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ABSTRACT

As root water uptake (RWU) is an important link in the water and heat exchange between plants and ambient air,
improving its parameterization is key to enhancing the performance of land surface model simulations. Although dif-
ferent types of RWU functions have been adopted in land surface models, there is no evidence as to which scheme
most applicable to maize farmland ecosystems. Based on the 2007–09 data collected at the farmland ecosystem field
station in Jinzhou, the RWU function in the Common Land Model (CoLM) was optimized with scheme options in
light of factors determining whether roots absorb water from a certain soil layer (Wx) and whether the baseline cumu-
lative root efficiency required for maximum plant transpiration (Wc) is reached. The sensibility of the parameters of
the optimization scheme was investigated, and then the effects of the optimized RWU function on water and heat flux
simulation were evaluated.  The results indicate that  the model simulation was not sensitive to Wx  but was signific-
antly  impacted  by  Wc.  With  the  original  model,  soil  humidity  was  somewhat  underestimated  for  precipitation-free
days; soil temperature was simulated with obvious interannual and seasonal differences and remarkable underestima-
tions for the maize late-growth stage; and sensible and latent heat fluxes were overestimated and underestimated, re-
spectively, for years with relatively less precipitation, and both were simulated with high accuracy for years with re-
latively more precipitation. The optimized RWU process resulted in a significant improvement of CoLM’s perform-
ance in simulating soil humidity, temperature, sensible heat, and latent heat, for dry years. In conclusion, the optim-
ized RWU scheme available  for  the  CoLM model  is  applicable  to  the  simulation of  water  and heat  flux for  maize
farmland ecosystems in arid areas.
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1.    Introduction

Plant  root  water  uptake  (RWU) is  an  important  com-
ponent  of  the  surface  water  cycle  (Feddes  et  al.,  2001),
partitioning  precipitation  among  evaporation,  transpira-
tion,  and  penetration,  and  playing  an  important  role  in
regulating  the  surface  energy  balance  through  its  close
link with the carbon cycle made possible by the coupling
with photosynthesis (Dickinson et al., 1998; Jobbágy and
Jackson, 2000). An in-depth study of RWU and its para-
meterization  will  promote  understanding  of  surface  hy-

drology  and  land  surface  processes,  and  facilitate  im-
provements  in  the  simulation  performance  of  land  sur-
face models and even climate models (Laio et al., 2006).
RWU  parameterization  schemes  relate  to  root  distribu-
tion  and  soil  water  availability.  The  former  determines
the  RWU  distribution  at  different  soil  depths  (Schenk
and  Jackson,  2002;  Lee  et  al.,  2005;  Zheng  and  Wang,
2007),  which,  though  important,  has  often  led  to  a  sim-
plification  or  even  negligence  of  the  root  distribution
function in models owing to a lack of available data due
to  whole-root  observation  difficulties  (Jackson  et  al.,
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1996;  Zeng,  2001;  Jing  et  al.,  2013).  The  latter  is  often
represented by the root water use efficiency function (Lai
and  Katul,  2000),  also  known  as  the  water  stress  func-
tion  (Li  et  al.,  2006),  which  has  been  continually  im-
proved upon as a result of the in-depth research conduc-
ted  by  a  number  of  scholars  (e.g.,  Saleska  et  al.,  2003;
Baker  et  al.,  2008;  Li  et  al.,  2012).  Most  existing  land
surface  process  models  contain  an  RWU  scheme  based
on  transpiration  weight,  which  partitions  transpiration
volume  in  the  soil  profile  by  a  certain  weight  factor  in
view of the RWU causal relationship. Since variables as-
sociated  with  the  weight  factors  are  important  paramet-
ers  for  the  soil–plant–atmosphere  continuum flow equa-
tion, such models are strongly empirical but nonetheless
widely used (Table 1). These models were built upon the
Molz and Romson (1970) and Feddes et al. (1976, 1978)
models,  emphasizing  the  linear  change  of  RWU  intens-
ity  with  the  soil  profile  proportional  to  the  transpiration
rate, root density, and soil water diffusivity, but ignoring
the  impact  of  soil  water  potential.  Luo et  al.  (2000)  im-
proved these linear models by introducing the soil water
potential  impact  function  represented  by  diffusivity.
Then, on the basis of these linear models, nonlinear mod-
els, such as the Molz (1981) and Chandra and Rai (1996)
models,  incorporated considerations of  the root  distribu-
tion function, potential transpiration, hydraulic conducti-
vity,  suction  of  roots  and  soil,  and  a  soil  water  suction
function model upon the termination of transpiration, and
were of better performance. Kang et al. (1992) and Li et
al. (2001) put forward an RWU model that took into ac-
count  the  crop  type,  potential  transpiration  rate,  soil
water availability, and root density in water stress condi-
tions,  and significantly raised the accuracy of soil  mois-
ture simulation. In addition, a nonlinear function coupled
with the potential and actual evapotranspiration in the de-
scription  of  the  root  water  use  efficiency  function  was
proposed by Lai and Katul (2000), and was able to simu-
late  the  dynamic  variation  of  soil  water  content  within
the  root  zone  well,  which  further  improved  the  RWU
function. Ju et al. (2006) improved the simulation of car-
bon,  water,  and  energy  fluxes  on  different  timescales  in
dry years in a boreal aspen forest by considering the in-
fluence of both root fraction and soil water availability in
different  soil  layers  on  stomatal  conductance.  He  et  al.
(2014) optimized the soil water stress factor for rain-free
days over a white pine forest ecosystem, and showed that
the  optimized  soil  water  stress  factor  was  largely  ex-
plained by soil water content in the summer.

