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ABSTRACT

The inverse of expected error variance is utilized to determine weights of individual ensemble members based on
the THORPEX (The Observing System Research and Predictability Experiment) Interactive Grand Global Ensemble
(TIGGE)  forecast  datasets.  The  weights  of  all  ensemble  members  are  thus  calculated  for  summer  2012,  with  the
NCEP final operational global analysis (FNL) data as the truth. Based on the weights of all ensemble members, the
variable weighted ensemble mean (VWEM) of temperature of summer 2013 is derived and compared with that from
the  simple  equally  weighted  ensemble  mean.  The  results  show  that  VWEM  has  lower  root-mean-square  error
(RMSE)  as  well  as  absolute  error,  and  has  improved  the  temperature  prediction  accuracy.  The  improvements  are
quite notable over the Tibetan Plateau and its surrounding areas; specifically, a relative improvement rate of RMSE
of more than 24% in 2-m temperature is demonstrated. Moreover, the improvement rates vary slightly with the pre-
diction lead-time (24–96 h). It is suggested that the VWEM approach be employed in operational ensemble predic-
tion to provide guidance for weather forecasting and climate prediction.
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1.    Introduction

The strategy of ensemble forecasting has been broadly
employed to weather prediction and climate projection to
improve  prediction  skill.  Leith  (1974)  pointed  out  that
the  average  of  a  group  of  numerical  forecasts  initiated
with  random  perturbations  in  initial  conditions  enables
the  provision  of  more  accurate  results  than  that  of  any
single  deterministic  forecast.  Since  then,  ensemble  fore-
casting has received considerable attention and is widely
utilized  in  operational  weather  forecasts.  Both  the
European  Centre  for  Medium-Range  Weather  Forecasts
(ECMWF)  and  the  National  Centers  for  Environmental
Prediction  (NCEP)  introduced  ensemble  prediction  for
weather  and  climate  prediction  at  the  beginning  of  the

1990s (Tracton and Kalnay, 1993; Molteni et  al.,  1996).
In addition, both global and medium-range ensemble pre-
diction systems have been developed at various research
institutions  throughout  the  world,  such  as  that  of  the
NCEP  (Toth  and  Kalnay,  1993)  and  the  Canadian  Met-
eorological Centre (CMC; Charron et al., 2009), The Ob-
serving  System  Research  and  Predictability  Experiment
(THORPEX)  Interactive  Grand  Global  Ensemble
(TIGGE) (Froude, 2011), the North American Ensemble
Forecasting System (NAEFS) (Candille, 2009), the Insti-
tute  of  Atmospheric  Physics  Regional  Ensemble  Fore-
cast  System (Zhu  et  al.,  2012),  the  Météo-France  short-
range  Ensemble  Prediction  System  (Descamps  et  al.,
2014),  and  the  US  Navy’s  RELO  Ensemble  Prediction
System (Wei et al., 2014).
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Krishnamurti  et  al.  (2009)  reported  the  possibility  of
improving  the  threat  scores  and  bias  scores  for  all  10
days  of  forecasts  from  the  multi-model  ensemble  fore-
casts,  compared  to  the  current  best  model  over  China.
Zhu  et  al.  (2013)  pointed  out  that  ensemble  forecasts
show a  number  of  advantages  for  quantitative  precipita-
tion  forecasts  (QPFs)  and  probabilistic  QPFs,  albeit  ac-
knowledging  the  occurrence  of  systematic  bias  in  fore-
casting near-surface variables. Zhou and Du (2010) sug-
gested that  ensemble-based forecasts  are,  in  general,  su-
perior  to  a  single control  forecast,  as  measured both de-
terministically  and probabilistically.  Ye et  al.  (2014)  in-
dicated  that  the  ECMWF  ensemble  prediction  system’s
precipitation  forecasts  are  generally  skillful  for  flood
forecasting, especially in large river sub-basins. In short,
ensemble-based  forecasts  are  generally  superior  to  a
single control forecast.

