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ABSTRACT

This study examines the impacts of land-use data on the simulation of surface air temperature in Northwest China
by the Weather Research and Forecasting (WRF) model. International Geosphere–Biosphere Program (IGBP) land-
use data with 500-m spatial resolution are generated from Moderate Resolution Imaging Spectroradiometer (MODIS)
satellite  products.  These  data  are  used  to  replace  the  default  U.S.  Geological  Survey  (USGS)  land-use  data  in  the
WRF model. Based on the data recorded by national basic meteorological observing stations in Northwest China, res-
ults are compared and evaluated. It is found that replacing the default USGS land-use data in the WRF model with
the IGBP data improves the ability of the model to simulate surface air temperature in Northwest China in July and
December 2015. Errors in the simulated daytime surface air temperature are reduced, while the results vary between
seasons.  There  is  some  variation  in  the  degree  and  range  of  impacts  of  land-use  data  on  surface  air  temperature
among seasons. Using the IGBP data, the simulated daytime surface air temperature in July 2015 improves at a relat-
ively small number of stations, but to a relatively large degree; whereas the simulation of daytime surface air temper-
ature in December 2015 improves at almost all stations, but only to a relatively small degree (within 1°C). Mitigation
of  daytime surface  air  temperature  overestimation  in  July  2015 is  influenced mainly  by  the  change in  ground heat
flux.  The  modification  of  underestimated  temperature  comes  mainly  from  the  improvement  of  simulated  net  radi-
ation in December 2015.
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1.    Introduction

Land-use is a very important parameter in atmospheric
numerical models. Different land-use categories have dif-
ferent  physical  properties,  and  they  can  change  the  en-
ergy  balance  and  vertical  fluxes  of  moisture,  heat  and
momentum  between  soil  and  air,  which  determine  the
calculation  of  meteorological  variables  such  as  air  tem-
perature near the surface (Jiménez-Esteve et al., 2018).

Land-use  categories  indicate  whether  a  region  is
covered by forests, cropland, or water, as well as human

land  uses,  such  as  urban  areas.  The  accuracy  of  a  land-
use dataset influences the simulation of land surface pro-
cesses. Presently, the default land-use dataset used in the
Weather  Research  and  Forecasting  (WRF)  model  is  the
U.S.  Geological  Survey  (USGS)  dataset  with  a  spatial
resolution of about 1 km. It was generated from satellite
images  acquired  between  April  1992  and  March  1993.
Because the USGS dataset used in China has not been re-
cently updated, it is unable to accurately reflect the land-
use  conditions  of  some  regions,  such  as  urban  areas
(Weng, 2002; Sertel et al., 2010; Schicker et al., 2016).
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Different  land-use  datasets  determine  the  parameters
used in the calculation of surface heat fluxes in land sur-
face models.  Some researchers have studied the impacts
of land-use change on weather and climate change using
mesoscale weather and climate models (Gao et al., 2003;
Xu et al., 2015). Recently, it has been demonstrated that
different land-use data can significantly affect numerical
simulations. Qu et al.  (2013) investigated the impacts of
urbanization and the reduction of farmland area on the air
temperature across the North China Plain with 1 km res-
olution land-use data, showing that urbanization led to an
increase  of  0.03°C per  year  in  this  area.  The surface  air
temperature  varied  significantly  with  the  land-use  cat-
egories. The impacts of the accuracy of land-use data on
model simulations have also been examined (Cheng and
Byun,  2008; De  Noblet-Ducoudré  et  al.,  2012). Santos-
Alamillos  et  al.  (2015) investigated  the  effects  of  land-
use change on climate through simulations and observa-
tions. Cheng  et  al.  (2013) have  shown that  the  land-use
dataset in the WRF model was unable to accurately rep-
resent the actual land-use distribution in Taiwan. In addi-
tion, the impacts of a land-use dataset generated from re-
mote sensing data  in  2007 on the simulation of  air  tem-
perature  and  wind  speed  were  analyzed.  The  results
showed that  the  use  of  an  accurate  dataset  could  reduce
both the underestimation of air temperature and the over-
estimation of wind speed in the WRF model. Sertel et al.
(2010) studied  the  impacts  of  land-use  dataset  (with  1-
km resolution) quality on regional climate simulation and
found that accurate representation of land cover is essen-
tial for climate simulations because the land surface con-
trols  the  distribution  of  energy  and  water. Pielke  et  al.
(2011) studied the  effects  of  surface  changes  with  1-km
spatial  resolution  dataset  on  simulations  of  regional  cli-
mate,  showing  that  snow,  precipitation,  and  vegetation
distribution  were  well  matched  by  improving  the  accur-
acy of the land-use dataset. The accuracy of the land-use
dataset  was  also  very  important  in  climate  models. De
Meij  and  Vinuesa  (2014) suggested  that  after  replacing
the  land-use  dataset  in  the  WRF  model  with  the  2006
Corine  dataset  at  100-m  resolution,  the  simulations  of
temperature,  wind  speed,  and  precipitation  were  all  im-
proved to some degree.  In Europe, the spatial  resolution
of  the  more-recent  Corine  land-use  dataset  is  100  m.
However, at present, the spatial resolutions of most avail-
able land-use datasets are coarser than 1 km.