Existing  mainstream  land  surface  process  models,
such  as  the  Common  Land  Model  (CoLM)  (Ji  and  Dai,
2010),  the  Community  Land  Model  version  3  (CLM3)

(Oleson  et  al.,  2004),  the  Community  Atmosphere  Bio-
sphere  Land  Exchange  (CABLE)  (Wang  et  al.,  2010),
and Simple  Biosphere  (SiB)  series  of  models  (Sellers  et
al., 1986; Baker et al., 2008), use only simple linear func-
tions to describe soil water availability, leading to an un-
derestimation  of  evapotranspiration  to  varying  degrees,
particularly  in  drought  conditions  (Saleska  et  al.,  2003;
Baker et al., 2008; Li et al., 2012). In light of the fact that
under  dynamic  RWU  circumstances  root  self-regulation
of water uptake enables the remaining roots to absorb ad-
equate  water  to  allow for  potential  transpiration,  even if
part  of  the  roots  are  under  water  stress,  Skaggs  et  al.
(2006) and Zheng and Wang (2007) brought models even
closer  to  the  actual  situation  by  introducing  such  para-
meters  as  the  overall  root  effectiveness  threshold,  RWU
threshold,  and  enhanced  water  use  efficiency  into  their
studies based on forest ecosystems, to improve the simu-
lation performance of the models. A comparison conduc-
ted by Jing et  al.  (2013) regarding the three RWU para-
meterization  schemes  proposed  respectively  by  Lai  and
Katul  (2000),  Li  et  al.  (2006),  and  Zheng  and  Wang
(2007), showed that the latter of the three schemes exhib-
ited  higher  simulation  accuracy  than  the  other  two  in  a
desert ecosystem. Currently, studies of RWU parameter-
ization  schemes  mainly  cover  forest  (Zheng  and  Wang,
2007),  desert  (Jing  et  al.,  2013),  and  wheat  (Li  et  al.,
2006)  underlying  surfaces,  and  the  conclusions  thus
reached  lack  universal  applicability  and  require  further
verifications against more land surface types. Among all
vegetation types, maize as an annual crop stands out for
its  significant  representativeness  in  land  surface  process
studies (Choi et al., 2010; Li et al., 2011) because of the dynamic
variation of canopy height, leaf area index (LAI), vegeta-
tion  coverage  (Fv),  and  root  structure  with  plant  growth
and development, which may trigger a series of physical
changes in radiation, water, and heat transfer (Cai et al.,
2015).  Up  to  now,  there  have  been  few  RWU  studies
based  on  maize  farmland  ecosystems,  suggesting  that
further studies are required as to whether the parameter-
ization  schemes  that  are  applicable  to  other  underlying
surfaces can generate the desired simulation results with
maize. The present study had three objectives:

(1)  To investigate  the  sensibility  of  parameters  in  the
RWU function proposed by Zheng and Wang (2007) and
to  determine  the  most  reasonable  parameters  for  maize
farmland ecosystems.

(2)  To  optimize  CoLM  with  the  RWU  schemes  of
Zheng and Wang (2007), and to assess the effects of such
optimization on the simulation results of maize farmland
water and heat flux processes, by comparing CoLM’s per-
formance before and after the RWU scheme optimization.
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Table 1.   Summary of relevant root water uptake (RWU) research
Study Vegetation type/location Experiment duration RWU function Key result
Molz and Remson
 (1970)

Sorghum Not mentioned Considered root depth and soil
 water diffusivity but not root
 efficiency function

Extraction term models were computationally
 and physically feasible and gave insight into
 the mechanics of the overall moisture
 extraction process

Feddes et al.
 (1976)

Crop field Not mentioned Considered the effect of soil
 water content on RWU, but
 not root distribution

Although the model did not predict the
 distribution of soil water content with depth
 particularly accurately, the cumulative effect
 over the entire depth was simulated well

Selim and
Iskandar (1978)

Not mentioned Not mentioned Considered soil hydraulic
 conductivity and effective
 root length density

The model can be used as a tool to predict the
 fate of nitrogen in land treatment systems;
 model sensitivity to changes in the rate of
 nitrification, ammonium ion exchange, and
 rate of plant uptake of nitrogen, was also
 described

Molz (1981) Not mentioned Not mentioned Considered soil pressure head,
 root distribution, and water
 potential of the root xylem

Not mentioned

Lai and Katul
 (2000)

Grass-covered
 forest/Durham, North
 Carolina, USA

22 May to 10 July
 1997

Proposed a root efficiency
 function

The proposed RWU model reproduced well
 measured time–depth soil moisture content
 dynamics within the root zone well; the
 RWU model captured preferential water
 uptake from the top layers well when water
 was freely available, and was able to
 permit high extraction rates from deeper
 layers despite limited rooting density in
 those layers

Luo et al. (2000) Winter wheat/Yucheng,
 China

24 April to 6 May
 1999

Molz-Remson model and Selim-
 Iskandar model were modified
 with the Feddes reduction
 function, and the Feddes model
 was modified with root length
 density

Modifications made to the Molz–Remson
 model and Iskandar model did not achieve
 any improvements to the model behavior,
 but those to the Feddes model achieved
 great success in lifting its prediction ability

Li et al. (2001) Wheat–fallow
 rotation/Saskatchewan,
 Canada

1967–84 Introduced the parameter λ =
 0.5 as the exponent of root
 fraction

The modified RWU model accounted for the
 distribution of water stress in the soil profile,
 and simulated soil water contents accurately,
 particularly at lower depths

Li et al. (2006) Spring wheat/Swift
 Current, Saskatche-
 wan; soybean/Simcoe,
 Ontario; grass/Ottawa,
 Canada

1967–84 Soil water pressure head and soil
 water content were introduced
 into the root efficiency function

The new module was particularly useful when
 integrated into large-scale regional and
 global modeling efforts

Zheng and Wang
 (2007)

Forest/Amazonia 1992–93 Dynamic RWU was considered
 by using a threshold value to
 enable potential transpiration
 when part of the root system
 experienced water stress, and
 defined a water uptake flag
 determining whether roots
 absorb water from a certain
 soil layer

The latent heat flux simulation was closer to
 observations with the impact of dynamic
 RWU

Li et al. (2012) Temperate
 forest/southeastern
 Australia; subtropical
 forest/South China;
 tropical forest/Brazil

2003–06; 2003–05;
2001–03

The alternative RWU function
 proposed by Lai and Katul
 (2000) was used to optimize
 the default version of CABLE
 (Wang et al., 2010)

The alternative function for RWU allowed
 roots in deep soil to take up water more
 efficiently per unit root mass

Jing et al. (2013) Desert shrub Tamarix
 and irrigated
 cropland/central Asia

2007–09 RWU functions proposed by
 Lai and Katul (2000), Li et al.
 (2006), and Zheng and Wang
 (2007)

Replacing the default RWU function with that
 of Zheng and Wang (2007) and considering
 the observed vertical root distribution in
 CLM led to a significant improvement in the
 model’s performance.

