrix ;  this  results  in  additional  iterations
and  convergence  failure.  Thus,  the  application  of  the
Lanczos algorithm can easily  cause numerical  instabilit-
ies  in  the  solutions  of  large  symmetric  matrices.
However,  this  issue  can  be  overcome  by  conducting
Gram-Schmidt orthogonalization on the Lanczos vectors
(Paige,  1970),  which  is  conducted  primarily  by  three
methods as follows:

qk+1

rk+1(
q1,··· ,qk

)
rk+1 = rk+1−

∑k

i=1
⟨rk+1, qi⟩qi

qk+1 (
q1,··· ,qk

)

(1) Full  orthogonalization (Paige, 1970). This process
conducts  Gram-Schmidt  orthogonalization  to  make  the
Lanczos  vector  orthogonal  to  all  of  the  previously
computed  Lanczos  vectors.  In  detail,  the  Gram-Schmidt
orthogonalization  is  applied  to  the  residual  vector 
derived from the third step of the Lanczos algorithm [Eq.
(B4)]  and  the  Lanczos  vector  groups ,  i.e.,

.  Thus,  the  Lanczos  vector
 will  be  orthogonal  to  the  previously  computed

Lanczos vectors .

qk+1

qk+1

qk+1

(2)  Partial  orthogonalization  (Simon,  1984).  Con-
sequently, instead of orthogonalizing  against all  the
previously  computed  Lanczos  vectors,  the  same  effect
can be achieved by orthogonalizing  against the pre-
viously computed Lanczos vectors that are not orthogonal
to . The detailed steps are similar to those in the full
orthogonalization  method.  However,  this  method  re-
duces  the  number  of  orthogonalized  inner  products  and
therefore improves the computational efficiency.

qk+1

J′′

(3)  Selective  orthogonalization  (Parlett  and  Scott,
1979). The method is similar to partial orthogonalization
but orthogonalizing  against the much smaller set  of
converged  eigenvectors  of  the  Hessian  matrix .  This
method  can  avoid  some  calculations  of  repeated  eigen-
values, reduce the additional Lanczos iterations, and im-
prove  the  computational  efficiency.  However,  extra
space is needed to store the eigenvectors.

J′′

The CGA has been successfully applied in the 4DVar
system  of  ECMWF  (Fisher,  1998; Trémolet,  2007).
However,  there  are  many  differences  between  the
GRAPES and ECMWF 4DVar systems. First, the ECM-
WF tangent linear model and adjoint model use a hydro-
static  framework  with  spectral  and  reduced  grids,  while
those  in  GRAPES  employ  a  non-hydrostatic  framework
with  a  latitude–longitude  grid.  Especially  in  polar  re-
gions,  the  denser  grid  distribution  of  GRAPES  adds  a
gradient sensitivity computed by the adjoint model, lead-
ing to an increase in the condition number of the Hessian
matrix ,  thereby  affecting  the  convergence  rate.
Second,  the  state  variables  of  assimilation  and  the  tan-

gent  linear  model  variables  are  the  same as  those  in  the
ECMWF  4DVar  system.  However,  there  is  a  variable
physical transform between the tangent linear model and
the assimilation system (see Section 2.1).