Northwest China is located in arid Central Asia and is
affected by the East Asian monsoon. It has a dry–wet cli-
mate  and  ecosystem  transitions  with  relatively  intense
land–atmosphere  interactions.  Moreover,  Northwest
China  has  complex  terrain  and  underlying  surfaces  as

well as sparse vegetation, so it has relatively intense cli-
mate  change  and  land–atmosphere  interactions.  There-
fore, further study is needed to ascertain whether surface
air temperature simulations in Northwest China are more
sensitive to the impacts of land-use data.

In  this  study,  using  Moderate  Resolution  Imaging
Spectroradiometer  (MODIS)  satellite  products,  we  first
generate a new land-use dataset (with 500-m spatial res-
olution)  that  has  a  finer  spatial  resolution  than  the  de-
fault  land-use  dataset  (about  1-km  spatial  resolution)  in
the  WRF  model.  This  new  dataset  is  employed  in  the
WRF  model  to  explore  the  impacts  of  land-use  data  on
the  simulation  of  surface  air  temperature.  Then,  the  ef-
fects of the updated land-use dataset on the simulation of
surface air temperature are analyzed. Finally, the reasons
for  the  differences  between  the  surface  air  temperature
simulations  are  discussed.  Our  objective  in  this  study  is
to  provide  a  basis  for  improving  simulations  of  surface
air temperature over complex terrain in Northwest China.

This paper is organized as follows. The model and the
experiment  design  are  described  in  Section  2,  and  the
land-use  data  processing  is  described  in  Section  3.  The
simulation  results,  including  statistical  analyses  of  land-
use  data,  are  included  in  Section  4.  Finally,  Section  5
provides  a  brief  discussion and a  summary of  the  relev-
ant results.

2.    Model description and experiment design

2.1    Description of the WRF model

The  WRF-ARW  Version  3.6.1  model  is  used  in  this
study.  The  WRF  model  is  a  new-generation  mesoscale
forecasting model and assimilation system developed by
scientists from US research departments and universities.
WRF is a fully compressible non-hydrostatic model with
a horizontal lattice Arakawa-C format, a vertical coordin-
ate system of power quality, and a Euler center based on
terrain following. Physical parameterization schemes can
be selected in the model, including microphysics, cumu-
lus, planetary boundary layer, and land surface processes.

The  WRF  model  includes  the  WRF  Pre-Processing
System (WPS), the WRF model, and the WRF Data As-
similation  (WRFDA)  and  post-processing  systems.  The
WPS contains  the  initial  data  used to  define the  simula-
tion  domain,  interpolate  the  terrestrial  data  (including
ground vegetation,  terrain,  soil  type,  land-use,  etc.),  and
horizontally  interpolate  the  initial  data  into  the  simula-
tion domains.

2.2    Experiment design

In this study, the 0.5° × 0.5° GFS (Global Forecast Sys-
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tem)  data  (http://www.nco.ncep.noaa.gov/pmb/products/
gfs/)  from  NCEP  are  used  to  provide  the  boundary  and
initial  conditions,  and  the  simulation  is  on  three  nested
domains.  Boundary conditions are forced every 3 hours.
The  center  of  the  simulation  is  set  to  39°N,  100°E.  The
settings of the test parameters are shown in Table 1, and
the simulation domain is shown in Fig. 1. The model util-
izes the terrain-following mass η coordinates. It is vertic-
ally  divided  into  40  layers  with  50  hPa  at  the  top.  The
parameterization  schemes  of  physical  processes  are  as
follows:  the  microphysics  scheme  is  the  Thompson
scheme,  the planetary boundary layer  scheme is  ACM2,
the  longwave  scheme  is  the  RRTM  (Rapid  Radiative
Transfer  Model)  scheme,  the  shortwave  scheme  is  the
Dudhia scheme, and the cumulus parameterization is the
KF scheme  in  D01  and  D02  (there  is  no  cumulus  para-
meterization  in  D03).  The  land  surface  scheme  in  this
study is the Noah land surface mode, which becomes in-
creasingly  important  because  the  WRF  model  needs  to
capture mesoscale circulations forced by surface variabil-
ity in albedo, land-use, and snow.