Li et al. (2013) Desert shrub Tamarix
 and irrigated
 cropland/central Asia

2007–09 Described RWU efficiency as
 an exponential function of soil
 water potential matrix with
 a power m in CLM

A modified empirical RWU function
 improved CLM’s performance for both
 latent and sensible heat fluxes
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(3)  To  investigate  the  applicability  of  the  optimized
CoLM to the ecosystem studied with measured data from
the  farmland  ecosystem  field  observation  station  in  Jin-
zhou.

2.    Data and methods

2.1    Research site

The farmland ecosystem field  station  in  Jinzhou,  loc-
ated  in  the  Northeast  China  maize  belt  with  typical
brown  soil  (loam),  has  a  representative  temperate  mon-
soon climate with an annual mean temperature of 282.65
K and annual  rainfall  of  565.9 mm, calculated based on
corresponding data from 1971 to 2000. The dominant ve-
getation  is  rain-fed  maize,  without  any  irrigation  and
with  a  growing  period  extending  from  May  to  Septem-
ber. Built within the station are a 3.5-m high eddy covari-
ance  observation  system  equipped  with  a  three-dimen-
sional  sonic  anemometer  and  a  fast  response  infrared
CO2/H2O  analyzer  for  observations  of  water,  heat,  and
CO2 flux; and a 5-m high gradient meteorological obser-
vation  system  capable  of  temperature,  humidity,  and
wind speed observations at 3.5- and 5-m heights, photosyn-
thetically  active  radiation  observations  at  4.5-m  height,
net radiation observations at 3.5-m height, wind observa-
tions  at  5-m  height,  soil  temperature  monitoring  at  soil
depths of 10, 20, 30, 40, 50, and 80 cm, and surface heat
fluxes at a soil depth of 8 cm (Li et al., 2007; Cai et al.,
2012).

2.2    Research data

Land surface model–driven data included specific hu-
midity,  wind  speed,  air  temperature,  precipitation,  solar
radiation  (Rs),  downward  longwave  radiation  (Rl),  baro-
metric  pressure,  and  LAI  data  (Fig.  1)  from  2007  to
2009.  The specific humidity data exhibited obvious sea-
sonal variations: relatively low in winter (below 0.005 kg
kg–1) and high in summer (maximum value of about 0.02
kg kg–1). Daily maximum wind speed fluctuated between
3 and 15 m s–1, being high in winter, when the maximum
value  occurred,  and  relatively  low  in  summer.  There
were  marked  year-to-year  variations  in  daily  average
temperature, with a low of 240 K in winter and a high of
310  K  in  summer.  Precipitation  mainly  concentrated  in
summer,  with  large  interannual  differences:  growing-
season precipitation was 454, 563, and 295 mm in 2007,
2008, and 2009, respectively, with remarkably less rain-
fall  in  2009  than  in  the  other  two  years.  Rl  fluctuated
between  170  and  460  W  m–2  throughout  the  year,  as
compared with a growing-season Rs that ranged from 800

to  1000  W m–2  and  a  winter  Rs  value  of  around  400  W
m–2,  both  demonstrating  obvious  seasonal  variations  but
small interannual differences.

LAI  and  Fv,  as  important  canopy  parameters,  were
poorly simulated with the scheme from CoLM (Cai et al.,
2012),  which  will  play  an  important  role  in  decreasing
the simulation performance of model. Therefore, we ob-
tained  day-to-day  LAI  by  simulation  based  on  the  ob-
served  data.  More  specifically,  LAI  was  obtained  based
on  the  measured  data  at  different  maize  growth  stages
and daily mean temperature data via the effective cumu-
lative  temperature  approach  (Cai  et  al.,  2011);  and  in
light  of  the  relationship  between  LAI  and  fractional  Fv
(Cai  et  al.,  2014),  the  day-to-day  LAI  values  were  then
applied in calculations to obtain the day-to-day Fv values
(Fig. 2). As can be seen from Fig. 2, LAI and Fv experi-
enced  the  same  seasonal  variation;  that  is,  in  terms  of
plant  growth,  they both reached peaks of  around 3.7  m2

m–2  and 1 for  2007 and 2008,  and 4.8 m2  m–2  and 1 for
2009,  respectively,  in  the  tasseling  stage,  and  then  de-
creased gradually until the end of the growth period.

Model verification data included the 5- and 10-cm soil

 
Fig. 1.   Dynamic change features of model-driven data: (a) specific
humidity (q; kg kg–1); (b) wind speed (wind; m s–1); (c) air temperat-
ure (Ta; mm); (d) precipitation (rain; mm); (e) longwave radiation (Rl;
W m–2); and (f) shortwave radiation (Rs; W m–2).
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temperature, the 30-min average sensible heat and latent
heat  fluxes  under  such  quality  controls  as  high-
frequency  attenuation  correction  and  hydrothermal  cor-
rection,  and  0–50-cm  soil  humidity  measured  with  the
soil  auger  method  every  five  days.  For  the  great  many
latent heat flux data absent for the 2009 growing season,
reference  tables  were  used  as  a  supplement  (Gu  et  al.,
2005).  Considering  nighttime  data  were  inferior  to  day-
time data in quality, for accuracy, this study adopted data
during  the  period  0630–1800 Beijing  Time only,  except
for  the  sensitivity  analysis  where  whole-day  data  were
required.