3.    Data and experiment

To further  analyze  the  effectiveness  of  the  CGA in  a
practical 4DVar system, we conduct one cycling assimil-
ation experiment for a month. The time ranges from 0900
UTC 1 June to 0900 UTC 1 July 2016. The data used for
the  assimilation  include  conventional  Global  Telecom-
munication  System  (GTS)  observations,  including  tem-
perature,  wind  and  relative  humidity  data  derived  from
sounding,  pressure  data  from  ships  and  the  Synoptic
Ocean  Prediction  (SYNOP)  experiment,  and  wind  data
from  pilot  readings,  in  addition  to  data  from  satellite-
based  platforms,  such  as  the  NOAA-15  Advanced  Mi-
crowave  Sounding  Unit-A  (AMSUA),  NOAA-18  AM-
SUA,  NOAA-19  AMSUA,  MetOp-A AMSUA,  MetOp-
B  AMSUA,  National  Polar-orbiting  Partnership  (NPP)
Advanced  Technology  Microwave  Sounder  (ATMS)
AMSUA,  SeaWinds  scatterometer,  and  Global  Naviga-
tion  Satellite  System  (GNSS)  radio  occultations.  Satel-
lite observations compose approximately 70% of the total
observations. The assimilation window is 6 h, and the ob-
servational  interval  is  30  min.  The  horizontal  resolution
of the outer loop is 0.5°, and the model time step is 450 s.
The  horizontal  resolution  of  the  inner  loop  is  1.5°,  and
the  model  time  step  is  900  s.  The  number  of  vertical
levels is 60, and the maximum number of iterations is 70
in the 4DVar minimization.

The  following  linearized  physical  processes  are  used
in  this  4DVar  experiment:  two  dry  linearized  physical
processes (vertical diffusion and subgrid-scale orographic
effects) to improve the representation of perturbed fields
in  the  tangent  linear  model  (Liu  et  al.,  2017),  and  two
newly developed moist linearized physical parameteriza-
tions  consisting  of  deep  cumulus  convection  based  on  a
new simplified  Arakawa-Shubert  scheme (Han and Pan,
2006) and the large-scale cloud and precipitation scheme
described in Tompkins and Janisková (2004). The exper-
imental  environment  is  based  on  the  high-performance
computer  (Sugon  PI)  at  the  China  Meteorological  Ad-
ministration.  In  total,  256  CPU  cores  are  used  in  these
experiments.  Two  configurations  of  4DVar  experiments
are tested:

(1)  CGA  experiments,  in  which  the  CGA  is  used  for
minimization in the 4DVar system; and

(2)  L-BFGS  experiments,  in  which  the  L-BFGS  is
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used for minimization in the 4DVar.

4.    Results of the CGA in 4DVar

We  perform  numerical  experiments  on  the  GRAPES
4DVar system to investigate the convergence of the CGA
therein.  The  experimental  configuration  is  the  same  as
that in the batch experiments in Section 3, which begin at
0900 UTC 1 June  2016,  and the  number  of  iterations  is
120 in the minimization. Then, the numerical stability of
the Lanczos algorithm in the 4DVar is tested against the
four orthogonalization schemes described in Section 2.3:
full  orthogonalization,  partial  orthogonalization,  select-
ive orthogonalization, and without orthogonalization.

4.1    Orthogonalization analysis of the CGA

∥∇J (δx)∥
qk

qk

qk

qk

The  convergence  of  the  gradient  norm  [Eq.
(2)]  with  the  non-orthogonalized  Lanczos  vector  is
shown  in Fig.  1.  The  gradient  norm  fails  to  converge
starting  at  the  9th  iteration,  which  is  partly  the  result  of
computational  errors.  As  the  iteration  continues,  the  re-
duced  orthogonality  of  the  Lanczos  vector  gives  rise
to a higher gradient norm. However, the convergence of
the gradient norm is much better after performing full or-
thogonalization  on  the  Lanczos  vector  (blue  dashed
line in Fig. 1). In addition, the results of the first nine it-
erations are the same as those without orthogonalization.
This  outcome  indicates  that  the  orthogonalization  on
Lanczos vector  does not change the iteration results of
the  Lanczos  algorithm  when  the  effect  of  the  computa-
tional errors is small,  while the orthogonalization on the

qk

qk

Lanczos vector  can effectively eliminate the effects of
computational  errors,  leading  to  the  stable  convergence
of the Lanczos algorithm when the computational errors
become larger. Further, the results of partial orthogonal-
ization (red dotted line  in Fig.  1)  on the  Lanczos vector

 are the same as those of full orthogonalization, and se-
lective  orthogonalization  also  produces  the  same  results
as full orthogonalization.