The  Noah  land  surface  model  is  a  unified  NCEP/
NCAR/AFWA  scheme  with  soil  temperature  and  mois-
ture  in  four  layers  (10,  30,  60,  and  100  cm  thick),  and
with  one  layer  of  snow  lumped  with  the  top  soil  layer.
The  vegetation  is  one  vegetation  type  in  each  grid  cell
without the dynamic vegetation and carbon budget (Ek et
al.,  2003; Jin  et  al.,  2010).  Together  with  the  land  sur-

face model, the surface layer scheme computes the stabil-
ity-dependent  coefficients  and  permits  a  calculation  of
the  surface  turbulent  fluxes  for  the  planetary  boundary
layer  scheme.  These  prognostic  states  are  provided  by
WPS. The control file contains model configuration vari-
ables  such  as  the  number  and  thickness  of  soil  layers,
number and length of  time steps,  initial  date/time of  the
simulation,  location  of  the  simulation  site,  initial  condi-
tions for  all  state variables,  and site-specific land classi-
fications  (integer  indexes  for  vegetation  type,  soil  type,
and surface slope type).

In  this  study,  the  model  simulates  48  h  stating  every
day, and the results for D03 are output per hour. Because
the results from 48 h are obtained every day, the spin-up
time is set as the first 12 hours of the results.

2.3    Data processing method

A variety  of  statistical  methods  are  available  for  sur-
face air temperature evaluation. In this study, the follow-
ing statistical methods for error analysis are used:

ME =
1
n

n∑
i=1

(Fi−Oi),

RMSE =

√√
1
n

n∑
i=1

(Fi−Oi)2.

where n is  the  number  of  samples  (specifically, n is  the
number of observation stations), Fi is the simulation result
for station i, and Oi is the observation made at station i.

The  mean  error  (ME)  represents  the  mean  difference
between the simulated values for all observation stations
and  the  corresponding  observed  values.  The  root-mean-
square error (RMSE) represents the square root of the ra-
tio  of  the  summed  squared  deviations  of  the  simulated
values for all observation stations and the corresponding
observed  values  relative  to  the  number  of  observation
stations (n).

3.    Data processing

3.1    Land-use data processing

The default land-use data in the WRF model are taken
from the USGS land-use dataset, which was generated a
long  time  ago,  such  that  the  representativeness  of  this
dataset  has  gradually  dwindled  over  time.  The  land-use
categories have obviously changed under climate change
and  human  activities  in  recent  years  (Jiang  et  al.,  2008;
Grossman-Clarke et al., 2010).

In  this  study,  a  new  land-use  dataset  is  generated
based on land survey data for China from 2000 to 2005.

 

Table 1.   Configuration and parameters for each simulation
Domain Grid point Resolution (km) Time step (s)
D01 220 × 173 27 162
D02 274 × 214  9  54
D03 562 × 376   3  18
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Fig. 1.   Simulation domains (D01, D02, and D03) used in the model
with terrain height (shading; m)
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Then,  the  relatively  high-accuracy  MODIS  (Moderate
Resolution Imaging Spectroradiometer) products and IG-
BP  (International  Geosphere–Biosphere  Program)  land-
use  dataset  are  integrated by using GIS (Geographic  In-
formation System) for  spatial  analysis  and a  discrimina-
tion algorithm. In addition,  integrated land classification
data are processed by using MODIS water-mask products
to determine whether the land categories are correct.  Fi-
nally, a land-use product (http://westdc.westgis.ac.cn/) is
generated  with  500-m  spatial  resolution,  which  is  finer
than  that  of  most  recently  available  land-use  datasets.
The  method  of  land-use  data  processing  is  provided  by
Ran  et  al.  (2009, 2010),  and  the  accuracy  of  the  new
dataset has been verified; the IGBP land-use dataset  has
good  labeling  accuracy  (Wang  et  al.,  2013; Wu  et  al.,

2013).
The default USGS land-use dataset in the WRF model

is  classified  into  24  types,  whereas  the  new IGBP land-
use  dataset  derived  from  remote  sensing  data  is  classi-
fied into 17 types. In order to facilitate the comparison of
the  USGS  and  IGBP  land-use  datasets,  the  USGS  data-
set  is  reclassified  by  using  the  IGBP  land-use  dataset
classification method (Qu et al., 2013). Figures 2a and 2b
show the distributions of the reclassified USGS land-use
dataset and the IGBP land-use dataset over D03. The in-
dex  illustrates  the  dominant  land-use  category  of  each
grid  point,  and  the  main  land-use  changes  in  D03  from
the  USGS  dataset  to  the  IGBP  dataset  are  presented  in
Fig. 2c.