2.3    Model description

The land surface model used in this study was CoLM
(Ji and Dai, 2010), finely tuned to the ecological and hy-
drological  processes  for  a  proper  description  of  soil–
vegetation–snow–atmosphere energy and water transmis-
sion,  covering  a  layer  of  photosynthetic  vegetation,  10
uneven vertical soil layers reaching to a depth of 3.43 m
underground, and 5 snow layers. The two-big-leaf model
was  used  to  calculate  the  leaf  surface  temperature  and
leaf  stomatal  resistance;  two-stream  approximation  was
used in the solution of the singular points created by ve-
getation surface albedo, and the radiation calculation was
differentiated  between  the  sunny  and  shady  vegetation
sides;  the  new  iterative  algorithm  was  used  to  calculate
the leaf surface temperature; convective precipitation and
large-scale precipitation were dealt with separately in the
calculation  of  foliar  interception  and  retention  values;
turbulent transport under the canopy was taken into con-
sideration;  and  soil  bedrock  thickness,  surface  runoff,
subsurface  runoff,  the  impact  of  root  distribution,  and
water  pressure  on  water  uptake  were  considered  for  the
water and heat conduction processes of the soil. All model
parameters and variables are listed in Table 2.

2.4    Default RWU parameterization scheme for the model

Water movement in soil is calculated with Darcy’s law
in CoLM, and its equation can be written as

 
@µi

@t
= ¡ @

@zi

µ
K i ¡ D i

@µi

@zi

¶
¡ E x; i; (1)

where θi  represents the volumetric water content of soil,
Ki  is  the hydraulic conductivity,  Di  is  the soil  water dif-
fusivity, zi is soil depth, t is time, and Ex, i is the RWU:

E x; i = T´i: (2)

´iHere, T stands for plant transpiration and  is the con-
tribution  of  each  water-uptake  soil  layer  to  the  total
amount of transpiration.

T = W t £ Tpot: (3)
Tpot  stands  for  potential  plant  transpiration  and  Wt  is

the accumulated root efficiency factor.

W t =

nX
i=1

f root; i f sw; i; (4)

´i =
f root; i f sw; i

W t
; (5)

where froot, i is the proportional factor of the ith root layer,
whose equation can be written as

f root ; i =
1

1+
µ

z
d50

¶c ;
(6)

where  c  is  a  dimensionless  root  profile  configuration
parameter,

c =
¡1:27875

(lg d95¡ lg d50)
; (7)

in  which  d50  and  d95  represent  soil  depths  with  froot,  i  =
50%  and  95%,  respectively.  Cai  et  al.  (2015)  proposed
that  the  changes  of  these  two  parameters  among  differ-
ent  growth stages of  maize can barely affect  model  per-
formance. As a result, they are set with the original model
values; that is, 15.7 and 80.8 cm, respectively.

The parameter fsw, i represents the soil water availabil-
ity of the ith soil layer, which is linear to the soil matric
potential in CoLM:

f sw; i =
Ámax ¡ Ái

Ámax + Ásat
; (8)

 
Fig. 2.   Dynamics of leaf area index (LAI) (represented by solid points) and fractional vegetation cover (Fv) (represented by hollow points) dur-
ing growth seasons of 2007–09.
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where  φmax,  φsat,  and  φi  stand  for  soil  water  potential  at
the  time  of  wilting,  actual  and  saturated  soil  water  con-
tent, respectively.

2.5    Methods for optimization of RWU function
Zheng  and  Wang  (2007)  proposed  an  empirical  non-

linear RWU scheme, in which two threshold parameters
are  adopted  to  reflect  the  dynamic  root  water  use  effi-
ciency. The default method of CoLM was adopted to de-
termine  the  root  efficiency  of  each  soil  layer,  while  the
accumulated root efficiency Wt was redefined as

W t ; adjusted =

½
1:0; W t > W c

W t=W c; W t < W c
; (9)

where Wc is a tunable threshold value between 0 and 1.0.
This  equation  indicates  that  when  Wt  is  higher  than  or

equal to Wc,  the plants could be enabled to reach poten-
tial transpiration even if part of the root system suffered
water  stress.  Tpot  ×  Wt,  adjusted  is  used  to  determine  the
total RWU. In order to determine the water uptake alloca-
tion, a water uptake flag α(i) is defined and expressed in
the following equation:

®(i) =

(
0; f sw; i < min(f sw;max;W x)

1:0; f sw; i > min(f sw;max;W x)
; (10)

where fsw, max stands for the water availability of the most
humid soil layer, while Wx stands for the water availabil-
ity  threshold  parameter.  Equation  (10)  indicates  that
when the water availability of a certain soil  layer is less
than the Wx threshold value, no water will be absorbed by
the  roots  unless  it  is  the  wettest  layer  of  the  whole  root

Table 2.   Parameters and variables for models in this paper
Symbol Description Value Unit
LAI Leaf area index m2 m−2

Fv Vegetation fraction 0–1
θi Volumetric of soil water content m3 m−3

zi Soil depth 0–3.5 m
Ex, i Water extraction m s−1

Ki Hydraulic conductivity m s−1

Di Soil moisture diffusivity m2 s−1

T Actual transpiration m s−1

Wt Accumulated root resistance factor 0–1
Tpot Potential transpiration m s−1

ηi Soil water availability within layer i 0–1
froot, i Root fraction within soil layer i 0–1
fsw, i Soil water availability 0–1
fsw, max Soil water availability factor in the wettest layer of the root zone 0–1
c A dimensionless shape-parameter
i Soil layer 1–10
d50 Depth above which 50% of all roots were located 15.7 cm
d95 Depth above which 95% of all roots were located 80.8 cm
φmax Soil water potential at wilting point within soil layer i −1.5 × 105 mm
φsat Saturated soil water potential mm
φi Soil water potential mm
Wt, adjusted Redefined Wt 0–1
Wc A threshold determining whether the baseline cumulative root efficiency required for maximum plant

 transpiration (Wc) is reached
Wx A threshold parameter determining whether roots absorb water from a certain soil layer
k A tunable parameter used in the optimized RWU scheme 4
α(i) A variable to determine the water uptake allocation 0–1
EBR Energy balance closure rate 0–1
R Correlation coefficient 0–1
b0 Intercept of linear regression
bs Slope of linear regression
o Observation
p Simulation
RMSE Root-mean-square error
NS Nash-Sutcliffe efficiency coefficient −∞–1
t Time
n Data number
Rn Net radiation W m−2