J′′

qk

qk

qk

qk

qk

The  eigenvalue  distribution  of  the  Hessian  matrix 
under  different  orthogonalization  methods  is  illustrated
in Fig. 2. The eigenvalue distribution without orthogonal-
ization on the Lanczos vector  is indicated by the solid
line (Fig. 2). There are 53 convergent eigenvalues in total
(circles on the solid line in Fig. 2); many repeated eigen-
values are associated with redundant iterations due to the
loss of orthogonality of the Lanczos vector  during the
iterations.  This  Lanczos  algorithm  is  numerically  un-
stable in the 4DVar minimization. The red dashed line in
Fig.  2 shows the eigenvalue distribution with full  ortho-
gonalization  performed  on  the  Lanczos  vector .
Moreover,  the  number  of  convergent  eigenvalues  (tri-
angles on the dashed line in Fig. 2) is 53, but these eigen-
values are no longer repeated. This result implies that the
Lanczos  algorithm  is  stable  in  the  4DVar  minimization
after  conducting  full  orthogonalization  on  the  Lanczos
vector .  The  number  of  convergent  eigenvalues  (blue
dotted  line  in Fig.  2)  with  partial  orthogonalization  ap-
plied  to  the  Lanczos  vector  is  49,  which  is  4  fewer
than that with full orthogonalization. However, the eigen-
value distribution with partial orthogonalization is gener-
ally similar to that with full orthogonalization. Similarly,
the  eigenvalue  distribution  with  selective  orthogonaliza-
tion is also generally similar to that with full orthogonal-
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Fig. 1.   Convergence of the conjugate gradient norm as a function of
the number of iterations for a 4DVar cost function. The vertical axis is
the square of the gradient norm, and it denotes the difference between
the control vector at a given iteration and its 120th iteration (black solid
line: without orthogonalization; red dashed line: full orthogonalization;
blue  dotted  line:  partial  orthogonalization;  vertical  dotted  line  shows
that  the  gradient  norm  fails  to  converge  starting  at  the  9th  iteration
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Fig. 2.   Eigenvalue distribution of the Hessian matrix of a 4DVar min-
imization  with  different  schemes  of  the  orthogonalization  of  Lanczos
vectors  against  the  number  of  iterations  (black solid  line:  without  or-
thogonalization;  red  dashed  line:  full  orthogonalization;  blue  dotted
line: partial orthogonalization).
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ization. Therefore, the Lanczos algorithm is stable in the
4DVar minimization using full orthogonalization, partial
orthogonalization, or selective orthogonalization.

4.2    Convergence analysis of the CGA

J′′

(
e j = δx−δx j

)

In  the  4DVar  minimization,  the  convergence  rate  of
the  CGA  depends  on  the  eigenvalue  distribution  of  the
Hessian matrix  and the condition number κ (the ratio
of the maximum eigenvalue to the minimum eigenvalue).
The  convergence  estimation  of  the  CGA,  namely,  the
conjugated error ,  is  based on the norm of
the Hessian matrix,  and it  satisfies the following (Paige,
1970; Fisher, 1998):∥∥∥e j

∥∥∥2
J′′ =

(
δx−δx j

)T
J′′

(
δx−δx j

)
⩽ 2

( √
κ−1
√
κ+1

) j

∥e0∥2J′′ . (5)

δx j

Here, δx is the solution of the 4DVar minimization in
Eq.  (1)  (the  value  of  which  is  the  estimated  solution  of
the last iteration of the CGA), while  is the estimated
solution  at  the jth  iteration  of  CGA.  According  to  Eq.
(B8), the CGA should converge better than the linear al-
gorithm. Moreover, the convergence can be improved by
the pre-optimization step of reducing the condition number.