Previous  studies  have  confirmed  that  ensemble  fore-
casting  has  some  potential  benefits  for  weather  and  cli-
mate  predictions  (Bauer  et  al.,  2015).  It  is  important  to
quickly  extract  as  much  useful  information  as  possible
from the vast amount of ensemble forecast data. Accord-
ingly, numerous attempts have been undertaken to gener-
ate different ensemble products that can be deployed ef-
fectively in improving the forecast skill (e.g., Tebaldi and
Knutti,  2007;  Leutbecher  and  Lang,  2014;  Smith  et  al.,
2014).  Among these  approaches,  the  simplest  method is
to  average  all  of  the  ensemble  member  forecasts  by  as-
suming  an  equal  weighting  of  each  member.  However,
although  the  simple  equally  weighted  ensemble  mean
(SEWEM) method can sometimes substantially  improve
the forecast skill (Du, 2007; Qi et al., 2014), the perform-
ance  of  individual  members  is  certainly  not  equal  for
every  single  predictive  event.  In  view  of  the  shortcom-
ings of the SEWEM method, much attention has been de-
voted  to  developing  novel  methods  for  a  variable
weighted ensemble mean (VWEM). Raftery et al. (2005)
proposed  a  statistical  method  for  post-processing  en-
sembles  based  on  Bayesian  model  averaging  (BMA),
which  has  been  widely  utilized  to  combine  predictive
distributions  from  different  sources.  For  example,  Liu
and Xie  (2014)  introduced BMA to  improve  QPFs  over
the Huaihe basin of China. Du and Zhou (2011) put for-
ward  a  dynamical  performance-ranking  method  to  pre-
dict  the  relative  performance  of  individual  ensemble
members by assuming that the ensemble mean is a good
estimation of the truth, which has several advantages for
improving  forecast  skill.  Krishnamurti  et  al.  (2000a,  b,
2009)  established  a  useful  algorithm  based  on  multiple
regression  of  multi-model  solutions  towards  observed
fields during a training period, which shows promise for

simulations of seasonal climate, global weather, and hur-
ricane  track  and  intensity.  Jewson  (2013)  employed  a
method  for  eliminating  double  counting  in  multi-model
ensemble forecasts, which derives weights from empiric-
ally estimated correlations between the outputs from the
ensemble members in the ensemble, without reference to
observations.  Van  Schaeybroeck  and  Vannitsem  (2014)
developed  a  linear  post-processing  approach,  which
provides  a  considerable  improvement  in  skill  as  com-
pared to the traditional ensemble mean. Zhi et al. (2012)
compared  three  kinds  of  multi-model  ensemble  forecast
techniques  based  on  TIGGE  data,  and  pointed  out  that
each  technique  has  its  own  advantages  and  disadvant-
ages.  We  concur  that  there  are  definite  advantages  to
each approach thus far developed and reported in the lit-
erature—all of them are able in certain circumstances or
under  certain  conditions  to  provide  improved  results.
Consequently,  such  approaches  can  be  used  to  improve
the  accuracy  of  numerical  forecasts  according  to  the  re-
quirements of end-users (Weigel et al., 2008).

Xie and Arkin (1996) first  used the inverse of expec-
ted  error  variance  to  combine  precipitation  data  from
gauge  observations,  satellite  estimates,  and  numerical
model  results.  Almost  at  the  same  time,  Huffman  et  al.
(1995)  developed a  similar  algorithm to  compute  global
gridded  fields  of  monthly  precipitation,  and  Huffman  et
al.  (1997)  produced  weighted  average  QPFs  by  weight-
ing  each  model  QPF according  to  the  inverse  of  expec-
ted  error  variance  over  the  prior  two-month  period.  Al-
though  there  are  some  differences  between  the  two  al-
gorithms,  both  take  the  inverse  of  expected  error  vari-
ance  into  account  for  weights  of  different  data  sources.
Ebert  (2001)  reported  that  the  weighted  average  QPF
produced  by  the  inverse  of  expected  error  variance  per-
formed  almost  the  same  as  the  ensemble  mean  of  other
methods. Additionally, the inverse of expected error vari-
ance  might  yield  unreasonable  weights  of  ensemble
members  because  the  precipitation  is  discontinuous  in
spatial  distribution  although  the  inverse  of  expected  er-
ror  variance  has  been  extensively  applied  to  combine
precipitation  from  different  observations  and/or  model
outputs.