G Soil heat flux W m−2

LE Latent heat flux W m−2

H Sensible heat flux W m−2
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zone. In Eq. (5) in the original model, ηi is redefined as

´i =
f root(i) f k

sw; i®(i)
nP

j=1
f root(j ) f k

sw; ia(i)
;

(11)

where  the  tunable  parameter  k  is  equal  to  or  larger  than
1.0 and, when larger than 1.0, k reflects the nonlinear re-
lationship  between  water  availability  and  water  uptake.
Setting  k  to  a  value  larger  than  1  ensures  that  a  larger
proportion of water is absorbed by roots in relatively wet
soil  layers.  As  Zheng  and  Wang  (2007)  set  the  reason-
able k value at 4, arguing that increasing the k value had
little  impact  on  the  model  simulation  results,  the  value
was also set at 4 in this study.

2.6    Sensitivity analysis

At  the  time,  they  put  forward  the  RWU  function,
Zheng and Wang (2007), by comparing two groups of Wc
and Wx parameters, reported that model simulation accur-
acy was the highest when Wc = 0.4 and Wx = 0.6. Given
that  no  sensitivity  analysis  had  been  conducted  on  the
two  parameters,  this  study  made  equal  interval  adjust-
ments to the two parameters based on the parameter set-
tings, as is shown in Table 3. Simulations corresponding
to different settings were defined as M1–M6; the simula-
tion with the original model was M0. Considering the ab-
sence  of  measured  latent  heat  data  for  2009,  whole-day
data for the 2007 and 2008 growing seasons were adop-
ted  for  comparison  of  accuracy  in  the  sensitivity  ana-
lyses.

2.7    Statistical analysis methods

Flux  data  obtained  from  the  research  site  were  as-
sessed for their energy balance closure situation by using
the energy balance closure rate with the following equa-
tion:

EBR =

nP
i=1
(LE + H)

nP
i=1
(R n ¡ G)

: (12)

To provide a more graphic assessment of the consist-
ency between the simulated and measured values, the lin-
ear  correlation  coefficient  (R),  root-mean-square  error
(RMSE),  and  Nash–Sutcliffe  (NS)  coefficient  (Gordon,
2003; Moriasi et al., 2007) were used as judgment indica-
tors.  The  NS  coefficient  was  used  to  assess  model  per-
formance,  ranging  from  minus  infinity  to  1:  when  the
variance between the simulated and measured values ex-
ceeds the observational variance, NS < 0; when the vari-
ance approaches 0,  NS approaches 1,  indicating that  the

model performs a perfect simulation of the observational
values.  The equations for the statistical  methods used in
this study are:

R =

nP
i=1
(oi ¡ ¹o)(pi ¡ ¹p)s

nP
i=1
(oi ¡ ¹o)2

nP
i=1
(pi ¡ ¹p)2

; (13)

RMSE =

vuuut nP
i=1
(pi ¡ oi)

n ¡ 1
;

(14)

NS = 1¡

nP
i=1
(pi ¡ oi)

2

nP
i=1
(oi ¡ ¹o)2

: (15)

3.    Results

3.1    Energy balance closure scenario

Since  the  latent  heat  flux  data  for  the  2009  growing
season  were  supplemented  reference  data  that  could
barely  reflect  the  actual  energy  closure  scenario,  only
flux  data  for  the  2007  and  2008  growing  seasons  were
analyzed for  their  energy closure status.  Figure 3 shows
that  LE+H  for  both  growing  seasons  was  below  Rn–G,
indicating that the sum of sensible and latent heat meas-
ured from eddy covariance was lower than the available
energy.  The regression coefficients  (R)  of  the two stood
at 0.92 and 0.89, respectively, and EBR at 0.83 and 0.88,
respectively,  indicating  energy  nonclosure  existed  to  a
certain extent, and with interannual differences.

3.2    Parameter sensitivity of the optimized model

Judgments  were  made on the  parameter  sensitivity  of
the optimized model through a comparison of the simula-
tion accuracy of the models with different parameter con-
figurations.  It  is  apparent  from Table  4  that  for  each  of
the three groups, i.e.,  M1 and M2, M3 and M4, and M5
and  M6,  the  R  values  were  identical;  the  RMSEs  were
slightly different;  and the NS coefficients  were virtually
identical. Whereas, the R, RMSE, and NS values differed

 

Table 3.   Model parameter sensitivity configuration
Simulation Wc Wx
M0 – –
M1 0.8 0.2
M2 0.8 0.4
M3 0.6 0.2
M4 0.6 0.4
M5 0.4 0.4
M6 0.4 0.6
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significantly  between  different  groups,  suggesting  that
the model was barely sensitive to Wx but very sensitive to
Wc.  Among others,  the  simulation  accuracy  of  the  sens-
ible heat and latent heat for 2007, and the latent heat for
2008, increased with a decrease of Wc. The case for sens-
ible heat in 2008 was precisely the opposite, which might
have been caused by energy imbalance in the flux obser-
vations  (Li  et  al.,  2013).  From  a  comparative  point  of
view, when Wc = 0.4, the improvements in the optimized
RWU schemes in terms of flux simulation were most ob-
vious. When Wx was insensitive, Wc values were identical
to  the  results  of  Zheng  and  Wang  (2007)  for  forest,  in
that  both exhibited better  model simulation performance
with the decrease in Wc.  According to this  finding,  both
Wc  and  Wx  were  set  at  0.4  in  the  simulations  used  for
comparison of the optimization effects over the three years.