J′′(√
κ−1

)
/
(√
κ+1

)

∥∥∥e j
∥∥∥2

J′′

To  explore  the  convergence  of  the  CGA  in  the
GRAPES 4DVar system, we conduct an assimilation ex-
periment (beginning at 0900 UTC 1 June 2016) with 120
iterations  of  4DVar  minimization.  The  maximum  (min-
imum) eigenvalue of the Hessian matrix  estimated by
the CGA in the 4DVar minimization is 4492.1 (1.03). Per
Eq. (5), the convergence rate  estimated
by  the  condition  number  is  0.970,  and  the  upper  bound
on the convergence rate is expressed by the solid line in
Fig.  3.  This  result  implies  that  the  convergence  of  the
Hessian matrix is unsatisfactory. However, in a practical
calculation  of  the  4DVar  minimization  based  on  the
CGA, the Hessian norm of the true iteration error 
decreases in magnitude from 103 to  10–2 after  120 itera-
tions. The descent rate is clearly quicker than the conver-
gence  rate  estimated  by  the  condition  number,  which
constitutes  superlinear  convergence.  The  above  results
are  consistent  with  those  based  on  the  Integrated  Fore-
casting System of ECMWF (Fisher, 1998).

In  short,  the  Lanczos  algorithm  is  numerically  more
stable in the 4DVar minimization if the Lanczos vector is
orthogonal during the Lanczos iterations. Thus, perform-
ing Gram-Schmidt orthogonalization on the Lanczos vec-
tor is an effective way to ensure the numerical stability in
the Lanczos algorithm. In this way, the convergence rate
of  4DVar  minimization  is  also  improved.  Considering
the short computational time for orthogonalization in the
whole  4DVar  system,  we exploit  the  Lanczos  algorithm

with  full  orthogonalization  in  the  GRAPES  4DVar  sys-
tem to guarantee the orthogonality of the Lanczos vector.

5.    Results of numerical experiments in
4DVar

5.1    Comparison of convergence with the L-BFGS

The CGA and quasi-Newton method are both quadrat-
ically convergent  in theory and have the same quadratic
termination  property.  However,  these  methods  behave
quite  differently  in  practical  applications,  especially
when  applied  to  certain  problems  such  as  solving  the
minimization  of  4DVar.  To  better  compare  the  conver-
gences  of  these  two  methods  in  4DVar  minimization
problems,  both  cycling  assimilation  experiments  begin
on  10  June  2016.  Recalculations  are  performed  in  the
4DVar experiments with the CGA using the background
from the L-BFGS tests. The ratio of the root mean square
of the gradient norm to its initial value is regarded as the
convergence criterion (set as 0.03) during the minimiza-
tion iterations. The maximum number of iterations is 70.

In the first dozen 4DVar minimization iterations in the
four assimilation experiments,  the gradient  norms of the
CGA and L-BFGS experiments both decrease with some
oscillations,  and a  smaller  amplitude is  observed for  the
CGA  experiments  (Fig.  4).  Then,  the  oscillation  of  the
gradient  norm for the CGA experiments becomes small,
and  these  experiments  satisfy  the  convergence  criterion
after  approximately  40  iterations.  However,  the  oscilla-
tion of the gradient norm for the L-BFGS experiments is
still  large, and the experiments do not converge after 70
iterations.  In addition, the gradient norm in the L-BFGS
experiments descends very slowly in the later stages, and
the minimum is similar to that after approximately 40 it-
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Fig.  3.   Convergence  of  the  CGA as  a  function of  the  number  itera-
tions  for  a  4DVar  cost  function.  The  dashed  line  is  the  square  of  the
Hessian  norm  of  the  difference  between  the  control  vector  and  the
value of the last iteration. The solid line is the upper bound of the con-
vergence rate defined by Eq. (5).
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erations  in  the  CGA experiments  (dotted line  in Fig.  4).
The  above  results  indicate  that  the  convergence  of  the
CGA  is  better  than  that  of  the  L-BFGS  in  the  4DVar
minimization.  Moreover,  the  computational  cost  of  the
CGA is lower. Therefore, the CGA is preferable.