In this study, the inverse of expected error variance is
employed  to  produce  different  weights  for  temperature
prediction  by  different  ensemble  members.  The  weights
of  ensemble  members  are  derived  based  on  the  differ-
ences  between  model  outputs  and  observations.  Mem-
bers that have large biases in the ensemble will be down-
weighted, while ensemble members with low biases will
be  up-weighted.  The  specific  procedure  for  determining
the  weights  is  described  in  detail  in  Subsection  2.2.  It
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should be noted that the weight of each ensemble mem-
ber varies spatially—it is not a constant in all grids and at
all levels.

Following  this  introduction,  Section  2  introduces  the
technical  details  of  the  proposed  method.  The  results  of
applying the method to an ensemble mean for temperat-
ure  prediction  is  presented  in  Section  3.  Finally,  a  sum-
mary and discussion are given in Section 4.

2.    Data and method

2.1    Data

The  current  paper  exploits  the  TIGGE  control  run
datasets  of  the  THORPEX  program,  provided  by  the
ECWMF,  for  the  summers  of  2012  and  2013,  and  the
NCEP final operational global analysis (FNL) data from
global data assimilation system (GDAS). The models in-
cluded  in  this  study  are  those  of  the  CMA (China  Met-
eorological  Administration),  ECMWF  (Europe),  NCEP
(USA), CPTEC (Centro de Previsão de Tempo e Estudos
Climáticos,  Brazil),  KMA  (Korean  Meteorological  Ad-
ministration),  CMC  and  UKMO  (UK  Met  Office).  The
TIGGE data,  temperature  at  both  2  m above the  ground
and  standard  pressure  levels  (1000,  925,  850,  700,  500,
300,  250,  200  hPa),  over  a  96-h  prediction  starting  at
0000 UTC, are collected from the ECMWF server. All of
the  data  are  interpolated  into  1°  ×  1°  grids,  which  have
the  same  horizontal  grid  spacing  as  the  FNL  data.  The
FNL data are taken as the truth to determine the perform-
ance  of  the  TIGGE datasets.  It  should  be  noted  that  the
model data of BoM (Bureau of Meteorology, Australia),
JMA (Japan Meteorological Agency, Japan), and Météo-
France  (France)  are  not  employed  due  to  their  large
amounts  of  missing  data.  For  further  details  of  the
TIGGE  program  and  data,  please  see  Bougeault  et  al.
(2010) and Froude (2011). TIGGE data have been widely
used to investigate precipitation forecasting (e.g, Zhao et
al.,  2010;  Wang  and  Zhi,  2015),  temperature  prediction
(e.g,  Lin  et  al.,  2009;  Cui  and  Zhi,  2013;  Zhi  et  al.,
2013), and tropical cyclone tracks and intensity (e.g., He
et al., 2015; Zhang et al., 2015). It should be noted that,
although  the  TIGGE  forecasts  have  lead-times  of  up  to
two weeks, we focus our attention on the short-term (first
four days) predictions in this study.