3.3    Effects of optimized RWU function on soil  humidity
simulation

According to soil stratification (Table 5) in the model,
the third layer in the model corresponds to soil humidity
observation at the depth of 10 cm; the fifth layer, 20–30
cm; and the sixth layer, 30–50 cm.

Considering  soil  water  content  varies  little  within  the
day,  the  average  daily  soil  water  content  values  for  the
2007–09  growing  seasons  were  used  for  comparison  of
the simulation accuracy before and after the optimization.
As can be seen from Fig.  4,  either  at  the depth of  10 or
20–30 cm,  there  was an underestimation,  to  varying de-
grees,  of  the  simulated  soil  water  content  for  the  2007
and  2008  growing  seasons,  as  compared  to  the  actual
measured  values:  in  terms  of  the  10-cm  soil  humidity,
errors were small  on days with large-scale precipitation,
large  on  precipitation-free  days,  and  grew  with  the  in-
crease  in  the  number  of  precipitation-free  days.  Meas-
ured  soil  water  content  values  suffered  scarcely  any  in-
fluence  from  small  daily  precipitation  amounts,  which
might be attributable to the fact that surface water uptake
cannot bring the precipitation influence down to a depth
of 10 cm, as compared to more sensitive reactions in the
simulated  value,  indicating  the  model’s  inaccurate  de-
scription of this process might be a factor contributing to
the  errors  in  soil  water  content  simulation.  As  a  result,
there was almost no difference in the simulated values at
various  soil  depths  under  the  small  daily  precipitation
conditions for 2007 and 2008 before and after the optimi-

 
Fig. 3.   Energy closure situations for the research site with (a) b0= 8.66 and (b) b0=15.51. Refer to Table 2 for the definitions of the parameters.

Table 4.   Comparison of models with different parameter configurations in terms of simulation accuracy

Simulation
LE (2007) H (2007) LE (2008) H (2008)

R2 RMSE NS R2 RMSE NS R2 RMSE NS R2 RMSE NS
M0 0.662 70.959 0.647 0.679 47.032 0.337 0.771 56.318 0.743 0.717 32.661 0.693
M1 0.654 71.968 0.637 0.676 48.132 0.305 0.769 56.827 0.738 0.714 32.778 0.690
M2 0.654 71.973 0.637 0.676 48.137 0.305 0.769 56.827 0.738 0.714 32.778 0.690
M3 0.672 70.284 0.654 0.679 45.753 0.372 0.777 56.345 0.743 0.706 33.005 0.686
M4 0.672 70.289 0.653 0.679 45.756 0.372 0.777 56.345 0.743 0.706 33.005 0.686
M5 0.687 68.602 0.670 0.686 43.623 0.429 0.779 56.107 0.745 0.706 32.972 0.687
M6 0.687 68.638 0.670 0.686 43.648 0.429 0.779 56.100 0.745 0.706 32.970 0.687

Table 5.   Soil stratification in the model
The order number of soil layer 1 2 3 4 5 6 7 8 9 10
Soil depth (m) 0.018 0.045 0.091 0.166 0.289 0.493 0.829 1.383 2.296 3.433
Soil layer thickness (m) 0.018 0.028 0.046 0.075 0.124 0.204 0.336 0.554 0.913 1.137

370 Journal of Meteorological Research Volume 31



zation.
The  case  was  different  in  2009.  Errors  caused  by  the

underestimation of the simulated soil water content at 10-
cm depth were small,  and the simulated values after  the
optimization were even closer to the measured values, in-
dicating that the optimization significantly helped to im-
prove  the  simulation  of  the  upper-layer  soil  humidity.
Simulated soil water content at 20–30-cm depth was over-
estimated with the original model for the latter part of the
growing  season,  and  underestimated  in  other  stages;
there  were  no  marked  changes  in  the  simulation  accur-
acy after the optimization for the earlier part of the grow-
ing  season,  marked  improvements  for  the  middle  part,
and rather large errors in the latter part. The effects of the
optimized  models  at  the  two  levels  were  more  obvious
during the continuous non-precipitation days of July and
August  when  maize  required  a  great  deal  of  water,
whereas  RWU  was  greatly  restricted  for  long-term  lack
of  precipitation.  The  optimized  model  generated  larger
simulated  soil  water  content  values  for  this  period,  with
enhanced simulation accuracy. In contrast, the optimized
model did not enhance the soil  water content simulation
accuracy over the continuous non-precipitation periods in
2007 and 2008, which might be attributable to the higher
soil  water  availability  in  these  two  years  than  in  2009.
That is to say, the effects of the optimized models show
up only when soil humidity is below a certain threshold.

To more clearly reflect the changes in soil water con-
tent  simulation  performance  after  the  optimization,  the
vertical variation of the simulated soil water content val-
ues for each month of the 2009 growing season was ana-
lyzed (Fig.  5).  However,  this  revealed that  there was al-
most no change in the simulated soil humidity values for
different layers in June; an increase to varying degrees in
July  and  August,  with  a  decreasing  margin  correspond-
ing to the increase in soil depth; and a marked difference
in September, with the margin of increase maximizing in
the fifth and sixth layers, and diminishing both ways for
the upper and lower layers. The findings from the causal
analysis of the above situations were: In June, the maize
plants were small, so changes in soil water content were
caused mainly by surface evaporation rather than RWU,
making  it  impossible  to  show  the  effects  of  the  optim-
ized  models.  July  and  August  marked  the  reproductive
growth  stage  when  maize  became  water-consuming  and
changes  in  soil  water  content  were  attributed  mainly  to
plant  transpiration,  making it  possible  to  best  reflect  the
effects of the optimized RWU parameterization schemes.
September  presented  a  different  picture  from  July  and
August: as leaves fell, transpiration no longer played the
leading  role,  and  soil  water  content  was  subject  to  the
combined  influence  of  surface  evaporation  and  plant
transpiration. At the surface level, where surface evapor-
ation  predominates,  the  effects  of  the  optimized  RWU

 
Fig. 4.   Comparison of the simulated and measured soil water content (SWC) values at the depths of (a) 10 cm and (b) 20–30 cm before and after
the optimization. Filled circles stand for measured values (OBS); crosses and open circles stand for simulated values before (REF) and after the
optimization (OPT), respectively.
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model  barely  took  hold;  but  with  the  increase  in  soil
depth, transpiration dominated again in affecting soil wa-
ter  content  to  fully  reveal  the  optimization  effects.  The
case with the lower layers was rather the same as that in
July and August;  that is,  the optimization effects on soil
water content weakened with the increase in soil depth.