Compared  to  the  USGS  dataset,  the  IGBP  land-use
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(c) Change of USGS to IGBP

Inner mongolia
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1 Shrublands to barren or sparsely vegetated
2 Shrublands to grasslands
3 Shrublands to mixed forests

4 Crop/natural vegetation mosaic or forest to croplands
5 Others to urban and built-up
6 No significant change

 
Fig. 2.   Dominant land-use index of each grid in D03 at 3-km resolution from the (a) USGS and (b) IGBP land-use datasets, and (c) major land-
use changes from the USGS to IGBP datasets in D03. The names of the provinces in D03 are shown in (c).
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dataset  shows  some  significant  changes  (Fig.  2c).  The
main  differences  are  in  western  Inner  Mongolia  and
northwestern  Qinghai,  with  land-use  types  varying from
shrublands  to  barren  or  sparely  vegetated.  In  addition,
land-use  types  in  Ningxia  and  eastern  Gansu  Province
change from shrublands to grassland, and from forest and
crop/natural vegetation mosaic to cropland, respectively.
Some relatively small areas change to mixed forests from
shrublands.  Some fragments  of  urban and built-up areas
appear in Northwest China.

Table  3 shows  the  parameters  of  different  land-use
categories in the WRF model, as well as the numbers of
cells  (last  two  columns)  occupied  by  different  land-use
categories  in  D03.  It  clearly  exhibits  the  characteristics
and distribution ranges of different land-use categories in
D03. Compared with the USGS land-use dataset, the IG-
BP  dataset  shows  significantly  smaller  areas  of  shrub-
lands, deciduous broadleaf forest, tropical savanna, farm-
land,  and  vegetation  mosaic.  To  some  extent,  a  smaller
water body area is also revealed in the IGBP dataset. Rel-
atively larger areas of mixed forest, grassland, and urban
centers  are  presented,  as  well  as  slightly  larger  areas  of
ice/snow and desert. These results are consistent with the
conclusions  documented  by Wang  et  al.  (2017) regard-
ing  changes  in  farmland,  forest  land,  and  grassland  in
China.

3.2    Observation data

Hourly  surface  air  temperatures  observed  by  national

basic  meteorological  observing  stations  in  Northwest
China  are  utilized  to  evaluate  the  simulated  results.  The
observation data have been verified by checking the cli-
matological  threshold  value,  regional  threshold  value,
time consistency, and spatial consistency.

4.    Results

4.1    Comparison of differences in the simulation of daily
daytime surface air temperature

Simulation  of  nighttime  surface  air  temperature  is
largely  affected  by  boundary  layer  processes.  The  WRF
model  produces  relatively  larger  errors  in  the  evolution
of  the  nighttime  boundary  layer.  To  more  clearly  com-
pare the impacts of different land-use datasets on surface
air  temperature  simulation  in  the  WRF  model,  12-h
(0800–2000 BT) daytime surface air temperature simula-
tion results are used for the analyses in this study. In or-
der to ensure the unity of the simulation results, the time
used in this study is Beijing Time (BT).

Figure 3 shows the simulated results from the 168 sta-
tions that have different land-use categories in the USGS
and  IGBP  land-use  datasets.  These  results  can  more
clearly  illustrate  the  impacts  of  land-use  datasets  on  the
simulated surface air temperature.

Specifically, Fig.  3 compares  the  observed  and  simu-
lated  average  daily  daytime  (ADD),  lowest  daily  day-
time (LDD), and highest daily daytime (HDD) surface air
temperature  values  from  168  stations  in  July  2015.  A
comparison of the ADD surface air temperature (Fig. 3a)
shows  that  the  replacement  of  the  USGS  dataset  by  the
IGBP dataset can mitigate the overestimation of temper-
ature.  Simulated  LDD  surface  air  temperature  based  on
the  IGBP  land-use  data  is  closer  to  observations  (Fig.