2.2    Method

2.2.1    VWEM
Numerous  studies  have  reported  that  there  are  differ-

ences,  sometimes  even  considerable  differences,  among
outcomes derived from ensemble systems, due to the dif-
ferences in initial conditions or physics parameterization

schemes used in an ensemble. However, it is still hard to
judge  which  member  is  better  (less  bias).  Here,  the  al-
gorithm of Xie and Arkin (1996) is introduced to determ-
ine a different weight for each individual ensemble mem-
ber, and the principle of the algorithm is described as fol-
lows.  We  consider  a  set  of  point  prediction  errors  (∆i)
from a set  of  m  models,  and the  error  between observa-
tion and prediction at any given time and location is then
expressed as
¢i (x ; y; z; t)=X (x ; y; z; t)¡L i (x ; y; z; t) ; i2 [1;m]; (1) 

¾2
i

where X is observations, and Li is predictions from the ith
model output of an ensemble. Based on a series of errors
from  a  set  of  n  history  files  of  each  ensemble  member,
the  “variance  estimate”   of  the  predictions  can  be
achieved via

¾2
i (x ; y; z) =

nP
t=1
¢i (x ; y; z; t)¢i (x ; y; z; t)

n
:

(2) 

Assuming the ∆i  is random, unbiased, and normally dis-
tributed,  and  the  errors  from  different  models  are  inde-
pendent, the weight (pi) of the ensemble member i is then
defined as

pi (x ; y; z) =
¾2

0
¾2

i (x ; y; z)
: (3) 

¾2
0

¾2
i ¾2

0

Here,  is a unit “weight variance”, which can be of any
value, regardless of the value of . The value of  = 1
is chosen here.

X̂
The best estimate for prediction Li at (t + 1) is defined

as , and the adjusted amount Vi is given by

Vi (x ; y; z; t+1)= X̂ (x ; y; z; t+1)¡L i (x ; y; z; t+1) ;
i 2 [1;m] :

(4) 

In matrix form, Eq. (4) can be written as

m£1
=

m£1
^

m£1
¡

m£1
; (5) 

m£1
=[V1;V2; : : : ;Vm ]

T

m£1
=[1; 1; : : : ; 1]T

m£1
= [L 1; L 2; : : : ; L m ]

T

where  ,  ,  and

.
^In order to solve , the task is to minimize the VTPV

according  to  the  principle  of  the  least-squares  method.
This then gives

X̂ (x ; y; z; t + 1) =
¡ T ¢¡1 T

=

mP
i=1

pi (x ; y; z) L i (x ; y; z; t + 1)
mP

i=1
pi (x ; y; z)

:
(6) 

Here,
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=

2664
p1 0 : : : 0
0 p2 : : : 0
:::

:::
:::

0 0 : : : pm

3775 ;
X̂

X̂

is the diagonal matrix of weights. The best estimate  in
Eq. (6) is closely linked to the weights of ensemble mem-
bers, and  is named as the VWEM in this work.
2.2.2    SEWEM

The  SEWEM  at  (t  +  1)  is  calculated  with  the  same
weights of all members, which is simply given by

SEWEM (x ; y; z; t + 1) =
1
m

mX
i=1

L i (x ; y; z; t + 1) ;

i 2 [1;m] :
(7) 

2.2.3    Absolute error and root-mean square error
Absolute  error  (AE)  and  root-mean-square  error

(RMSE) are widely utilized to judge model performance.
The AE is given by

AE = jL i (x ; y; z)¡ X (x ; y; z)j ; (8) 

and the RMSE can be expressed as

RMSE =

24 1
N

NX
j=1
(L j (x; y; z)¡ X (x ; y; z))2

35
1
2

: (9) 

Here, N is the total grid number.
The accuracy of  an  ensemble  mean will  be  judged in

terms of the RMSE via the VWEM and SEWEM meth-
ods. We use RMSEn and RMSEo to represent the RMSE
for the VWEM and SEWEM, respectively. The fractional
percentage improvement (I) of the RMSE can be defined
as follows:

I =
RMSEo¡ RMSEn

RMSEo
£ 100%: (10) 

The  VWEM  method  is  applied  to  the  TIGGE  data
within a domain over the Northern Hemisphere for valid-
ation, as illustrated in Fig. 1. The datasets at both surface

level  and standard  pressure  levels  in  summer  (1  June  to
31  August)  of  2012  are  utilized  to  calculate  the  weight
(PLi)  of  each  ensemble  member  according  to  Eq.  (3).
Then, the ensemble means for summer (1 June to 31 Au-
gust) of 2013 are given based on the Eq. (6), in which the
PLi  values  are  calculated  from  Eq.  (3),  with  the  TIGGE
and  FNL  data,  during  the  period  of  summer  2012.  Fi-
nally, the results from the VWEM method are compared
to those calculated by the SEWEM method.