3.4    Effects of optimized RWU function on soil  tempera-
ture simulation

The  case  was  different  with  soil  temperature,  which
took on a marked daily dynamic feature, and so monthly
average  daily  variations  were  taken  into  account  in  the
simulation  accuracy  comparison  (Fig.  6).  In  terms  of
simulation  accuracy,  the  original  model  achieved  the
largest simulation errors in June 2007, August 2009, and
September  of  all  three  years,  with  daily  variation  simu-
lated  values  rather  close  to  the  measured  values  for  the
remaining  time,  even  though  simulation  performance
varied significantly from year to year and seasonally. The
optimized  model  generated  increased  soil  temperature
simulation accuracy at the depths of 5 and 10 cm in Au-
gust 2009 only. Overall, soil temperature simulation cor-
related with the soil humidity simulation to some extent.

3.5    Effects  of  optimized  RWU  function  on  latent  and
sensible heat flux simulation

In terms of latent and sensible heat flux simulation, the

original  model  exhibited  high  simulation  accuracy  for
either  variable  in  2008  (Fig.  7),  with  simulated  values
identical  to  measured  values  of  latent  heat  for  July  and
August, and sensible heat for June and August. In 2007,
the simulated July and August latent heat and July sens-
ible heat values also reflected the measured daily change
well;  however,  there  were  considerable  errors  in  both
variables in June and September. In 2009, latent heat flux
was  underestimated,  except  in  June,  and to  a  wide  mar-
gin in August and September; whereas, sensible heat flux
was overestimated, to varying degrees, from June to Au-
gust. The optimized model enhanced the latent and sens-
ible heat simulation accuracy slightly for 2007, barely for
2008,  and  most  remarkably  for  2009,  which  was  reflec-
ted  by  the  simulated  July  and  August  latent  heat  values
increasing remarkably to hold the underestimation of the
original model in check, and the simulated July and Au-
gust sensible heat values decreasing significantly to bet-
ter  correlate  with  the  soil  temperature  situations  and  to
further demonstrate that optimization effects vary in dif-
ferent  maize  growth  stages.  Although  the  supplemented
reference data of  the 2009 latent  heat  flux might not  re-
flect the actual case, the sensible heat flux data were ob-
tained from actual observations, and so improved simula-
tion accuracy in this regard might well prove the effects
of the optimized model on heat flux simulation.

 
Fig. 5.   Comparison of the vertical variation in monthly average simulated soil water content (SWC) values before (REF) and after the optimiza-
tion (OPT) in (a–d) June–September 2009.
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For  a  more  graphic  reflection  of  the  optimization  ef-
fects,  the  R,  RMSE,  and  NS values  were  used  to  assess
the  latent  and  sensible  heat  flux  simulation  accuracy

from a  quantitative  point  of  view (Table  6).  In  terms of
simulation accuracy, with regard to either latent or sens-
ible  heat  data,  the  maximum  RMSE,  the  minimum  NS,

 
Fig. 6.   Comparison of the simulated and measured values (OBS) of the monthly average diurnal patterns of (a) 5- and (b) 10-cm soil tempera-
ture before (REF) and after the optimization (OPT).

 
Fig. 7.   As in Fig. 6, but for the diurnal variation of (a) latent and (b) sensible heat fluxes averaged on the monthly scale.
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and  R  values  all  occurred  in  2009,  and  the  minimum
RMSE, the maximum NS, and R values in 2008, with the
2007 figures falling between. This indicates that the sim-
ulation accuracy was highest in 2008, followed by 2007,
and then 2009, and that  model performance varied from
year  to  year.  A  comparison  of  the  statistics  before  and
after  the  optimization  showed  that,  except  for  sensible
heat  in  2008,  the  simulation  accuracy  for  all  variables
was  higher-slightly  for  2007,  and  remarkably  for  2009.
We  can  confidently  conclude  that  the  optimized  model
has  its  poorest  effects  under  high  soil  water  availability
situations  and  its  best  effects  during  times  of  drought,
which is consistent with the findings of Li et al. (2013).

4.    Discussion

Agricultural ecosystems are representative in that they
are found everywhere and are most severely affected by
human activities. Climate change is likely to have a wide
range of impacts on agricultural productivity in many re-
gions of the world (IPCC, 2007). Compared with forests,
grasslands,  and other  ecosystems scarcely  influenced by
human  activities,  maize  farmland  ecosystems  are  more
intensively  managed,  leading  to  some complex  and  var-
ied  interactions  of  physical  processes  with  the  atmo-
sphere (Li et al., 2011). However, no definite conclusion
has been reached as to how well land surface models can
be  applied  to  the  simulation  of  maize  farmland  ecosys-
tems, and there have been few RWU-related studies con-
ducted.