 

Table 2.   Simulation test schemes

Test Test period Land-use data used
in the WRF model

Test 1 (T1) 2015.7.1–7.31 & 2015.12.1–12.31 USGS
Test 2 (T2) 2015.7.1–7.31 & 2015.12.1–12.31 IGBP

Table 3.   Corresponding properties of land-use classification in the model and the number of cells in the simulated region
Value Land-use type Albedo Z0 (m) SHDFAC Rs (s m–1) Cells in the USGS Cells in the IGBP
1 Evergreen needleleaf forest 0.10 1.09 0.7 125 4 63
2 Evergreen broadleaf forest 0.11 2.65 0.95 150 1 0
3 Deciduous needleleaf forest 0.11 0.85 0.7 150 39 0
4 Deciduous broadleaf forest 0.12 0.80 0.8 100 4782 172
5 Mixed forests 0.12 0.80 0.8 125 2286 16,946
6 Closed shrublands 0.25 0.03 0.7 300 49,630 34
7 Open shrublands 0.23 0.05 0.7 170 8315 2692
8 Woody savannas 0.2 0.86 0.5 70 0 397
9 Savannas 0.2 0.86 0.5 70 3478 1
10 Grasslands 0.19 0.08 0.8 40 74,594 101,779
11 Permanent wetlands 0.12 0.04 0.6 40 27 7
12 Croplands 0.17 0.07 0.8 40 7989 10,950
13 Urban and built-up 0.15 1.00 0.1 200 30 334
14 Crop/natural vegetation mosaic 0.19 0.07 0.8  40 10,662 1076
15 Snow and ice 0.0 0.001 0 999 1 152
16 Barren or sparsely vegetated 0.12 0.01 0.01 999 46,867 74,914
17 Water bodies 0.19 0.00 0 100 2286 859
SHDFAC represents model variable for vegetation fraction, and Rs represents stomatal resistance.
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3b). However, the simulation of HDD surface air temper-
ature  using  the  IGBP  land-use  data  is  not  significantly
improved  for  most  days  (Fig.  3c).  The  LDD  of  T1  and
the  ADD  and  LDD  of  T2  reach  the  0.05  significance
level.  Therefore,  improvement  in  the  simulated  daytime
surface  air  temperature  in  July  2015  using  the  IGBP
land-use dataset comes mainly from the improvement in
LDD surface air temperature simulation.

Figure  4 compares  the  observed and simulated  ADD,
LDD, and HDD surface air temperature of T1 and T2 in
December  2015.  Similar  to  the  results  in  July  2015,  the
ADD simulation results  in  T2 are  closer  to  the  observa-
tions (Fig. 4a) than those in T1. Compared with observa-
tions, the simulated ADD surface air temperature in T1 is
more  underestimated  than  that  in  T2.  Using  the  IGBP
land-use  data  can  significantly  mitigate  the  underestim-
ated simulated temperature, particularly for days after 14
December  2015.  Although  the  simulation  of  the  LDD
surface  air  temperature  is  not  considerably  improved  in
T2 (Fig. 4b), some simulation results are closer to the ob-
servations than in T1. Compared with the simulated LDD
surface air  temperature,  T1 mitigates the underestimated
simulated  HDD  surface  air  temperature  significantly
(Fig.  4c).  The  ADD  and  HDD  of  T1  and  T2  reach  the
0.05  significance  level.  Therefore,  the  improvement  in

the  simulation  in  daytime  surface  air  temperature  in
December  2015  in  T2  comes  mainly  from the  improve-
ment in HDD surface air temperature simulation.

The  simulated  surface  air  temperature  in  July  and
December  2015  shows  that  replacement  of  the  USGS
dataset  by  the  IGBP  land-use  dataset  can  improve  the
simulation  of  the  ADD  surface  air  temperature  during
these two months, but to varying degrees. The use of the
IGBP  land-use  dataset  more  significantly  improves  the
simulation  of  the  LDD  surface  air  temperature  in  July
2015 and the HDD surface air temperature in December
2015.

Table  4 shows  that  the  RMSEs  between  the  simula-
tions  and  observations  in  July  and  December  2015  are
similar  to  those  in Figs.  3 and 4.  Using  the  IGBP land-
use  dataset  can  more  significantly  improve  the  simula-
tion  of  the  ADD  surface  air  temperature  in  December
2015  (by  39%)  compared  to  the  use  of  the  USGS land-
use  data.  The  RMSE (0.46)  for  the  simulated  LDD sur-
face air temperature based on the USGS land-use data is
greater than that based on the IGBP land-use data (0.27)
in  July  2015.  Moreover,  the  RMSE (0.45)  for  the  simu-
lated  HDD  surface  air  temperature  in  December  2015
based  on  the  USGS  land-use  data  is  greater  than  that
based on the IGBP land-use data (0.36). However, com-
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Fig. 3.   Comparison of simulated (a) daily average, (b) minimum, and (c) maximum surface air temperature in July 2015. These are the average
results from 168 stations that have different land-use categories in the USGS and IGBP land-use datasets.
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pared with the USGS land-use data, the use of the IGBP
land-use data results in higher RMSEs for both the simu-
lated HDD surface air  temperature  in  July 2015 and the
simulated  LDD  surface  air  temperature  in  December
2015.  The  relevant  factors  behind  this  phenomenon  re-
quire further study.