To better  compare the convergences of the cost  func-
tions between the two sets of experiments, normalization
is applied to the cost function to calculate the ratio of all
the cost functions to the initial cost function within the it-
erations. The convergences of the cost functions for both
the  CGA  experiments  and  the  L-BFGS  experiments  on
20 June 2016 in the 4DVar cyclical  assimilations are il-
lustrated in Fig. 5. In the first twenty iterations, the des-
cent  rate  of  the  cost  functions  of  the  CGA  experiments
are  faster  than  those  of  the  L-BFGS  experiments.  The
convergence  in  the  CGA experiments  after  40  iterations
is similar to that in the L-BFGS experiments after 70 iter-
ations.  Thus,  the  convergence  rate  of  the  CGA  is
much  faster  than  that  of  the  L-BFGS  in  the  4DVar
minimization.

5.2    Computational efficiency

J′′qkIn  the  4DVar  minimization,  the  term  should  be

calculated  with  the  iteration  of  the  tangent  and  adjoint
models.  Therefore,  the  computational  cost,  which  is  de-
termined  by  the  number  of  iterations,  is  very  high.
Hence, improving the convergence rate and reducing the
number  of  iterations  is  an  effective  way  to  improve  the
computational efficiency of the 4DVar minimization.

The numbers of iterations and the calculation times for
the 4DVar minimization in the 121 cyclical  assimilation
tests for both experimental sets are plotted in Fig. 6. The
CGA  experiments  satisfy  the  requirement  for  conver-
gence within a maximum of 70 iterations in the minimiz-
ation. The average number of iterations to reach conver-
gence is  37,  and the average minimization time in these
CGA  experiments  is  861  s.  However,  most  of  the  L-
BFGS experiments do not meet this convergence require-
ment  within  the  maximum number  of  iterations  because
some  of  the  cost  functions  in  the  iterations  do  not  de-
crease when using the L-BFGS minimization, and thus, it
is  necessary  to  choose  another  descent  direction  for  the
L-BFGS experiments,  which requires additional calcula-
tions.  Thus,  the  number  of  iterations  for  some  L-BFGS
experiments is greater than the maximum number of iter-
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Fig. 4.   Convergence of the Hessian norm for a 4DVar cost function under the GRAPES global 4DVar assimilation system starting at (a) 0300
UTC 10 June 2016, (b) 0900 UTC 10 June 2016, (c)1500 UTC 10 June 2016, and (d) 2100 UTC 10 June 2016 (solid line: CGA experiment; dot-
ted line: L-BFGS experiment).
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ations  (70).  Furthermore,  the  average  number  of  itera-
tions  in  these  L-BFGS experiments  is  68,  and  the  aver-
age  minimization  time  in  these  L-BFGS  experiments  is
1443 s. The average number of iterations in the CGA ex-
periments  is  32  less  than  that  in  the  L-BFGS  experi-
ments, representing a 45% improvement in the computa-
tional  efficiency.  Hence,  the  CGA  can  largely  improve
the  computational  efficiency  without  affecting  the  con-
vergence in the GRAPES 4DVar system.

5.3    The assimilation and forecasting results

To compare the assimilation results of the batch exper-
iments more reasonably, we exploit the 21-day (from 10
to 30 June 2016) results of the cycling assimilation tests
to  avoid  the  influence  of  the  initial  field.  A  statistical
analysis of the batch background and analysis deviations
from the radiosonde temperature observations for the L-
BFGS experiment (shown in black) and the CGA experi-
ment (shown in red) is shown in Fig. 7. The two experi-
ments  show  very  similar  standard  deviations  (Fig.  7a)
and biases (Fig. 7b) of the background fields and analysis
fields at  all  levels.  In addition,  the statistics of  the other
types  of  observations  between  the  two  experiments  are
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Fig. 5.   Convergence of the 4DVar cost function under the GRAPES global 4DVar assimilation system starting at (a) 0300 UTC 20 June 2016,
(b) 0900 UTC 20 June 2016, (c) 1500 UTC 20 June 2016, and (d) 2100 UTC 20 June 2016 (solid line: CGA experiment; dotted line: L-BFGS ex-
periment; horizontal dashed line: final convergence rate of the cost function in the CGA experiment).
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also  similar.  Therefore,  this  shows  that  the  estimated
solutions  [Eq.  (1)]  for  these  two  minimization  al-
gorithms  are  both  reasonable  when  they  reach  the  same
convergence  rate  in  the  4DVar  minimization  (Fig.  6).
This result validates the potential of using these two iter-
ative methods in the GRAPES 4DVar minimization.