3.    Results

3.1    Performance of ensemble members

The  distributions  of  individual  ensemble  member
weights for the 24-h temperature forecast at the 2-m level
are  shown  in  Fig.  2.  According  to  the  definition  of  the
weight, the larger the value of the weight is, the better the
ensemble member performs. As can be seen from Fig. 2,
the  CMA,  UKMO,  KMA,  and  NCEP  models  perform
well over the Pacific Ocean, eastern Atlantic Ocean, Ara-
bian  Sea,  Bay  of  Bengal,  and  South  China  Sea  regions.
The CPTEC model has a small weight value, indicating a
large bias of the CPTEC model prediction. Figure 2 also
demonstrates  that  the  models  perform better  over  ocean
than over land. It should be noted that taking the NCEP-
FNL data  as  the truth may influence the weight  of  indi-
vidual  ensemble  members.  For  example,  the  ECMWF
model  has  a  lower  weight  compared  with  that  of  the
NCEP forecasts. However, it has been reported in previ-
ous  studies  that  the  ECMWF’s  forecasts  are  normally
better  than those of  other  models  (e.g.,  Cui  et  al.,  2000;
Wang and Zeng, 2012; Magnusson et al., 2014). The dis-
tributions of the weights at other predictive hours, that is,
48, 72, and 96 h (figure omitted), are similar to those for
24 h.

The weight  distribution of  individual  ensemble  mem-
bers  for  the  24-h  temperature  prediction  at  500  hPa  are
shown in Fig. 3.  The UKMO, KMA, and NCEP models
show good results over the Pacific Ocean and continental

 
Fig. 1.   Geographical coverage of the validation domain. The gray shaded areas represent land, and the Tibetan Plateau and its surrounding areas
(20.0°–55.0°N, 75.0°–120.0°E) are indicated by the dashed box.
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North  America.  The  ECMWF  and  CMA  models  have
good prediction over South China. The UKMO and CMC
models  provide  a  large  weight  contribution  in  Europe.
Comparing the weights among models finds that all mod-
els appear to produce better  prediction in Europe,  North
America,  and the Pacific  regions;  however,  they are un-
able to provide good results over the Tibetan Plateau and
in the areas north of 50°N. Similar to the weight distribu-
tion for 2-m temperature, the models show better predic-
tion over ocean than over land. The weight distributions
at other prediction lead-times (e.g., 48, 72, and 96 h; fig-
ure omitted), are similar to those at 24 h.

3.2    Forecast biases

3.2.1    Temperature at 2 m
Figure 4 shows the averaged AE of 2-m temperature at

the prediction lead-time of 24 h, from both the SEWEM
and VWEM methods. As can be seen, there is a smaller
AE  for  the  ensemble  mean  calculated  by  the  VWEM
method,  as  compared  with  that  calculated  by  the
SEWEM method. Generally speaking, the VWEM method
reduces the AE significantly, especially over the Tibetan
Plateau and its surrounding areas. Both the SEWEM and
VWEM  method  show  small  AE  over  most  of  Europe,
western  North  America,  northern  Pacific,  and  northern

 
Fig. 2.   Weight distributions of individual ensemble members for the 24-h temperature prediction at 2 m above the ground. The weights are cal-
culated from the TIGGE data, with NCEP-FNL as the truth, during the period from 1 June to 31 August 2012.

 
Fig. 3.   As in Fig. 2, but for 500 hPa.
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Atlantic.  Forecast  biases are  particularly noticeable over
North  China,  west  coast  of  Mexico,  and  Greenland.
Again, the results are similar to those at other prediction
lead-times, that is, 48, 72, and 96 h (figure omitted).