4.2    Comparison of regional distribution

Figures 5a and 5b show the spatial distribution of the
errors in T1 and T2 in July 2015, respectively. It is clear
that  the  errors  in  T1  are  predominantly  positive.  As
demonstrated in Fig. 5b, the errors in the simulated ADD
surface  air  temperature  of  the  observation  stations  in
Gansu  based  on  the  IGBP  land-use  data  are  relatively
small  in  T2,  compared  with  those  in  T1.  The  errors  of
some stations in northwest Gansu are in the range of [2,
3)  to  [1,  2).  In  addition,  the  errors  of  most  stations  in
central Gansu are in the range of [–1, 1), which are lower
than  those  in  T1.  The  largest  simulation  errors  of  the
Shaanxi  Province  are  located  mainly  in  the  central  re-

gion, with the largest errors exceeding 2°C. No signific-
ant  improvement  appears  in  the  simulated  ADD surface
air temperature for the stations in Shaanxi in T2. The rel-
atively large errors of some stations in T1 are reduced in
T2 in Qinghai.

Because positive and negative errors  cannot  be easily
compared, absolute errors are used in the following sec-
tion  to  comparatively  analyze  the  simulation  results
based on the USGS and IGBP land-use datasets.

The  difference  in  the  distribution  of  the  absolute  er-
rors in the simulated ADD surface air temperature in D03
is shown in Fig. 5c, which more clearly exhibits the dif-
ferences  between  the  simulated  results  based  on  the
USGS and IGBP land-use data.  Specifically,  each result
in Fig.  5c is  computed  by  subtracting  the  absolute  error
of  the  simulated  ADD surface  air  temperature  based  on
the USGS land-use dataset and the observation at the cor-
responding station from the corresponding absolute error
of  the  simulated  ADD surface  air  temperature  based  on
the IGBP land-use data and the observation at the corres-

Table 4.   RMSEs between simulations and observations (T&O) of T1 and T2 (average, minimum, and maximum surface air temperature)

Time
T_avg T_min T_max

T1&O T2&O T1&O T2&O T1&O T2&O
2015.07 0.20* 0.11  0.46*  0.24* 0.18 0.21
2015.12 0.26*  0.14* 0.41 0.43  0.45*  0.34*

Note: * trends significant at p = 0.05
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Fig. 4.   As in Fig. 3, but for December 2015.
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ponding  station.  The  positive  value  (red  dot)  indicates
that the absolute error in T1 is greater than that in T2. In
addition,  the  larger  difference  between  the  absolute  er-
rors in T1 and T2 shows that the simulation is improved
more significantly by using the IGBP land-use data. The
negative value (blue dot) indicates that the absolute error
in  the  simulated  ADD  surface  air  temperature  based  on
the IGBP land-use data is greater than that based on the
USGS land-use data.

A  total  of  286  stations  with  observation  data  in  July
2015  are  selected  after  data  quality  control.  As  demon-
strated  in Fig.  5c,  using  the  IGBP  land-use  dataset  im-
proves the simulations for 144 stations and leads to an in-
crease  in  the  absolute  error  for  142  stations  compared
with the results in T1.

Figures  6a and 6b present  the  spatial  distribution  of
the errors  in the simulated ADD surface air  temperature
in  December  2015  for  T1  and  T2.  In  contrast  to  July
2015,  the  errors  of  most  stations  in  D03  in  December
2015 are predominantly positive. As demonstrated in Fig.
6c,  the  simulated  surface  air  temperature  values  in
December  2015  based  on  the  IGBP  land-use  data  are
higher than those simulated based on the USGS land-use
data. Thus, negative errors for relevant stations in T1 are
reduced by applying the IGBP land-use dataset, as in the
stations  in  central  Gansu,  southern  Ningxia,  northern
Shaanxi,  and  the  juncture  of  Qinghai  and  Gansu.

However,  positive  errors  for  relevant  stations  in  T1  in-
crease when using the IGBP land-use data. In particular,
positive  errors  for  the  stations  in  central  Shaanxi  in  T1
significantly  increase  when  the  IGBP  land-use  data  are
applied.

The distribution of these stations indicates that the dif-
ferences  between  the  absolute  errors  in  the  simulated
ADD  surface  air  temperature  in  July  2015  for  the  sta-
tions in central and northwest Gansu based on the USGS
and  IGBP  land-use  datasets  are  predominantly  positive.
This suggests that the use of the IGBP land-use data can
significantly improve the simulation of the ADD surface
air  temperature  compared  with  T1  (with  improvement
generally exceeding 2°C).  This further indicates that  the
results of T2 over these stations present a significant im-
provement.