6.    Conclusions and discussion

A CGA based on the Lanczos iteration is investigated
in  this  paper  that  considers  latitudinal  and  longitudinal
grid characteristics under a non-hydrostatic framework in
the GRAPES tangent linear and adjoint models. This ap-
proach  solves  the  convergence  problem  through  ortho-
gonalization  in  the  Lanczos  iteration.  The  CGA  pro-
duces  equivalent  analysis  results  with  far  fewer  itera-
tions  and  a  higher  computational  efficiency  than  the  L-
BFGS  in  the  batch  experiments  on  the  4DVar  system.
This  conclusion for  the  GRAPES 4DVar system is  con-
sistent  with  that  for  the  ECMWF  4DVar  system.  How-
ever,  the  denser  grid  distribution  of  GRAPES  adds  a
gradient sensitivity computed by the adjoint model, lead-
ing to an increase in the condition number of the Hessian
matrix, thereby affecting the convergence rate. However,
this  issue  can  be  addressed  by  orthogonalization.  Thus,
the  CGA  is  more  suitable  for  the  operational  develop-
ment of the GRAPES 4DVar system, indicating that  the
CGA is more suitable for minimization problems such as

those in the 4DVar system.
To  further  improve  the  convergence  of  the  4DVar

minimization problem, we need to explore the precondi-
tioned CGA based on the eigenvector of the low-resolu-
tion minimization, perform additional outer loop updates
in the framework of incremental analysis, and ultimately
improve the 4DVar analysis technique.

Appendix A: A description of the L-BFGS

δx0

g0 = ∇J (δx0)

J (δx) k = 0,1, · · ·

The L-BFGS algorithm is an optimization algorithm in
the family of quasi-Newton methods that employs a lim-
ited  amount  of  computer  memory.  The  algorithm  starts
with an initial estimate , and the initial gradient of the
cost  function  is .  A  positive  definite  initial
approximation of the inverse Hessian matrix is defined as
E0 (which may be an identity matrix). Thus, the L-BFGS
algorithm has the following basic structure for minimiz-
ing  (Liu and Nocedal, 1989) for :

dk = −Ek gk

δxk+1 = δxk +αkdk αk

Ek

gk = ∇J (δxk)

Step 1. Compute the search direction , and
set ,  where  is the step size obtained
by  a  safeguarded  procedure,  is  the  approximation  of
the inverse Hessian matrix, and .

sk = δxk −δxk+1 zk = gk − gk+1

Ek+1

sk, sk−1, · · · , sk−m

zk, zk−1, · · · , zk−m Ek+1 =
(
I−ρk sk zT

k

)
Ek

(
I−ρk zk sT

k

)
+

ρk sk sT
k ρk =

(
zT

k sk
)−1

Step  2.  Set  and .  To  re-
duce  the  memory usage  in  the  algorithm,  is  gener-
ally updated by the previous m iterations 
and : 

, where .
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Fig. 7.   (a) Standard deviations and (b) biases of background and analysis fields from radiosonde temperature observations for the L-BFGS ex-
periment (black) and CGA experiment (red) (solid line: background departure o-b; dotted line: analysis departure o-a).
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dk+1 =

−Ek+1 gk+1

Step  3.  Generate  a  new  search  direction 
, and then go to step 1.

J (δx)
Ek+1

The  L-BFGS  algorithm  attempts  to  combine  modest
storage  and  computational  requirements  for  minimizing

. Therefore, with a lower number of iterations (k <
m),  can capture only insufficient information of the
Hessian  matrix,  and  thus,  the  convergence  efficiency  of
the L-BFGS algorithm is affected.