Figure  5  shows  the  differences  in  the  averaged  AE
between  the  SEWEM  and  VWEM  methods  (SEWEM
minus  VWEM)  for  2-m  temperature  at  the  prediction
lead-times  of  24,  48,  72,  and  96  h.  Positive  values  are
universally apparent, except in a few areas, which indic-
ates  that  the  VWEM  method  offers  a  significant  im-
provement in forecast  accuracy over  most  of  the chosen
domain  (Fig  .1).  In  particular,  the  improvement  is  very
noticeable  over  the  Tibetan  Plateau  and  its  surrounding
areas. However, the VWEM method brings a negative ef-
fect  on  2-m  temperature  prediction  over  the  Sahara
Desert and eastern Baikal Lake regions. Thus, further at-
tention should be paid to the VWEM method over those
regions  in  the  future.  As  mentioned  above,  the  models
perform  well  over  the  oceans.  Consequently,  the  im-
provement is greater over land than over ocean. It should
be  noted,  however,  that  there  is  still  improvement  over
ocean areas. Finally, as can be seen, there is a slight dif-
ference  among  the  improvement  level  at  different  lead-
times.

The  SEWEM  method  has  averaged  RMSEs  of  2.5,
2.5, 2.6, and 2.7°C at the lead-times of 24, 48, 72, and 96
h, respectively (Fig.  6).  Meanwhile,  the VWEM method
has  lower  averaged  RMSEs  of  2.1,  2.2,  2.2,  and  2.3°C,
respectively.  Although  the  actual  RMSE  values  are  still
very large, the improvement is noticeable. The improve-
ment  percentages  of  the  RMSE  are  15.5%,  14.3%,
13.3%, and 12.1% at the lead-times of 24, 48, 72, and 96 h,
respectively.  It  is  apparent  that  the  improvement  is  ap-

proximately  0.4°C  at  all  lead-times,  indicating  that  the
absolute  improvement  is  almost  constant  with  an  in-
crease in the lead-time. It should be noted, however, that
the improvement percentage of RMSE decreases with an
increase  in  lead-time,  due  to  the  increase  in  absolute
RMSE.

The  above  results  indicate  a  significant  improvement
over  the  Tibetan  Plateau  and  its  surrounding  areas
(dashed box in Fig. 1). Next, we provide a detailed ana-
lysis  of  the  RMSE over  the  Tibetan Plateau and its  sur-
rounding  areas  (Fig.  7).  According  to  the  statistical  res-
ults, the improvement percentage of the RMSE is almost
25.0%,  and the  absolute  improvement  is  about  1.0°C.  It
should be noted, however,  that the models have a larger
RMSE over the Tibetan Plateau and its surrounding areas
than  over  the  other  areas  in  the  Northern  Hemisphere.
This  is  due  to  the  fact  that  the  vast  and  complex  topo-
graphy of the Tibetan Plateau has a significant influence
in numerical model simulations, as reported in numerous
studies  (e.g.,  Duan  et  al.,  2012;  Liu  and  Dong,  2013;
Chen and Bordoni, 2014; Chen et al., 2014).
3.2.2    Temperature at pressure levels

Figure 8 shows the averaged AE for the 24-h temper-
ature forecast at different pressure levels (1000, 925, 850,
700,  500,  300,  250,  and 200 hPa).  Generally,  the AE of
VWEM  is  far  less  than  that  of  SEWEM.  This  indicates
that  the  VWEM method  provides  better  results  than  the
SEWEM method. As for spatial distribution, large AE is
apparent over the regions to the north of 30°N, while the
ensemble mean shows a small AE over tropical regions,
especially  at  300  hPa  and  upper  levels.  Comparing  the
AE at different forecast levels, it can be seen that the AE
is smallest at 500 hPa and largest at 1000 hPa. This sug-

 
Fig. 4.   Averaged AE (absolute error) of the 24-h temperature forecast at 2 m above ground. (a) Simple equally weighted ensemble mean method
and (b) variable weighted ensemble mean method.