Compared  with  July  2015,  the  overall  distribution  of
the differences  shows that  the  use of  the  IGBP land-use
data  more  significantly  improves  the  simulation  of  sur-
face air temperature in December 2015. Within D03, us-
ing  the  IGBP land-use  data  improves  the  simulation  for
205 stations (positive values; red dots in Fig. 6) and leads
to an increase in the absolute error for 81 stations (negat-
ive values; blue dots in Fig. 6).

The  distribution  of  the  stations  in  different  regions
shows that the use of the IGBP land-use dataset signific-
antly improves the simulated ADD surface air temperat-
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Fig. 5.   Spatial distributions of errors and the difference in absolute error (T1–T2) in D03 in July 2015. (a) T1, (b) T2, and (c) T1–T2.
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ure  for  nearly  all  stations  in  Gansu except  an  extremely
small number of stations, for which the use of the IGBP
land-use data leads to an increase in the absolute error.

A comparison of the differences between the absolute
errors  indicates  that  the  use  of  the  IGBP  land-use  data
improves  the  simulation  for  more  stations  in  December
2015  than  in  July  2015,  although  the  improvements  are
relatively  small  (0–1°C).  Overall,  using  the  IGBP  land-
use data improves the model’s skill in simulating surface
air temperature in Northwest China.

4.3    Impacts  of  land-surface  parameters  on  surface  air
temperature

Updated  land-use  data  can  directly  alter  relevant  sur-
face  parameters,  including  surface  albedo,  leaf  area  in-
dex, and surface roughness. These variations can further
induce  changes  in  the  radiation  flux  of  the  land  surface
and can consequently change the surface air temperature.
These  parameters  can  influence  the  calculation  of  sur-
face  heat  and  moisture  fluxes  in  land-surface  models.
Changing  the  land-use  data  will  directly  alter  these  sur-
face  properties  in  the  model,  resulting in  changes  in  the
surface air temperature simulation (Krayenhoff and Voogt,
2010).

Figure 7 illustrates the relevant surface parameters af-
fected by the land-use dataset in July 2015. The paramet-
ers in December 2015 are similar (figure omitted). Com-

pared to T1, the southeast and northwest portions of D03
present lower surface albedo in T2. Other parameters are
larger in T2, and it exhibits opposite results in D03. The
results  of  the evaluation are more influenced by simula-
tions in the northwest portions of D03 because more ob-
servation sites are located in this area.

Solar  radiation  is  the  most  fundamental  source  of
land–atmosphere  system  energy. Figure  8 shows  the
ground heat flux, sensible heat flux, latent heat flux, and
net radiation of T1 and T2. The results are the mean val-
ues from 168 stations that have differences in the USGS
and  IGBP  land-use  data.  This  clearly  suggests  the  im-
pacts  of  changing  the  land-use  dataset  on  the  simulated
results.

A  comparison  of  the  ground  heat  flux  (GRDFLX)
between T1 and T2 in  July 2015 is  shown in Fig.  8a.  It
can be seen that the GRDFLX values for T1 and T2 are
negative.  A  comparison  of  surface  air  temperature  and
GRDFLX  is  consistent  with  this.  Since  LDD  is  influ-
enced largely by GRDFLX, the improvement in LDD in
July  2015  may  come  mainly  from  the  improvement  in
GRDFLX.  From  the  comparison  between Figs.  8g and
8h, and Figs. 4 and 5, it is noted that the net radiation is
consistent with the daily maximum surface air temperat-
ure.  The  improvement  in  December  2015  may  come
mainly  from  the  correction  of  net  radiation.  Higher
thermal inertia (Fig. 7e) suggests that lower temperature
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Fig. 6.   As in Fig. 5, but for December 2015.
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will  be  reached in  T2 compared with  T1.  The increased
urbanization in T2 will also modify the physical proper-
ties.  Lower  surface  albedo  (Fig.  7a)  can  generate  larger
net radiation.

A comparison of SH and LH is coincident with that of
the  surface  air  temperature.  It  should  be  noted  that  the
change  is  not  exactly  the  same  as  the  flux  change,  be-
cause the factors  influencing surface air  temperature  are
more complex.