Appendix B: A description of the CGA based
on Lanczos iterations

K (J′′, r0)

r0 = b− J′′δx0

The CGA searches in the direction of conjugated base
vectors  over  the  Krylov  subspace  and  derives
the minimum of the target function (Fletcher and Reeves,
1964). The equation  is the initial residual.
The Lanczos approach converts the large sparse symmet-
ric  matrix  into a  symmetric  tridiagonal  matrix  by an or-
thogonal similarity transform (Paige, 1970).

T = QTJ′′Q

Qk =
[
q1, · · · , qk

]

Tk =


α1 β1 0 0

β1 α2
. . . 0

0
. . .

. . . βk−1
0 0 βk−1 αk



The Lanczos approach is applied on the Hessian mat-
rix  to  iterate  and generate  a  tridiagonal  matrix T and an
orthogonal  matrix Q satisfying  the  relation 
(Golub and Van Loan, 1996). After k steps of Lanczos it-
erations,  we  generate  a  matrix  with  or-
thonormal columns and a tridiagonal matrix

                       .

J′′Q = QTEquating  the  columns  in ,  we  conclude  the
following

J′′qk = βk−1qk−1+αk qk +βk qk+1. (B1)

δx0

g0 = ∇J (δx0)
d0 = −g0 q1 = d0/∥d0∥2,
β0 = 0, q0 = 0

J (δx)
k = 0,1, · · ·

The  CGA  based  on  Lanczos  iterations  starts  with  an
initial  estimate ;  the  initial  gradient  of  the  cost  func-
tion  is ,  and  the  initial  descent  direction  is

, while the initial Lanczos vector is 
.  We  have  the  following  basic  structure  for

minimizing  (Goluband  and  Van  Loan,  1996)  for
:

Step 1.  Calculate  the multiplication of  the matrix and
vector at the kth step:

gk = J′′qk, (B2)

where the largest calculation lies over the whole iterative
algorithm because the Hessian matrix is computed using
the tangent linear model L and the adjoint model LT, the
calculations of which are very large and time consuming.

Step 2.  Estimate the kth diagonal element of the mat-
rix T:

αk = ⟨gk, qk⟩ . (B3)

⟨· · · , · · ·⟩Here, the notation  stands for the inner product.
Step 3. Calculate the residual vector:

rk = gk −αk qk −βk−1qk−1. (B4)

Step  4.  Calculate  the  (k+1)th secondary  diagonal  ele-
ment of the matrix T:

βk = ∥rk∥2, (B5)

qk+1Step 5. Determine the Lanczos vector  for the next
iteration:

qk+1 = rk/βk, (B6)

rk

which  is  equivalent  to  the  normalization  of  the  residual
vector .

Equation (B1) may be written in matrix form as follows:

J′′Qk = QkTk + rk(µk)T, (B7)

(µk)T = (0, · · · ,0,1)
Tkδyk = Qk

Tb
Tk δyk

(q1, · · · , qk)

where . Then, in terms of the quadratic
linear  equation ,  which  consists  of  the
Lanczos matrix , the solution  of the kth step is cal-
culated. Further, the kth approximate solution of the min-
imization  [Eq.  (1)]  is  estimated  and  associated  with  the
Lanczos vectors .

δxk = δx0+
∑k

i=1
⟨qi, δyk⟩. (B8)

Tk

Tk

Qk

J′′

In  addition,  the  eigenvalues  and  eigenvectors  of  the
Lanczos  matrix  can  be  estimated  during  the  iteration
of  the  Lanczos  approach.  The  eigenvectors  of ,  when
pre-multiplied by , approximate the eigenvectors of the
Hessian  matrix .  We  can  use  the  eigenvectors  of  the
Hessian  matrix  to  estimate  the  covariance  matrix  of  the
analysis errors because the error matrix is equal to the in-
version of the Hessian matrix in the variational assimila-
tion (Fisher, 1998). This relation can be used to precondi-
tion the CGA and improve the convergence rate.
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