JUNE 2017 Sun, X. G., J. F. Yin, and Y. Zhao 507



gests that the TIGGE ensemble predictions are more ac-
curate  in  the  middle  troposphere  than  in  the  lower  and

upper troposphere. This in turn suggests that land–ocean
surface  processes  have a  strong influence on model  res-

 
Fig.  5.    Difference  in  averaged  absolute  error  between  the  simple  equally  weighted  ensemble  mean  method  and  variable  weighted  ensemble
mean method for 2-m temperature, at prediction lead-times of (a) 24, (b) 48, (c) 72, and (d) 96 h.

 
Fig. 6.   The (a) averaged root-mean-square error (RMSE) of ensemble means over the Northern Hemisphere, using the simple equally weighted
ensemble mean method (grid-patterned bars) and variable weighted ensemble mean method (diagonal striped bars), for 2-m temperature, at pre-
diction lead-times of 24, 48, 72, and 96 h, and (b) the corresponding improvement percentages of the RMSE.
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Fig. 7.   As in Fig. 6, but for the Tibetan Plateau and its surrounding areas indicated by the dashed box in Fig. 1.

 
Fig. 8.   Averaged absolute error at various pressure levels ranging from 200 to 1000 hPa (indicated in the lower-right corner of each panel), at
the prediction lead-time of 24 h, by using the simple equally weighted ensemble mean method (left-hand panels) and the variable weighted en-
semble mean method (right-hand panels). White-colored areas represent the height of terrain beyond that of the pressure level.
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ults. It should be noted that the patterns of averaged AE
for the lead-times of 48 and 72 h are similar to that of 24
h, except for an increase in AE.

The distributions of averaged AE for the 96-h temper-
ature  forecast  at  different  pressure  levels  are  shown  in
Fig. 9. Similar to the 24-h forecast (Fig. 8), it is clear that
the  AE  of  VWEM  is  less  than  that  of  SEWEM.  It  can
also  be  concluded  that  the  VWEM  method  provides  a
better result than that of the SEWEM method for the 96-
h  temperature  forecast.  However,  the  averaged  AE  for
the  96-h  temperature  forecast  is  larger  than  that  of  the
24-h forecast.

The  RMSEs  of  ensemble  mean  for  temperature  fore-
cast  at  different  pressure  levels  and  at  lead-times  of  24,
48, 72, and 96 h, are shown in Fig. 10, separately calcu-
lated by using the SEWEM and VWEM methods. There
are smaller RMSEs for the ensemble mean calculated by

the VWEM method,  as compared to those calculated by
the  SEWEM  method.  This  indicates  that  the  VWEM
method  improves  the  forecasting  accuracy  significantly.
The improvements at lower levels are superior to those at
upper  levels.  One of  the  reasons  for  this  is  that  the  pre-
diction  accuracy  at  upper  levels  is  higher  than  that  at
lower  levels.  It  should  be  emphasized  that  the  VWEM
method reduces the AE by almost the same amount with
an increase in lead-time at  the same level.  For example,
at 850 hPa, the RMSE is reduced by 0.06, 0.05, 0.05, and
0.05°C at the lead-time of 24, 48, 72, and 96 h, respect-
ively. However, the RMSE increases with an increase in
prediction  lead-time.  Consequently,  the  improvement
percentages show a decreasing tendency with increasing
lead-time.  In  summary,  it  can  be  concluded  that  the
VWEM  method  provides  a  clear  improvement  in  the
forecasting accuracy over the Northern Hemisphere.