Figure  9 shows  the  changes  in  surface  radiation  and
energy budgets after the major land-use data change from
the USGS to IGBP datasets over D03. The results are the
average results of these grid cells  of different categories
as  indicated  in Fig.  2.  The  changes  in  the  LDD  surface
air  temperature  are  affected  largely  by  GRDFLX.  Com-
pared  with  the  observations  in  July  2015  (Fig.  3b),  the
simulations  significantly  overestimate  the  LLD.  The
GRDFLX  in  T2  is  smaller  than  that  in  T1  in  the  major
land-use  change  categories  (categories  1,  2,  and  3).  Al-
though  urbanization  (category  5)  exhibits  significantly
larger GRDFLX, the degree of influence is quite limited

because the area is much smaller than the others. By im-
proving  the  overestimation  of  GRDFLX  in  T2,  LDD  is
also improved.

Compared  to  LDD,  NET can  largely  influence  HDD.
Both T1 and T2 underestimate HDD in December 2015.
Using the IGBP land-use dataset simulates larger NET in
most areas (categories 2, 3, 4, and 5). Due to the correc-
tion of NET at the surface in T2, the underestimation of
HDD  is  also  modified.  Higher  thermal  inertia  (Fig.  7e)
and lower surface albedo (Fig. 7a) modify the overestim-
ation  of  LDD  in  July  2015  and  the  underestimation  of
HDD in December 2015.  Moreover,  the simulation skill
of  surface  air  temperature  is  improved  by  using  IGBP
data. The results of these areas are consistent with the av-
eraged results for the 168 stations.

5.    Conclusions and discussion

In  this  study,  the  impacts  of  the  finer  spatial  resolu-
tion  (500  m)  IGBP  land-use  dataset  and  the  default
USGS land-use dataset  on the simulations of  surface air
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Fig. 7.   Spatial distributions of the 6 main physical parameters for T1 and T2 over D03 in July 2015: (a) surface albedo (%), (b) surface emissiv-
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temperature  are  compared  in  Northwest  China.  Simula-
tions of  surface air  temperature with a  spatial  resolution
of  3  km in  July  and  December  2015  are  evaluated.  The

accuracy  of  the  simulated  surface  air  temperature  is  ex-
amined by comparing it with observations from the basic
national  observation  stations  in  Northwest  China.  The
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Fig. 8.   (a, b) Comparisons of ground heat flux (GRDFLX), (c, d) sensible heat flux (SH), (e, f) latent heat flux (LH), and (g, h) net radiation
(Rn) in (a, c, e, g) July 2015 and (b, d, f, h) December 2015. These results are the average results from 168 stations that have differences in the
USGS and IGBP land-use data.
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main conclusions are summarized below.
We first  generate a new land-use dataset (IGBP land-

use  dataset)  derived  from  MODIS  satellite  products.
Compared with the default USGS data in the WRF model,
the IGBP data can more accurately illustrate the increase
in  desert,  grassland,  and  urban  areas,  as  well  as  the  de-
crease in closed shrublands areas in Northwest China.

The impacts of different land-use datasets on the simu-
lation  of  surface  air  temperature  are  evaluated.  Repla-
cing the default USGS land-use data with the IGBP data
improves  the  simulation  of  surface  air  temperature  in
Northwest  China  in  both  July  and  December  2015,  al-
though to  varying degrees  in  different  seasons.  The dis-
tribution  of  errors  varies  between  seasons  (July  and
December  2015).  Overall,  the  use  of  the  new  land-use
data improves the simulation results and can enhance the
model’s  skill  in  simulating  surface  air  temperature  in
Northwest China.

In  each  grid  cell,  the  various  land-use  categories  de-
termine  the  local  radiative  and  energy  balances,  which
further  affect  the  sensible  and  latent  heat  fluxes.  Local
surface  air  temperature  is  sensitive  to  the  different  cat-
egories  of  land-use.  Mitigation  of  the  lowest  daily  day-
time surface air temperature overestimation is due mainly
to the improved ground heat flux in July 2015. Modifica-
tion  of  the  underestimation  of  the  highest  daily  daytime
surface  air  temperature  simulation  may  come  mainly
from  the  improvement  of  net  radiation  in  December
2015.

Different land-use types vary significantly in physical,
chemical, and biological processes, resulting in large dif-
ferences in the surface energy balance and water balance.

Different  types  of  land-uses  have  different  impacts  on
local climate change. Because the error of the WRF model
in  the  simulation  of  surface  air  temperature  varies
between seasons,  surface air  temperature is  simulated in
two typical  months  in  this  study.  Further  simulations  of
the surface air temperature in different seasons is needed
to  verify  the  simulation  results  over  larger  time  scales.
Spatial resolution has a large impact on whether land-use
conditions  can  be  accurately  represented.  Therefore,  fu-
ture  work  will  focus  on  further  examination  of  the  im-
pacts  of  spatial  resolution in order to find the resolution
that can most accurately represent land-use conditions.
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