Even though various RWU functions have been intro-
duced  by  scholars  (e.g.,  Jackson  et  al.,  2000;  Li  et  al.,
2006; Zheng and Wang, 2007) into land surface models,
they  exhibit  limited  applicability  because  different  eco-
systems  cope  differently  with  different  soil  water  avail-
ability scenarios. For instance, in the Amazon rain forest,
water  redistribution  is  an  effective  mechanism  to  main-
tain transpiration (Lee et al., 2005; Oliveira et al., 2005);
and in  central  Asia,  high root  water  use  efficiency is  an
effective way for desert shrubs to adapt to the arid envi-
ronment  (Xu  et  al.,  2007).  In  the  case  of  the  Jinzhou
farmland ecosystem in different maize growth stages, the
simulation results of CoLM with the default RWU func-

tion show that the simulation accuracy of soil moisture is
higher  on  precipitation  days  but  tends  to  reduce  during
continuous non-precipitation periods. The simulation ac-
curacy of soil temperature varies significantly from year
to year and seasonally, with remarkable low accuracy in
the  late  growth  stages  of  maize  and  a  higher  simulation
accuracy for other time periods. In years of little rainfall,
there  is  an  underestimation  of  sensible  heat  and  latent
heat; whereas, in years of normal rainfall, heat flux simu-
lations tend to be more accurate.

To  overcome  this  defect  of  poor  simulation  perform-
ance  with  respect  to  various  variables  during  drought,
this  study  introduced  the  RWU  function  proposed  by
Zheng  and  Wang  (2007)  for  optimization  of  the  model.
The results demonstrate that the Wx parameter used in the
optimized  function  to  determine  whether  roots  absorb
water from certain soil  layers has scarcely any effect on
the simulation of sensible and latent heat, indicating that
RWU at different soil depths has nothing to do with heat
flux.  However,  the  Wc  parameter,  used  to  determine
whether the baseline cumulative root efficiency required
for maximum plant transpiration is reached, is very sensi-
tive to the heat flux simulation. As far as the research site
is  concerned,  when  this  parameter  is  valued  at  0.4,  the
model simulation accuracy is highest. In fact, the optim-
ized model did not generate better simulation results un-
der all soil water availability conditions, but did make an
obvious  difference  in  the  2009  growing  season,  charac-
terized by a relatively low level of soil moisture, suggest-
ing that the effects show up only when soil water content
reaches  a  certain  threshold,  which  might  not  be  a  fixed
value  but  is  closely  related  to  canopy  structures  or
physiological properties in the given plant growth stage.
In short,  from a qualitative point  of  view, the optimized
RWU  function  generated  notably  better  simulation  re-
sults of maize water uptake in times of drought, with soil
moisture  and  latent  heat  simulation  accuracy  signific-
antly  improved,  suggesting  that  proper  RWU  schemes
have  obvious  effects  in  enhancing  the  simulation  of
land–atmosphere water  and heat  flux.  Although sensible
heat  simulation  at  certain  points  dropped  in  accuracy
after the optimization, this does not necessarily mean that
the  optimized  schemes  are  not  good  enough;  rather,  it

Table 6.   Comparison of the latent and sensible heat flux simulation accuracy before and after optimization

Year Variable Default CoLM Modified CoLM
RMSE NS R RMSE NS R

2007 LE 93.621 0.457 0.724 90.060 0.497 0.747
H 63.074 0.017 0.768 57.992 0.169 0.777

2008 LE 74.980 0.604 0.815 74.663 0.608 0.822
H 42.719 0.562 0.814 43.211 0.552 0.809

2009 LE 144.343 −0.468 0.277 140.589 −0.392 0.406
H 90.229 −1.508 0.516 68.495 −0.445 0.528
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means  that  land  surface  models  might  have  other  para-
meterization  schemes  that  are  inaccurate  and  should  be
held accountable, such as those related to runoff, infiltra-
tion, and transpiration (Zheng and Wang, 2007), proving
that in the evaluation of the effectiveness of physical pro-
cess  parameterization  schemes,  the  single  most  import-
ant prerequisite is an accurate description of some associ-
ated processes.

Based  on  this  research,  a  suitable  parameterization
scheme  for  simulations  conducted  for  Northeast  China
maize  farmland  ecosystems  has  basically  been  determ-
ined,  which  helps  to  enhance  our  understanding  of  the
RWU process and provides a  reference for  similar  stud-
ies. Nevertheless, because of the lack of or inadequacy of
some important variables used to determine the effects of
the  optimized  model,  such  as  measured  soil  water  con-
tent  data  at  different  depths  and  canopy  evapotranspira-
tion data associated with the total amount of RWU, some
of the simulation results reported in this paper cannot be
fully accounted for, meaning that related conclusions are
somewhat  uncertain.  In  addition,  whether  or  not  a  para-
meterization  scheme  is  good  enough  requires  verifica-
tion with data from different observation sites. Therefore,
future  studies  should  focus  on  collecting  year-to-year
data  from  other  maize  farmland  ecosystems,  to  further
test  and  assess  the  simulation  performance  of  the  RWU
parameterization schemes.

5.    Conclusions

Based  on  the  2007–09  data  collected  at  the  farmland
ecosystem field  station in  Jinzhou,  we optimized CoLM
with  the  RWU scheme of  Zheng and  Wang (2007).  We
then investigated the sensibility of parameters in the op-
timized  RWU  function  and  evaluated  the  effects  of  the
optimized  RWU  function  of  this  model  on  the  simula-
tion of land–atmosphere water and heat flux. The follow-
ing conclusions were drawn:

(1)  In  the  optimized  RWU  function,  the  soil  water
availability  parameter  used  to  determine  whether  roots
absorb  water  from  a  certain  soil  layer  has  scarcely  any
effect  on  the  simulation  of  heat,  whereas  the  parameter
used to determine whether the lower limit of cumulative
root efficiency required for maximum plant transpiration
is  reached  is  very  sensitive  to  the  land  surface  process
simulation:  simulation  accuracy  increases  with  a  de-
crease in this parameter.

(2)  The  optimized  RWU  function  significantly  im-
proves CoLM’s performance in simulating soil humidity,
temperature,  and  sensible  heat  and  latent  heat  fluxes  in
years  of  little  rainfall,  particularly  on  continuous  non-

precipitation days at a time when maize growth becomes
most water-consuming. This indicates that the optimized
CoLM  RWU  process  is  highly  applicable  to  simulating
water and heat flux in maize farmland ecosystems under
arid conditions.
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