 
Fig. 9.   As in Fig. 8, but for the 96-h forecast.
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4.    Conclusions and discussion

This  study utilizes  the  inverse  of  expected  error  vari-
ance  to  determine  the  weight  of  individual  ensemble
members.  To  validate  the  method,  the  weights  for  en-
semble  members  are  determined  based  on  TIGGE  fore-
cast  data  in  the  summer  (1  June  to  31  August)  of  2012
over the Northern Hemisphere,with the NCEP-FNL data
taken as the truth. Based on the weight of each ensemble
member,  the ensemble mean (i.e.,  the VWEM) is  calcu-
lated for the summer (1 June to 31 August) of 2013, and
the result is compared to that from the SEWEM method.
The results show that the VWEM method has a lower AE
and RMSE and has improved the prediction accuracy of
the  ensemble  mean  significantly.  More  specific  conclu-
sions are as follows.

(1)  The  VWEM method improves  the  forecasting  ac-
curacy considerably. The improvement percentages of 2-m

temperature  RMSEs  are  15.5%,  14.3%,  13.3%,  and
12.1% at the prediction lead-times of 24, 48, 72, and 96
h,  respectively,  over  the  Northern  Hemisphere,  among
which  the  improvement  percentage  (>  24%)  over  the
Tibetan  Plateau  and  its  surrounding  areas  is  particularly
notable.

(2)  Compared  to  the  SEWEM  method,  the  VWEM
method  reduces  the  RMSE  for  2-m  temperature  by  al-
most 0.4°C at all prediction lead-times over the Northern
Hemisphere. There is considerable improvement over the
Tibetan  Plateau  and  its  surrounding  areas.  The  absolute
improvement is about 1.0°C.

(3)  Smaller  RMSEs  of  the  ensemble  mean  are  calcu-
lated  by  the  VWEM  method  at  the  different  pressure
levels,  as  compared  with  those  calculated  by  the
SEWEM  method.  The  VWEM  method  reduces  the
RMSE  by  almost  the  same  at  the  same  pressure  level
with  increasing  forecasting  lead-time,  though  the  im-

 
Fig. 10.   As in Fig. 6, but for the pressure levels at 1000, 925, 850, 700, 500, 300, 250, and 200 hPa, over the Northern Hemisphere.
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provement percentages are different.
Although in  this  study the  VWEM method is  applied

only  to  temperature  at  prediction  lead-times  of  24,  48,
72, and 96 h over the Northern Hemisphere, the method
can  be,  in  principle,  employed  for  any  meteorological
variable and at longer lead-times. It should also be poin-
ted  out  that,  for  convenience,  only  the  spatial  variation
weights are used in this study. That is, the weights do not
update with time. In other words, the weight is the same
at  all  times  during  the  summer  of  2013  in  the  VWEM
method.  Another  weakness  is  that  the  NCEP-FNL  data
are  taken  as  the  truth  to  verify  the  model  simulations.
This may have an influence on the weights. For example,
the NCEP forecasts have a large weight, as compared to
the other members. As a result,  the ensemble mean may
be impacted by taking the NCEP-FNL data as  the truth.
In view of this, the next step in this line of research is to
take into  account  a  rolling updated weight,  and use  sur-
face and sounding observations as the truth.  In addition,
more meteorological  variables (e.g.,  geopotential  height,
relative humidity, wind speed and direction) will be em-
ployed and validated in future work. Besides, the VWEM
method  will  be  applied  to  longer  prediction  lead-times,
such as 10 days or more. Moreover, pre-processing of bi-
as correction for each member will be performed (Tao et
al.,  2014)  and  tests  will  be  launched  without  some  en-
semble  members  with  low weights,  which may improve
the ensemble mean (Zhi et al., 2012). It is hoped that this
approach can be applied in operational ensemble predic-
tion  systems,  and  provide  guidance  to  weather  and  cli-
mate  prediction.  It  should  be  noted  that  much  work  has
already  been  accomplished  on  multi-model  weighting
and  analysis  (e.g.,  Raftery  et  al.,  2005;  Weigel  et  al.,
2008; Du and Zhou, 2011; Baran and Lerch, 2015),  and
thus  a  study  in  which  these  methods  are  compared  will
also be conducted in the near future.
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